Generic placeholder image

Current Radiopharmaceuticals

Editor-in-Chief

ISSN (Print): 1874-4710
ISSN (Online): 1874-4729

Review Article

Nuclear Imaging of Post-infarction Inflammation in Ischemic Cardiac Diseases - New Radiotracers for Potential Clinical Applications

Author(s): Boudewijn J. Krenning, Kim van der Heiden, Dirk J. Duncker, Marion de Jong and Monique R. Bernsen*

Volume 14, Issue 3, 2021

Published on: 12 October, 2020

Page: [184 - 208] Pages: 25

DOI: 10.2174/1874471013666201012165305

Price: $65

Abstract

Acute myocardial infarction is one of the leading causes of death in the western world. Despite major improvements in myocardial reperfusion with sophisticated percutaneous coronary intervention technologies and new antithrombotic agents, there is still no effective therapy for preventing post- infarction myocardial injury and remodeling. Death of cardiomyocytes following ischemia results in “danger signals” that elicit an inflammatory reaction to remove cell debris and form scar tissue. Optimal healing of the damaged myocardial tissue requires a coordinated cellular response for sufficient wound healing and scar formation. However, if this inflammatory reaction is overactive or incompletely resolved, adverse left ventricular remodeling and heart failure may occur. Treatment aimed at the modulation of the post-MI inflammatory response has been widely pursued and investigated. Although improved infarct healing was shown in many experimental preclinical studies, to date, clinical trials using anti-inflammatory treatment strategies have been far less successful. Clearly, a need exists for predicting and selecting patients at risk and selecting the most appropriate therapy for individual patients. To this end, imaging of the post-MI response has been a topic of significant interest. In this review, we first discuss the clinical complications resulting from myocardial inflammation following AMI and the need for non-invasive imaging techniques using radiolabeled tracers. We then discuss the inflammatory reaction cascade following acute myocardial infarction, the inflammatory reaction cascade following acute myocardial infarction focusing on inflammatory cell types involved herein, and potential imaging targets for identifying these cells during the inflammatory process. In addition, we discuss specific characteristics and limitations of various preclinical animal models for ischemic heart disease since they are crucial in the development and evaluation of the imaging techniques. Finally, we discuss the need for non-invasive imaging approaches using radiolabeled tracers.

Keywords: Inflammatory reaction, myocardial infarction, nuclear imaging, imaging tracer, imaging target, inflammatory cell.

Graphical Abstract
[1]
Hausenloy, D.J.; Yellon, D.M. Myocardial ischemia-reperfusion injury: a neglected therapeutic target. J. Clin. Invest., 2013, 123(1), 92-100.
[http://dx.doi.org/10.1172/JCI62874] [PMID: 23281415]
[2]
Thackeray, J.T. PET Assessment of Immune Cell Activity and Therapeutic Monitoring Following Myocardial Infarction. Curr. Cardiol. Rep., 2018, 20(3), 13.
[http://dx.doi.org/10.1007/s11886-018-0955-1] [PMID: 29511843]
[3]
Rischpler, C.; Dirschinger, R.J.; Nekolla, S.G.; Kossmann, H.; Nicolosi, S.; Hanus, F.; van Marwick, S.; Kunze, K.P.; Meinicke, A.; Götze, K.; Kastrati, A.; Langwieser, N.; Ibrahim, T.; Nahrendorf, M.; Schwaiger, M.; Laugwitz, K.L. Prospective Evaluation of 18F-Fluorodeoxyglucose Uptake in Postischemic Myocardium by Simultaneous Positron Emission Tomography/Magnetic Resonance Imaging as a Prognostic Marker of Functional Outcome. Circ Cardiovasc Imaging, 2016, 9(4), e004316.
[http://dx.doi.org/10.1161/CIRCIMAGING.115.004316] [PMID: 27056601]
[4]
Bujak, M.; Dobaczewski, M.; Chatila, K.; Mendoza, L.H.; Li, N.; Reddy, A.; Frangogiannis, N.G. Interleukin-1 receptor type I signaling critically regulates infarct healing and cardiac remodeling. Am. J. Pathol., 2008, 173(1), 57-67.
[http://dx.doi.org/10.2353/ajpath.2008.070974] [PMID: 18535174]
[5]
Westman, P.C.; Lipinski, M.J.; Luger, D.; Waksman, R.; Bonow, R.O.; Wu, E.; Epstein, S.E. Inflammation as a Driver of Adverse Left Ventricular Remodeling After Acute Myocardial Infarction. J. Am. Coll. Cardiol., 2016, 67(17), 2050-2060.
[http://dx.doi.org/10.1016/j.jacc.2016.01.073] [PMID: 27126533]
[6]
Francis Stuart, S.D.; De Jesus, N.M.; Lindsey, M.L.; Ripplinger, C.M. The crossroads of inflammation, fibrosis, and arrhythmia following myocardial infarction. J. Mol. Cell. Cardiol., 2016, 91, 114-122.
[http://dx.doi.org/10.1016/j.yjmcc.2015.12.024] [PMID: 26739214]
[7]
Kouvas, N.; Kontogiannis, C.; Georgiopoulos, G.; Spartalis, M.; Tsilimigras, D.I.; Spartalis, E.; Kapelouzou, A.; Kosmopoulos, M.; Chatzidou, S. The complex crosstalk between inflammatory cytokines and ventricular arrhythmias. Cytokine, 2018, 111, 171-177.
[http://dx.doi.org/10.1016/j.cyto.2018.08.007] [PMID: 30172113]
[8]
Lazzerini, P.E.; Capecchi, P.L.; El-Sherif, N.; Laghi-Pasini, F.; Boutjdir, M. Emerging Arrhythmic Risk of Autoimmune and Inflammatory Cardiac Channelopathies. J. Am. Heart Assoc., 2018, 7(22), e010595.
[http://dx.doi.org/10.1161/JAHA.118.010595] [PMID: 30571503]
[9]
Anzai, T. Post-infarction inflammation and left ventricular remodeling: a double-edged sword. Circ. J., 2013, 77(3), 580-587.
[http://dx.doi.org/10.1253/circj.CJ-13-0013] [PMID: 23358460]
[10]
Frangogiannis, N.G. The inflammatory response in myocardial injury, repair, and remodelling. Nat. Rev. Cardiol., 2014, 11(5), 255-265.
[http://dx.doi.org/10.1038/nrcardio.2014.28] [PMID: 24663091]
[11]
Vogel, B.; Claessen, B.E.; Arnold, S.V.; Chan, D.; Cohen, D.J.; Giannitsis, E.; Gibson, C.M.; Goto, S.; Katus, H.A.; Kerneis, M.; Kimura, T.; Kunadian, V.; Pinto, D.S.; Shiomi, H.; Spertus, J.A.; Steg, P.G.; Mehran, R. ST-segment elevation myocardial infarction. Nat. Rev. Dis. Primers, 2019, 5(1), 39.
[http://dx.doi.org/10.1038/s41572-019-0090-3] [PMID: 31171787]
[12]
Moccetti, F.; Brown, E.; Xie, A.; Packwood, W.; Qi, Y.; Ruggeri, Z.; Shentu, W.; Chen, J.; López, J.A.; Lindner, J.R. Myocardial Infarction Produces Sustained Proinflammatory Endothelial Activation in Remote Arteries. J. Am. Coll. Cardiol., 2018, 72(9), 1015-1026.
[http://dx.doi.org/10.1016/j.jacc.2018.06.044] [PMID: 30139430]
[13]
Dutta, P.; Courties, G.; Wei, Y.; Leuschner, F.; Gorbatov, R.; Robbins, C.S.; Iwamoto, Y.; Thompson, B.; Carlson, A.L.; Heidt, T.; Majmudar, M.D.; Lasitschka, F.; Etzrodt, M.; Waterman, P.; Waring, M.T.; Chicoine, A.T.; van der Laan, A.M.; Niessen, H.W.; Piek, J.J.; Rubin, B.B.; Butany, J.; Stone, J.R.; Katus, H.A.; Murphy, S.A.; Morrow, D.A.; Sabatine, M.S.; Vinegoni, C.; Moskowitz, M.A.; Pittet, M.J.; Libby, P.; Lin, C.P.; Swirski, F.K.; Weissleder, R.; Nahrendorf, M. Myocardial infarction accelerates atherosclerosis. Nature, 2012, 487(7407), 325-329.
[http://dx.doi.org/10.1038/nature11260] [PMID: 22763456]
[14]
Seropian, I.M.; Toldo, S.; Van Tassell, B.W.; Abbate, A. Anti-inflammatory strategies for ventricular remodeling following ST-segment elevation acute myocardial infarction. J. Am. Coll. Cardiol., 2014, 63(16), 1593-1603.
[http://dx.doi.org/10.1016/j.jacc.2014.01.014] [PMID: 24530674]
[15]
Ridker, P.M.; Everett, B.M.; Thuren, T.; MacFadyen, J.G.; Chang, W.H.; Ballantyne, C.; Fonseca, F.; Nicolau, J.; Koenig, W.; Anker, S.D.; Kastelein, J.J.P.; Cornel, J.H.; Pais, P.; Pella, D.; Genest, J.; Cifkova, R.; Lorenzatti, A.; Forster, T.; Kobalava, Z.; Vida-Simiti, L.; Flather, M.; Shimokawa, H.; Ogawa, H.; Dellborg, M.; Rossi, P.R.F.; Troquay, R.P.T.; Libby, P.; Glynn, R.J. CANTOS Trial Group. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N. Engl. J. Med., 2017, 377(12), 1119-1131.
[http://dx.doi.org/10.1056/NEJMoa1707914] [PMID: 28845751]
[16]
Tardif, J.C.; Kouz, S.; Waters, D.D.; Bertrand, O.F.; Diaz, R.; Maggioni, A.P.; Pinto, F.J.; Ibrahim, R.; Gamra, H.; Kiwan, G.S.; Berry, C.; López-Sendón, J.; Ostadal, P.; Koenig, W.; Angoulvant, D.; Grégoire, J.C.; Lavoie, M.A.; Dubé, M.P.; Rhainds, D.; Provencher, M.; Blondeau, L.; Orfanos, A.; L’Allier, P.L.; Guertin, M.C.; Roubille, F. Efficacy and Safety of Low-Dose Colchicine after Myocardial Infarction. N. Engl. J. Med., 2019, 381(26), 2497-2505.
[http://dx.doi.org/10.1056/NEJMoa1912388] [PMID: 31733140]
[17]
Hennan, J.K.; Huang, J.; Barrett, T.D.; Driscoll, E.M.; Willens, D.E.; Park, A.M.; Crofford, L.J.; Lucchesi, B.R. Effects of selective cyclooxygenase-2 inhibition on vascular responses and thrombosis in canine coronary arteries. Circulation, 2001, 104(7), 820-825.
[http://dx.doi.org/10.1161/hc3301.092790] [PMID: 11502709]
[18]
Frangogiannis, N.G.; Lindsey, M.L.; Michael, L.H.; Youker, K.A.; Bressler, R.B.; Mendoza, L.H.; Spengler, R.N.; Smith, C.W.; Entman, M.L. Resident cardiac mast cells degranulate and release preformed TNF-alpha, initiating the cytokine cascade in experimental canine myocardial ischemia/reperfusion. Circulation, 1998, 98(7), 699-710.
[http://dx.doi.org/10.1161/01.CIR.98.7.699] [PMID: 9715863]
[19]
Nahrendorf, M.; Pittet, M.J.; Swirski, F.K. Monocytes: protagonists of infarct inflammation and repair after myocardial infarction. Circulation, 2010, 121(22), 2437-2445.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.109.916346] [PMID: 20530020]
[20]
Prabhu, S.D.; Frangogiannis, N.G. The Biological Basis for Cardiac Repair After Myocardial Infarction: From Inflammation to Fibrosis. Circ. Res., 2016, 119(1), 91-112.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.303577] [PMID: 27340270]
[21]
Ong, S.B.; Hernández-Reséndiz, S.; Crespo-Avilan, G.E.; Mukhametshina, R.T.; Kwek, X.Y.; Cabrera-Fuentes, H.A.; Hausenloy, D.J. Inflammation following acute myocardial infarction: Multiple players, dynamic roles, and novel therapeutic opportunities. Pharmacol. Ther., 2018, 186, 73-87.
[http://dx.doi.org/10.1016/j.pharmthera.2018.01.001] [PMID: 29330085]
[22]
Frangogiannis, N.G. Regulation of the inflammatory response in cardiac repair. Circ. Res., 2012, 110(1), 159-173.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.243162] [PMID: 22223212]
[23]
Somasundaram, P.; Ren, G.; Nagar, H.; Kraemer, D.; Mendoza, L.; Michael, L.H.; Caughey, G.H.; Entman, M.L.; Frangogiannis, N.G. Mast cell tryptase may modulate endothelial cell phenotype in healing myocardial infarcts. J. Pathol., 2005, 205(1), 102-111.
[http://dx.doi.org/10.1002/path.1690] [PMID: 15586361]
[24]
Epelman, S.; Lavine, K.J.; Beaudin, A.E.; Sojka, D.K.; Carrero, J.A.; Calderon, B.; Brija, T.; Gautier, E.L.; Ivanov, S.; Satpathy, A.T.; Schilling, J.D.; Schwendener, R.; Sergin, I.; Razani, B.; Forsberg, E.C.; Yokoyama, W.M.; Unanue, E.R.; Colonna, M.; Randolph, G.J.; Mann, D.L. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity, 2014, 40(1), 91-104.
[http://dx.doi.org/10.1016/j.immuni.2013.11.019] [PMID: 24439267]
[25]
Ma, Y.; Yabluchanskiy, A.; Iyer, R.P.; Cannon, P.L.; Flynn, E.R.; Jung, M.; Henry, J.; Cates, C.A.; Deleon-Pennell, K.Y.; Lindsey, M.L. Temporal neutrophil polarization following myocardial infarction. Cardiovasc. Res., 2016, 110(1), 51-61.
[http://dx.doi.org/10.1093/cvr/cvw024] [PMID: 26825554]
[26]
Boufenzer, A.; Lemarié, J.; Simon, T.; Derive, M.; Bouazza, Y.; Tran, N.; Maskali, F.; Groubatch, F.; Bonnin, P.; Bastien, C.; Bruneval, P.; Marie, P.Y.; Cohen, R.; Danchin, N.; Silvestre, J.S.; Ait-Oufella, H.; Gibot, S. TREM-1 Mediates Inflammatory Injury and Cardiac Remodeling Following Myocardial Infarction. Circ. Res., 2015, 116(11), 1772-1782.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.305628] [PMID: 25840803]
[27]
Horckmans, M.; Ring, L.; Duchene, J.; Santovito, D.; Schloss, M.J.; Drechsler, M.; Weber, C.; Soehnlein, O.; Steffens, S. Neutrophils orchestrate post-myocardial infarction healing by polarizing macrophages towards a reparative phenotype. Eur. Heart J., 2017, 38(3), 187-197.
[PMID: 28158426]
[28]
Nahrendorf, M.; Swirski, F.K.; Aikawa, E.; Stangenberg, L.; Wurdinger, T.; Figueiredo, J.L.; Libby, P.; Weissleder, R.; Pittet, M.J. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J. Exp. Med., 2007, 204(12), 3037-3047.
[http://dx.doi.org/10.1084/jem.20070885] [PMID: 18025128]
[29]
Hanna, R.N.; Carlin, L.M.; Hubbeling, H.G.; Nackiewicz, D.; Green, A.M.; Punt, J.A.; Geissmann, F.; Hedrick, C.C. The transcription factor NR4A1 (Nur77) controls bone marrow differentiation and the survival of Ly6C- monocytes. Nat. Immunol., 2011, 12(8), 778-785.
[http://dx.doi.org/10.1038/ni.2063] [PMID: 21725321]
[30]
Anzai, A.; Anzai, T.; Nagai, S.; Maekawa, Y.; Naito, K.; Kaneko, H.; Sugano, Y.; Takahashi, T.; Abe, H.; Mochizuki, S.; Sano, M.; Yoshikawa, T.; Okada, Y.; Koyasu, S.; Ogawa, S.; Fukuda, K. Regulatory role of dendritic cells in postinfarction healing and left ventricular remodeling. Circulation, 2012, 125(10), 1234-1245.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.052126] [PMID: 22308302]
[31]
Yan, X.; Anzai, A.; Katsumata, Y.; Matsuhashi, T.; Ito, K.; Endo, J.; Yamamoto, T.; Takeshima, A.; Shinmura, K.; Shen, W.; Fukuda, K.; Sano, M. Temporal dynamics of cardiac immune cell accumulation following acute myocardial infarction. J. Mol. Cell. Cardiol., 2013, 62, 24-35.
[http://dx.doi.org/10.1016/j.yjmcc.2013.04.023] [PMID: 23644221]
[32]
Liu, H.; Gao, W.; Yuan, J.; Wu, C.; Yao, K.; Zhang, L.; Ma, L.; Zhu, J.; Zou, Y.; Ge, J. Exosomes derived from dendritic cells improve cardiac function via activation of CD4(+) T lymphocytes after myocardial infarction. J. Mol. Cell. Cardiol., 2016, 91, 123-133.
[http://dx.doi.org/10.1016/j.yjmcc.2015.12.028] [PMID: 26746143]
[33]
Varda-Bloom, N.; Leor, J.; Ohad, D.G.; Hasin, Y.; Amar, M.; Fixler, R.; Battler, A.; Eldar, M.; Hasin, D. Cytotoxic T lymphocytes are activated following myocardial infarction and can recognize and kill healthy myocytes in vitro. J. Mol. Cell. Cardiol., 2000, 32(12), 2141-2149.
[http://dx.doi.org/10.1006/jmcc.2000.1261] [PMID: 11112990]
[34]
Boag, S.E.; Das, R.; Shmeleva, E.V.; Bagnall, A.; Egred, M.; Howard, N.; Bennaceur, K.; Zaman, A.; Keavney, B.; Spyridopoulos, I. T lymphocytes and fractalkine contribute to myocardial ischemia/reperfusion injury in patients. J. Clin. Invest., 2015, 125(8), 3063-3076.
[http://dx.doi.org/10.1172/JCI80055] [PMID: 26168217]
[35]
Zouggari, Y.; Ait-Oufella, H.; Bonnin, P.; Simon, T.; Sage, A.P.; Guérin, C.; Vilar, J.; Caligiuri, G.; Tsiantoulas, D.; Laurans, L.; Dumeau, E.; Kotti, S.; Bruneval, P.; Charo, I.F.; Binder, C.J.; Danchin, N.; Tedgui, A.; Tedder, T.F.; Silvestre, J.S.; Mallat, Z. B lymphocytes trigger monocyte mobilization and impair heart function after acute myocardial infarction. Nat. Med., 2013, 19(10), 1273-1280.
[http://dx.doi.org/10.1038/nm.3284] [PMID: 24037091]
[36]
Meng, X.; Yang, J.; Dong, M.; Zhang, K.; Tu, E.; Gao, Q.; Chen, W.; Zhang, C.; Zhang, Y. Regulatory T cells in cardiovascular diseases. Nat. Rev. Cardiol., 2016, 13(3), 167-179.
[http://dx.doi.org/10.1038/nrcardio.2015.169] [PMID: 26525543]
[37]
Wang, Y.P.; Xie, Y.; Ma, H.; Su, S.A.; Wang, Y.D.; Wang, J.A.; Xiang, M.X. Regulatory T lymphocytes in myocardial infarction: A promising new therapeutic target. Int. J. Cardiol., 2016, 203, 923-928.
[http://dx.doi.org/10.1016/j.ijcard.2015.11.078] [PMID: 26618254]
[38]
Wang, Y.M.; Alexander, S.I. IL-2/anti-IL-2 complex: a novel strategy of in vivo regulatory T cell expansion in renal injury. J. Am. Soc. Nephrol., 2013, 24(10), 1503-1504.
[http://dx.doi.org/10.1681/ASN.2013070718] [PMID: 23949795]
[39]
Mor, A.; Luboshits, G.; Planer, D.; Keren, G.; George, J. Altered status of CD4(+)CD25(+) regulatory T cells in patients with acute coronary syndromes. Eur. Heart J., 2006, 27(21), 2530-2537.
[http://dx.doi.org/10.1093/eurheartj/ehl222] [PMID: 16954132]
[40]
Sardella, G.; De Luca, L.; Francavilla, V.; Accapezzato, D.; Mancone, M.; Sirinian, M.I.; Fedele, F.; Paroli, M. Frequency of naturally-occurring regulatory T cells is reduced in patients with ST-segment elevation myocardial infarction. Thromb. Res., 2007, 120(4), 631-634.
[http://dx.doi.org/10.1016/j.thromres.2006.12.005] [PMID: 17261328]
[41]
Wigren, M.; Björkbacka, H.; Andersson, L.; Ljungcrantz, I.; Fredrikson, G.N.; Persson, M.; Bryngelsson, C.; Hedblad, B.; Nilsson, J. Low levels of circulating CD4+FoxP3+ T cells are associated with an increased risk for development of myocardial infarction but not for stroke. Arterioscler. Thromb. Vasc. Biol., 2012, 32(8), 2000-2004.
[http://dx.doi.org/10.1161/ATVBAHA.112.251579] [PMID: 22628434]
[42]
Saxena, A.; Dobaczewski, M.; Rai, V.; Haque, Z.; Chen, W.; Li, N.; Frangogiannis, N.G. Regulatory T cells are recruited in the infarcted mouse myocardium and may modulate fibroblast phenotype and function. Am. J. Physiol. Heart Circ. Physiol., 2014, 307(8), H1233-H1242.
[http://dx.doi.org/10.1152/ajpheart.00328.2014] [PMID: 25128167]
[43]
Zhang, W.C.; Wang, J.; Shu, Y.W.; Tang, T.T.; Zhu, Z.F.; Xia, N.; Nie, S.F.; Liu, J.; Zhou, S.F.; Li, J.J.; Xiao, H.; Yuan, J.; Liao, M.Y.; Cheng, L.X.; Liao, Y.H.; Cheng, X. Impaired thymic export and increased apoptosis account for regulatory T cell defects in patients with non-ST segment elevation acute coronary syndrome. J. Biol. Chem., 2012, 287(41), 34157-34166.
[http://dx.doi.org/10.1074/jbc.M112.382978] [PMID: 22872639]
[44]
Hofmann, U.; Beyersdorf, N.; Weirather, J.; Podolskaya, A.; Bauersachs, J.; Ertl, G.; Kerkau, T.; Frantz, S. Activation of CD4+ T lymphocytes improves wound healing and survival after experimental myocardial infarction in mice. Circulation, 2012, 125(13), 1652-1663.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.044164] [PMID: 22388323]
[45]
Homma, T.; Kinugawa, S.; Takahashi, M.; Sobirin, M.A.; Saito, A.; Fukushima, A.; Suga, T.; Takada, S.; Kadoguchi, T.; Masaki, Y.; Furihata, T.; Taniguchi, M.; Nakayama, T.; Ishimori, N.; Iwabuchi, K.; Tsutsui, H. Activation of invariant natural killer T cells by α-galactosylceramide ameliorates myocardial ischemia/reperfusion injury in mice. J. Mol. Cell. Cardiol., 2013, 62, 179-188.
[http://dx.doi.org/10.1016/j.yjmcc.2013.06.004] [PMID: 23774048]
[46]
Sobirin, M.A.; Kinugawa, S.; Takahashi, M.; Fukushima, A.; Homma, T.; Ono, T.; Hirabayashi, K.; Suga, T.; Azalia, P.; Takada, S.; Taniguchi, M.; Nakayama, T.; Ishimori, N.; Iwabuchi, K.; Tsutsui, H. Activation of natural killer T cells ameliorates postinfarct cardiac remodeling and failure in mice. Circ. Res., 2012, 111(8), 1037-1047.
[http://dx.doi.org/10.1161/CIRCRESAHA.112.270132] [PMID: 22887770]
[47]
Hotamisligil, G.S. Foundations of Immunometabolism and Implications for Metabolic Health and Disease. Immunity, 2017, 47(3), 406-420.
[http://dx.doi.org/10.1016/j.immuni.2017.08.009] [PMID: 28930657]
[48]
Palmer, C.S.; Hussain, T.; Duette, G.; Weller, T.J.; Ostrowski, M.; Sada-Ovalle, I.; Crowe, S.M. Regulators of Glucose Metabolism in CD4+ and CD8+ T Cells. Int. Rev. Immunol., 2016, 35(6), 477-488.
[http://dx.doi.org/10.3109/08830185.2015.1082178] [PMID: 26606199]
[49]
Van den Bossche, J.; O’Neill, L.A.; Menon, D. Macrophage Immunometabolism: Where Are We (Going)? Trends Immunol., 2017, 38(6), 395-406.
[http://dx.doi.org/10.1016/j.it.2017.03.001] [PMID: 28396078]
[50]
Wu, C.; Li, F.; Niu, G.; Chen, X. PET imaging of inflammation biomarkers. Theranostics, 2013, 3(7), 448-466.
[http://dx.doi.org/10.7150/thno.6592] [PMID: 23843893]
[51]
Satomi, T.; Ogawa, M.; Mori, I.; Ishino, S.; Kubo, K.; Magata, Y.; Nishimoto, T. Comparison of contrast agents for atherosclerosis imaging using cultured macrophages: FDG versus ultrasmall superparamagnetic iron oxide. J. Nucl. Med., 2013, 54(6), 999-1004.
[http://dx.doi.org/10.2967/jnumed.112.110551] [PMID: 23670898]
[52]
Lee, W.W.; Marinelli, B.; van der Laan, A.M.; Sena, B.F.; Gorbatov, R.; Leuschner, F.; Dutta, P.; Iwamoto, Y.; Ueno, T.; Begieneman, M.P.; Niessen, H.W.; Piek, J.J.; Vinegoni, C.; Pittet, M.J.; Swirski, F.K.; Tawakol, A.; Di Carli, M.; Weissleder, R.; Nahrendorf, M. PET/MRI of inflammation in myocardial infarction. J. Am. Coll. Cardiol., 2012, 59(2), 153-163.
[http://dx.doi.org/10.1016/j.jacc.2011.08.066] [PMID: 22222080]
[53]
Borchert, T.; Beitar, L.; Langer, L.B.N.; Polyak, A.; Wester, H.J.; Ross, T.L.; Hilfiker-Kleiner, D.; Bengel, F.M.; Thackeray, J.T. Dissecting the target leukocyte subpopulations of clinically relevant inflammation radiopharmaceuticals. J. Nucl. Cardiol., 2019.
[http://dx.doi.org/10.1007/s12350-019-01929-z] [PMID: 31659697]
[54]
Buonincontri, G.; Methner, C.; Carpenter, T.A.; Hawkes, R.C.; Sawiak, S.J.; Krieg, T. MRI and PET in mouse models of myocardial infarction. J. Vis. Exp., 2013, (82), e50806.
[http://dx.doi.org/10.3791/50806] [PMID: 24378323]
[55]
Xi, X.Y.; Zhang, F.; Wang, J.; Gao, W.; Tian, Y.; Xu, H. Functional significance of post-myocardial infarction inflammation evaluated by (18)F-fluorodeoxyglucose imaging in swine model. J. Nucl. Cardiol., 2020, 27(2), 519-531.
[PMID: 31741330]
[56]
Giorgetti, A.; Marras, G.; Genovesi, D.; Filidei, E.; Bottoni, A.; Mangione, M.; Emdin, M.; Marzullo, P. Effect of prolonged fasting and low molecular weight heparin or warfarin therapies on 2-deoxy-2-[18F]-fluoro-D-glucose PET cardiac uptake. J. Nucl. Cardiol., 2018, 25(4), 1364-1371.
[http://dx.doi.org/10.1007/s12350-017-0800-8] [PMID: 28160263]
[57]
Schwaiger, M.; Brunken, R.; Grover-McKay, M.; Krivokapich, J.; Child, J.; Tillisch, J.H.; Phelps, M.E.; Schelbert, H.R. Regional myocardial metabolism in patients with acute myocardial infarction assessed by positron emission tomography. J. Am. Coll. Cardiol., 1986, 8(4), 800-808.
[http://dx.doi.org/10.1016/S0735-1097(86)80420-X] [PMID: 3489746]
[58]
Li, X.; Yang, W.; Ma, W.; Zhou, X.; Quan, Z.; Li, G. (18)F-FDG PET imaging-monitored anti-inflammatory therapy for acute myocardial infarction: Exploring the role of MCC950 in murine model. J. Nucl. Cardiol., 2020. Online ahead of print
[http://dx.doi.org/10.1007/s12350-020-02044-0]
[59]
Thackeray, J.T.; Bankstahl, J.P.; Wang, Y.; Wollert, K.C.; Bengel, F.M. Clinically relevant strategies for lowering cardiomyocyte glucose uptake for 18F-FDG imaging of myocardial inflammation in mice. Eur. J. Nucl. Med. Mol. Imaging, 2015, 42(5), 771-780.
[http://dx.doi.org/10.1007/s00259-014-2956-7] [PMID: 25389013]
[60]
Amigues, I.; Tugcu, A.; Russo, C.; Giles, J.T.; Morgenstein, R.; Zartoshti, A.; Schulze, C.; Flores, R.; Bokhari, S.; Bathon, J.M. Myocardial Inflammation, Measured Using 18-Fluorodeoxyglucose Positron Emission Tomography With Computed Tomography, Is Associated With Disease Activity in Rheumatoid Arthritis. Arthritis Rheumatol., 2019, 71(4), 496-506.
[http://dx.doi.org/10.1002/art.40771] [PMID: 30407745]
[61]
Perel-Winkler, A.; Bokhari, S.; Perez-Recio, T.; Zartoshti, A.; Askanase, A.; Geraldino-Pardilla, L. Myocarditis in systemic lupus erythematosus diagnosed by 18F-fluorodeoxyglucose positron emission tomography. Lupus Sci. Med., 2018, 5(1), e000265.
[http://dx.doi.org/10.1136/lupus-2018-000265] [PMID: 30094040]
[62]
Prato, F.S.; Butler, J.; Sykes, J.; Keenliside, L.; Blackwood, K.J.; Thompson, R.T.; White, J.A.; Mikami, Y.; Thiessen, J.D.; Wisenberg, G. Can the inflammatory response be evaluated using 18F-FDG within zones of microvascular obstruction after myocardial infarction? J. Nucl. Med., 2015, 56(2), 299-304.
[http://dx.doi.org/10.2967/jnumed.114.147835] [PMID: 25572090]
[63]
Thackeray, J.T.; Bankstahl, J.P.; Wang, Y.; Korf-Klingebiel, M.; Walte, A.; Wittneben, A.; Wollert, K.C.; Bengel, F.M. Targeting post-infarct inflammation by PET imaging: comparison of (68)Ga-citrate and (68)Ga-DOTATATE with (18)F-FDG in a mouse model. Eur. J. Nucl. Med. Mol. Imaging, 2015, 42(2), 317-327.
[http://dx.doi.org/10.1007/s00259-014-2884-6] [PMID: 25112398]
[64]
Wollenweber, T.; Roentgen, P.; Schäfer, A.; Schatka, I.; Zwadlo, C.; Brunkhorst, T.; Berding, G.; Bauersachs, J.; Bengel, F.M. Characterizing the inflammatory tissue response to acute myocardial infarction by clinical multimodality noninvasive imaging. Circ Cardiovasc Imaging, 2014, 7(5), 811-818.
[http://dx.doi.org/10.1161/CIRCIMAGING.114.001689] [PMID: 25049056]
[65]
Gao, E.; Lei, Y.H.; Shang, X.; Huang, Z.M.; Zuo, L.; Boucher, M.; Fan, Q.; Chuprun, J.K.; Ma, X.L.; Koch, W.J. A novel and efficient model of coronary artery ligation and myocardial infarction in the mouse. Circ. Res., 2010, 107(12), 1445-1453.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.223925] [PMID: 20966393]
[66]
Vasudevan, P.; Gaebel, R.; Doering, P.; Mueller, P.; Lemcke, H.; Stenzel, J.; Lindner, T.; Kurth, J.; Steinhoff, G.; Vollmar, B.; Krause, B.J.; Ince, H.; David, R.; Lang, C.I. 18F-FDG PET-Based Imaging of Myocardial Inflammation Predicts a Functional Outcome Following Transplantation of mESC-Derived Cardiac Induced Cells in a Mouse Model of Myocardial Infarction. Cells, 2019, 8(12), E1613.
[http://dx.doi.org/10.3390/cells8121613] [PMID: 31835854]
[67]
Morooka, M.; Kubota, K.; Kadowaki, H.; Ito, K.; Okazaki, O.; Kashida, M.; Mitsumoto, T.; Iwata, R.; Ohtomo, K.; Hiroe, M. 11C-methionine PET of acute myocardial infarction. J. Nucl. Med., 2009, 50(8), 1283-1287.
[http://dx.doi.org/10.2967/jnumed.108.061341] [PMID: 19617334]
[68]
Taki, J.; Wakabayashi, H.; Inaki, A.; Imanaka-Yoshida, K.; Hiroe, M.; Ogawa, K.; Morooka, M.; Kubota, K.; Shiba, K.; Yoshida, T.; Kinuya, S. 14C-Methionine uptake as a potential marker of inflammatory processes after myocardial ischemia and reperfusion. J. Nucl. Med., 2013, 54(3), 431-436.
[http://dx.doi.org/10.2967/jnumed.112.112060] [PMID: 23321460]
[69]
Thackeray, J.T.; Bankstahl, J.P.; Wang, Y.; Wollert, K.C.; Bengel, F.M. Targeting Amino Acid Metabolism for Molecular Imaging of Inflammation Early After Myocardial Infarction. Theranostics, 2016, 6(11), 1768-1779.
[http://dx.doi.org/10.7150/thno.15929] [PMID: 27570549]
[70]
Glaudemans, A.W.; Enting, R.H.; Heesters, M.A.; Dierckx, R.A.; van Rheenen, R.W.; Walenkamp, A.M.; Slart, R.H. Value of 11C-methionine PET in imaging brain tumours and metastases. Eur. J. Nucl. Med. Mol. Imaging, 2013, 40(4), 615-635.
[http://dx.doi.org/10.1007/s00259-012-2295-5] [PMID: 23232505]
[71]
Jager, P.L.; Vaalburg, W.; Pruim, J.; de Vries, E.G.; Langen, K.J.; Piers, D.A. Radiolabeled amino acids: basic aspects and clinical applications in oncology. J. Nucl. Med., 2001, 42(3), 432-445.
[PMID: 11337520]
[72]
Bascunana, P.; Hess, A.; Borchert, T.; Wang, Y.; Wollert, K.C.; Bengel, F.M. (11)C-Methionine PET Identifies Astroglia Involvement in Heart-Brain Inflammation Networking after Acute Myocardial Infarction. J. Nucl. Med., 2019.
[PMID: 31806766]
[73]
Thackeray, J.T. Imaging the Molecular Footprints of the Heart-Brain Axis in Cardiovascular Disease. J. Nucl. Med., 2019, 60(6), 728-729.
[http://dx.doi.org/10.2967/jnumed.118.222315] [PMID: 30850495]
[74]
Thackeray, J.T.; Hupe, H.C.; Wang, Y.; Bankstahl, J.P.; Berding, G.; Ross, T.L.; Bauersachs, J.; Wollert, K.C.; Bengel, F.M. Myocardial Inflammation Predicts Remodeling and Neuroinflammation After Myocardial Infarction. J. Am. Coll. Cardiol., 2018, 71(3), 263-275.
[http://dx.doi.org/10.1016/j.jacc.2017.11.024] [PMID: 29348018]
[75]
Anzola, L.K.; Glaudemans, A.W.J.M.; Dierckx, R.A.J.O.; Martinez, F.A.; Moreno, S.; Signore, A. Somatostatin receptor imaging by SPECT and PET in patients with chronic inflammatory disorders: a systematic review. Eur. J. Nucl. Med. Mol. Imaging, 2019, 46(12), 2496-2513.
[http://dx.doi.org/10.1007/s00259-019-04489-z] [PMID: 31463594]
[76]
Tarkin, J.M.; Joshi, F.R.; Evans, N.R.; Chowdhury, M.M.; Figg, N.L.; Shah, A.V.; Starks, L.T.; Martin-Garrido, A.; Manavaki, R.; Yu, E.; Kuc, R.E.; Grassi, L.; Kreuzhuber, R.; Kostadima, M.A.; Frontini, M.; Kirkpatrick, P.J.; Coughlin, P.A.; Gopalan, D.; Fryer, T.D.; Buscombe, J.R.; Groves, A.M.; Ouwehand, W.H.; Bennett, M.R.; Warburton, E.A.; Davenport, A.P.; Rudd, J.H. Detection of Atherosclerotic Inflammation by 68Ga-DOTATATE PET Compared to [18F]FDG PET Imaging. J. Am. Coll. Cardiol., 2017, 69(14), 1774-1791.
[http://dx.doi.org/10.1016/j.jacc.2017.01.060] [PMID: 28385306]
[77]
Bison, S.M.; Konijnenberg, M.W.; Melis, M.; Pool, S.E.; Bernsen, M.R.; Teunissen, J.J.; Kwekkeboom, D.J.; de Jong, M. Peptide receptor radionuclide therapy using radiolabeled somatostatin analogs: focus on future developments. Clin. Transl. Imaging, 2014, 2, 55-66.
[http://dx.doi.org/10.1007/s40336-014-0054-2] [PMID: 24765618]
[78]
Kwekkeboom, D.J.; Kam, B.L.; van Essen, M.; Teunissen, J.J.; van Eijck, C.H.; Valkema, R.; de Jong, M.; de Herder, W.W.; Krenning, E.P. Somatostatin-receptor-based imaging and therapy of gastroenteropancreatic neuroendocrine tumors. Endocr. Relat. Cancer, 2010, 17(1), R53-R73.
[http://dx.doi.org/10.1677/ERC-09-0078] [PMID: 19995807]
[79]
Kircher, M.; Lapa, C. Novel Noninvasive Nuclear Medicine Imaging Techniques for Cardiac Inflammation. Curr. Cardiovasc. Imaging Rep., 2017, 10(2), 6.
[http://dx.doi.org/10.1007/s12410-017-9400-x] [PMID: 28357026]
[80]
Bravo, P.E.; Bajaj, N.; Padera, R.F.; Morgan, V.; Hainer, J.; Bibbo, C.F.; Harrington, M.; Park, M.A.; Hyun, H.; Robertson, M.; Lakdawala, N.K.; Groarke, J.; Stewart, G.C.; Dorbala, S.; Blankstein, R.; Di Carli, M.F. Feasibility of somatostatin receptor-targeted imaging for detection of myocardial inflammation: A pilot study. J. Nucl. Cardiol., 2021, 28(3), 1089-1099.
[http://dx.doi.org/10.1007/s12350-019-01782-0] [PMID: 31197742]
[81]
Tarkin, J.M.; Calcagno, C.; Dweck, M.R.; Evans, N.R.; Chowdhury, M.M.; Gopalan, D.; Newby, D.E.; Fayad, Z.A.; Bennett, M.R.; Rudd, J.H.F. 68Ga-DOTATATE PET Identifies Residual Myocardial Inflammation and Bone Marrow Activation After Myocardial Infarction. J. Am. Coll. Cardiol., 2019, 73(19), 2489-2491.
[http://dx.doi.org/10.1016/j.jacc.2019.02.052] [PMID: 31097170]
[82]
Lapa, C.; Reiter, T.; Li, X.; Werner, R.A.; Samnick, S.; Jahns, R.; Buck, A.K.; Ertl, G.; Bauer, W.R. Imaging of myocardial inflammation with somatostatin receptor based PET/CT - A comparison to cardiac MRI. Int. J. Cardiol., 2015, 194, 44-49.
[http://dx.doi.org/10.1016/j.ijcard.2015.05.073] [PMID: 26005805]
[83]
Werry, E.L.; Bright, F.M.; Piguet, O.; Ittner, L.M.; Halliday, G.M.; Hodges, J.R.; Kiernan, M.C.; Loy, C.T.; Kril, J.J.; Kassiou, M. Recent Developments in TSPO PET Imaging as A Biomarker of Neuroinflammation in Neurodegenerative Disorders. Int. J. Mol. Sci., 2019, 20(13), E3161.
[http://dx.doi.org/10.3390/ijms20133161] [PMID: 31261683]
[84]
Tronel, C.; Largeau, B.; Santiago Ribeiro, M.J.; Guilloteau, D.; Dupont, A.C.; Arlicot, N. Molecular Targets for PET Imaging of Activated Microglia: The Current Situation and Future Expectations. Int. J. Mol. Sci., 2017, 18(4), E802.
[http://dx.doi.org/10.3390/ijms18040802] [PMID: 28398245]
[85]
Werner, R.A.; Chen, X.; Rowe, S.P.; Lapa, C.; Javadi, M.S.; Higuchi, T. Recent paradigm shifts in molecular cardiac imaging-Establishing precision cardiology through novel 18F-labeled PET radiotracers. Trends Cardiovasc. Med., 2020, 30(1), 11-19.
[http://dx.doi.org/10.1016/j.tcm.2019.02.007] [PMID: 30824163]
[86]
Largeau, B.; Dupont, A.C.; Guilloteau, D.; Santiago-Ribeiro, M.J.; Arlicot, N. TSPO PET Imaging: From Microglial Activation to Peripheral Sterile Inflammatory Diseases? Contrast Media Mol. Imaging, 2017, 2017, 6592139.
[http://dx.doi.org/10.1155/2017/6592139] [PMID: 29114179]
[87]
Bakerman, I.; Wardak, M.; Nguyen, P.K. Molecular Imaging of Inflammation in Ischemic Heart Disease. Curr. Cardiovasc. Imaging Rep., 2018, 11(6), 13.
[http://dx.doi.org/10.1007/s12410-018-9452-6] [PMID: 31186825]
[88]
Lavin Plaza, B.; Theodoulou, I.; Rashid, I.; Hajhosseiny, R.; Phinikaridou, A.; Botnar, R.M. Molecular Imaging in Ischemic Heart Disease. Curr. Cardiovasc. Imaging Rep., 2019, 12(7), 31.
[http://dx.doi.org/10.1007/s12410-019-9500-x] [PMID: 31281564]
[89]
Thackeray, J.T.; Bengel, F.M. Molecular Imaging of Myocardial Inflammation With Positron Emission Tomography Post-Ischemia: A Determinant of Subsequent Remodeling or Recovery. JACC Cardiovasc. Imaging, 2018, 11(9), 1340-1355.
[http://dx.doi.org/10.1016/j.jcmg.2018.05.026] [PMID: 30190033]
[90]
Xavier, C.; Blykers, A.; Laoui, D.; Bolli, E.; Vaneyken, I.; Bridoux, J.; Baudhuin, H.; Raes, G.; Everaert, H.; Movahedi, K.; Van Ginderachter, J.A.; Devoogdt, N.; Caveliers, V.; Lahoutte, T.; Keyaerts, M. Clinical Translation of [68Ga]Ga-NOTA-anti-MMR-sdAb for PET/CT Imaging of Protumorigenic Macrophages. Mol. Imaging Biol., 2019, 21(5), 898-906.
[http://dx.doi.org/10.1007/s11307-018-01302-5] [PMID: 30671739]
[91]
Put, S.; Schoonooghe, S.; Devoogdt, N.; Schurgers, E.; Avau, A.; Mitera, T.; D’Huyvetter, M.; De Baetselier, P.; Raes, G.; Lahoutte, T.; Matthys, P. SPECT imaging of joint inflammation with Nanobodies targeting the macrophage mannose receptor in a mouse model for rheumatoid arthritis. J. Nucl. Med., 2013, 54(5), 807-814.
[http://dx.doi.org/10.2967/jnumed.112.111781] [PMID: 23447654]
[92]
Varasteh, Z.; Mohanta, S.; Li, Y.; López Armbruster, N.; Braeuer, M.; Nekolla, S.G.; Habenicht, A.; Sager, H.B.; Raes, G.; Weber, W.; Hernot, S.; Schwaiger, M. Targeting mannose receptor expression on macrophages in atherosclerotic plaques of apolipoprotein E-knockout mice using 68Ga-NOTA-anti-MMR nanobody: non-invasive imaging of atherosclerotic plaques. EJNMMI Res., 2019, 9(1), 5.
[http://dx.doi.org/10.1186/s13550-019-0474-0] [PMID: 30666513]
[93]
Senders, M.L.; Hernot, S.; Carlucci, G.; van de Voort, J.C.; Fay, F.; Calcagno, C.; Tang, J.; Alaarg, A.; Zhao, Y.; Ishino, S.; Palmisano, A.; Boeykens, G.; Meerwaldt, A.E.; Sanchez-Gaytan, B.L.; Baxter, S.; Zendman, L.; Lobatto, M.E.; Karakatsanis, N.A.; Robson, P.M.; Broisat, A.; Raes, G.; Lewis, J.S.; Tsimikas, S.; Reiner, T.; Fayad, Z.A.; Devoogdt, N.; Mulder, W.J.M.; Pérez-Medina, C. Nanobody-Facilitated Multiparametric PET/MRI Phenotyping of Atherosclerosis. JACC Cardiovasc. Imaging, 2019, 12(10), 2015-2026.
[http://dx.doi.org/10.1016/j.jcmg.2018.07.027] [PMID: 30343086]
[94]
Lee, S.P.; Im, H.J.; Kang, S.; Chung, S.J.; Cho, Y.S.; Kang, H.; Park, H.S.; Hwang, D.W.; Park, J.B.; Paeng, J.C.; Cheon, G.J.; Lee, Y.S.; Jeong, J.M.; Kim, Y.J. Noninvasive Imaging of Myocardial Inflammation in Myocarditis using 68Ga-tagged Mannosylated Human Serum Albumin Positron Emission Tomography. Theranostics, 2017, 7(2), 413-424.
[http://dx.doi.org/10.7150/thno.15712] [PMID: 28042344]
[95]
Kimbrough, D.; Wang, S.H.; Wright, L.H.; Mani, S.K.; Kasiganesan, H.; LaRue, A.C.; Cheng, Q.; Nadig, S.N.; Atkinson, C.; Menick, D.R. HDAC inhibition helps post-MI healing by modulating macrophage polarization. J. Mol. Cell. Cardiol., 2018, 119, 51-63.
[http://dx.doi.org/10.1016/j.yjmcc.2018.04.011] [PMID: 29680681]
[96]
Nahrendorf, M.; Swirski, F.K. Monocyte and macrophage heterogeneity in the heart. Circ. Res., 2013, 112(12), 1624-1633.
[http://dx.doi.org/10.1161/CIRCRESAHA.113.300890] [PMID: 23743228]
[97]
Gombozhapova, A.; Rogovskaya, Y.; Shurupov, V.; Rebenkova, M.; Kzhyshkowska, J.; Popov, S.V.; Karpov, R.S.; Ryabov, V. Macrophage activation and polarization in post-infarction cardiac remodeling. J. Biomed. Sci., 2017, 24(1), 13.
[http://dx.doi.org/10.1186/s12929-017-0322-3] [PMID: 28173864]
[98]
Weirather, J.; Hofmann, U.D.; Beyersdorf, N.; Ramos, G.C.; Vogel, B.; Frey, A.; Ertl, G.; Kerkau, T.; Frantz, S. Foxp3+ CD4+ T cells improve healing after myocardial infarction by modulating monocyte/macrophage differentiation. Circ. Res., 2014, 115(1), 55-67.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.303895] [PMID: 24786398]
[99]
Zhou, L.S.; Zhao, G.L.; Liu, Q.; Jiang, S.C.; Wang, Y.; Zhang, D.M. Silencing collapsin response mediator protein-2 reprograms macrophage phenotype and improves infarct healing in experimental myocardial infarction model. J. Inflamm. (Lond.), 2015, 12, 11.
[http://dx.doi.org/10.1186/s12950-015-0053-8] [PMID: 25685072]
[100]
Puhl, S.L.; Steffens, S. Neutrophils in Post-myocardial Infarction Inflammation: Damage vs. Resolution? Front. Cardiovasc. Med., 2019, 6, 25.
[http://dx.doi.org/10.3389/fcvm.2019.00025] [PMID: 30937305]
[101]
Ilatovskaya, D.V.; Pitts, C.; Clayton, J.; Domondon, M.; Troncoso, M.; Pippin, S.; DeLeon-Pennell, K.Y. CD8+ T-cells negatively regulate inflammation post-myocardial infarction. Am. J. Physiol. Heart Circ. Physiol., 2019, 317(3), H581-H596.
[http://dx.doi.org/10.1152/ajpheart.00112.2019] [PMID: 31322426]
[102]
Muller, C. Folate based radiopharmaceuticals for imaging and therapy of cancer and inflammation. Curr. Pharm. Des., 2012, 18(8), 1058-1083.
[http://dx.doi.org/10.2174/138161212799315777] [PMID: 22272825]
[103]
Winkel, L.C.; Groen, H.C.; van Thiel, B.S.; Müller, C.; van der Steen, A.F.; Wentzel, J.J.; de Jong, M.; Van der Heiden, K. Folate receptor–targeted single-photon emission computed tomography/computed tomography to detect activated macrophages in atherosclerosis: can it distinguish vulnerable from stable atherosclerotic plaques? Mol. Imaging, 2014, 13, 13.
[http://dx.doi.org/10.2310/7290.2013.00061] [PMID: 24757762]
[104]
Jager, N.A.; Westra, J.; Golestani, R.; van Dam, G.M.; Low, P.S.; Tio, R.A.; Slart, R.H.; Boersma, H.H.; Bijl, M.; Zeebregts, C.J. Folate receptor-β imaging using 99mTc-folate to explore distribution of polarized macrophage populations in human atherosclerotic plaque. J. Nucl. Med., 2014, 55(12), 1945-1951.
[http://dx.doi.org/10.2967/jnumed.114.143180] [PMID: 25359878]
[105]
Ardura, J.A.; Rackov, G.; Izquierdo, E.; Alonso, V.; Gortazar, A.R.; Escribese, M.M. Targeting Macrophages: Friends or Foes in Disease? Front. Pharmacol., 2019, 10, 1255.
[http://dx.doi.org/10.3389/fphar.2019.01255] [PMID: 31708781]
[106]
Radford, L.L.; Fernandez, S.; Beacham, R.; El Sayed, R.; Farkas, R.; Benešová, M.; Müller, C.; Lapi, S.E. New 55Co-labeled Albumin-Binding Folate Derivatives as Potential PET Agents for Folate Receptor Imaging. Pharmaceuticals (Basel), 2019, 12(4), E166.
[http://dx.doi.org/10.3390/ph12040166] [PMID: 31717279]
[107]
Askari, A.T.; Unzek, S.; Popovic, Z.B.; Goldman, C.K.; Forudi, F.; Kiedrowski, M.; Rovner, A.; Ellis, S.G.; Thomas, J.D.; DiCorleto, P.E.; Topol, E.J.; Penn, M.S. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet, 2003, 362(9385), 697-703.
[http://dx.doi.org/10.1016/S0140-6736(03)14232-8] [PMID: 12957092]
[108]
De Filippo, K.; Rankin, S.M. CXCR4, the master regulator of neutrophil trafficking in homeostasis and disease. Eur. J. Clin. Invest., 2018, 48(Suppl. 2), e12949.
[http://dx.doi.org/10.1111/eci.12949] [PMID: 29734477]
[109]
Döring, Y.; Pawig, L.; Weber, C.; Noels, H. The CXCL12/CXCR4 chemokine ligand/receptor axis in cardiovascular disease. Front. Physiol., 2014, 5, 212.
[PMID: 24966838]
[110]
Kircher, M.; Herhaus, P.; Schottelius, M.; Buck, A.K.; Werner, R.A.; Wester, H.J.; Keller, U.; Lapa, C. CXCR4-directed theranostics in oncology and inflammation. Ann. Nucl. Med., 2018, 32(8), 503-511.
[http://dx.doi.org/10.1007/s12149-018-1290-8] [PMID: 30105558]
[111]
Lapa, C.; Reiter, T.; Werner, R.A.; Ertl, G.; Wester, H.J.; Buck, A.K.; Bauer, W.R.; Herrmann, K. [(68)Ga]Pentixafor-PET/CT for Imaging of Chemokine Receptor 4 Expression After Myocardial Infarction. JACC Cardiovasc. Imaging, 2015, 8(12), 1466-1468.
[http://dx.doi.org/10.1016/j.jcmg.2015.09.007] [PMID: 26699115]
[112]
Thackeray, J.T.; Derlin, T.; Haghikia, A.; Napp, L.C.; Wang, Y.; Ross, T.L.; Schäfer, A.; Tillmanns, J.; Wester, H.J.; Wollert, K.C.; Bauersachs, J.; Bengel, F.M. Molecular Imaging of the Chemokine Receptor CXCR4 After Acute Myocardial Infarction. JACC Cardiovasc. Imaging, 2015, 8(12), 1417-1426.
[http://dx.doi.org/10.1016/j.jcmg.2015.09.008] [PMID: 26577262]
[113]
Hess, A.; Thackeray, J.T.; Wollert, K.C.; Bengel, F.M. Radionuclide Image-Guided Repair of the Heart. JACC Cardiovasc. Imaging, 2019, S1936-878X(19)31023-X.
[PMID: 31864993]
[114]
Huang, S.; Frangogiannis, N.G. Anti-inflammatory therapies in myocardial infarction: failures, hopes and challenges. Br. J. Pharmacol., 2018, 175(9), 1377-1400.
[http://dx.doi.org/10.1111/bph.14155] [PMID: 29394499]
[115]
Jujo, K.; Hamada, H.; Iwakura, A.; Thorne, T.; Sekiguchi, H.; Clarke, T.; Ito, A.; Misener, S.; Tanaka, T.; Klyachko, E.; Kobayashi, K.; Tongers, J.; Roncalli, J.; Tsurumi, Y.; Hagiwara, N.; Losordo, D.W. CXCR4 blockade augments bone marrow progenitor cell recruitment to the neovasculature and reduces mortality after myocardial infarction. Proc. Natl. Acad. Sci. USA, 2010, 107(24), 11008-11013.
[http://dx.doi.org/10.1073/pnas.0914248107] [PMID: 20534467]
[116]
Wang, Y.; Dembowsky, K.; Chevalier, E.; Stüve, P.; Korf-Klingebiel, M.; Lochner, M.; Napp, L.C.; Frank, H.; Brinkmann, E.; Kanwischer, A.; Bauersachs, J.; Gyöngyösi, M.; Sparwasser, T.; Wollert, K.C. C-X-C Motif Chemokine Receptor 4 Blockade Promotes Tissue Repair After Myocardial Infarction by Enhancing Regulatory T Cell Mobilization and Immune-Regulatory Function. Circulation, 2019, 139(15), 1798-1812.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.036053] [PMID: 30696265]
[117]
Mayorga, M.; Kiedrowski, M.; Shamhart, P.; Forudi, F.; Weber, K.; Chilian, W.M.; Penn, M.S.; Dong, F. Early upregulation of myocardial CXCR4 expression is critical for dimethyloxalylglycine-induced cardiac improvement in acute myocardial infarction. Am. J. Physiol. Heart Circ. Physiol., 2016, 310(1), H20-H28.
[http://dx.doi.org/10.1152/ajpheart.00449.2015] [PMID: 26519029]
[118]
Dong, F.; Harvey, J.; Finan, A.; Weber, K.; Agarwal, U.; Penn, M.S. Myocardial CXCR4 expression is required for mesenchymal stem cell mediated repair following acute myocardial infarction. Circulation, 2012, 126(3), 314-324.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.082453] [PMID: 22685115]
[119]
Scofield, S.L.C.; Daniels, C.R.; Dalal, S.; Millard, J.A.; Singh, M.; Singh, K. Extracellular ubiquitin modulates cardiac fibroblast phenotype and function via its interaction with CXCR4. Life Sci., 2018, 211, 8-16.
[http://dx.doi.org/10.1016/j.lfs.2018.09.012] [PMID: 30195032]
[120]
Derlin, T.; Sedding, D.G.; Dutzmann, J.; Haghikia, A.; König, T.; Napp, L.C.; Schütze, C.; Owsianski-Hille, N.; Wester, H.J.; Kropf, S.; Thackeray, J.T.; Bankstahl, J.P.; Geworski, L.; Ross, T.L.; Bauersachs, J.; Bengel, F.M. Imaging of chemokine receptor CXCR4 expression in culprit and nonculprit coronary atherosclerotic plaque using motion-corrected [68Ga]pentixafor PET/CT. Eur. J. Nucl. Med. Mol. Imaging, 2018, 45(11), 1934-1944.
[http://dx.doi.org/10.1007/s00259-018-4076-2] [PMID: 29967943]
[121]
Döring, Y.; Noels, H.; van der Vorst, E.P.C.; Neideck, C.; Egea, V.; Drechsler, M.; Mandl, M.; Pawig, L.; Jansen, Y.; Schröder, K.; Bidzhekov, K.; Megens, R.T.A.; Theelen, W.; Klinkhammer, B.M.; Boor, P.; Schurgers, L.; van Gorp, R.; Ries, C.; Kusters, P.J.H.; van der Wal, A.; Hackeng, T.M.; Gäbel, G.; Brandes, R.P.; Soehnlein, O.; Lutgens, E.; Vestweber, D.; Teupser, D.; Holdt, L.M.; Rader, D.J.; Saleheen, D.; Weber, C. Vascular CXCR4 Limits Atherosclerosis by Maintaining Arterial Integrity: Evidence From Mouse and Human Studies. Circulation, 2017, 136(4), 388-403.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.027646] [PMID: 28450349]
[122]
Bot, I.; Daissormont, I.T.; Zernecke, A.; van Puijvelde, G.H.; Kramp, B.; de Jager, S.C.; Sluimer, J.C.; Manca, M.; Hérias, V.; Westra, M.M.; Bot, M.; van Santbrink, P.J.; van Berkel, T.J.; Su, L.; Skjelland, M.; Gullestad, L.; Kuiper, J.; Halvorsen, B.; Aukrust, P.; Koenen, R.R.; Weber, C.; Biessen, E.A. CXCR4 blockade induces atherosclerosis by affecting neutrophil function. J. Mol. Cell. Cardiol., 2014, 74, 44-52.
[http://dx.doi.org/10.1016/j.yjmcc.2014.04.021] [PMID: 24816217]
[123]
Schottelius, M.; Ludescher, M.; Richter, F.; Kapp, T.G.; Kessler, H.; Wester, H.J. Validation of [125I]CPCR4.3 as an investigative tool for the sensitive and specific detection of hCXCR4 and mCXCR4 expression in vitro and in vivo. EJNMMI Res., 2019, 9(1), 75.
[http://dx.doi.org/10.1186/s13550-019-0545-2] [PMID: 31410585]
[124]
Meisel, S.R.; Shapiro, H.; Radnay, J.; Neuman, Y.; Khaskia, A.R.; Gruener, N.; Pauzner, H.; David, D. Increased expression of neutrophil and monocyte adhesion molecules LFA-1 and Mac-1 and their ligand ICAM-1 and VLA-4 throughout the acute phase of myocardial infarction: possible implications for leukocyte aggregation and microvascular plugging. J. Am. Coll. Cardiol., 1998, 31(1), 120-125.
[http://dx.doi.org/10.1016/S0735-1097(97)00424-5] [PMID: 9426029]
[125]
Ruparelia, N.; Digby, J.E.; Jefferson, A.; Medway, D.J.; Neubauer, S.; Lygate, C.A.; Choudhury, R.P. Myocardial infarction causes inflammation and leukocyte recruitment at remote sites in the myocardium and in the renal glomerulus. Inflamm. Res., 2013, 62(5), 515-525.
[http://dx.doi.org/10.1007/s00011-013-0605-4] [PMID: 23471223]
[126]
Ruparelia, N.; Chai, J.T.; Fisher, E.A.; Choudhury, R.P. Inflammatory processes in cardiovascular disease: a route to targeted therapies. Nat. Rev. Cardiol., 2017, 14(3), 133-144.
[http://dx.doi.org/10.1038/nrcardio.2016.185] [PMID: 27905474]
[127]
Lin, Q.Y.; Lang, P.P.; Zhang, Y.L.; Yang, X.L.; Xia, Y.L.; Bai, J.; Li, H.H. Pharmacological blockage of ICAM-1 improves angiotensin II-induced cardiac remodeling by inhibiting adhesion of LFA-1+ monocytes. Am. J. Physiol. Heart Circ. Physiol., 2019, 317(6), H1301-H1311.
[http://dx.doi.org/10.1152/ajpheart.00566.2019] [PMID: 31729904]
[128]
Debordeaux, F.; Chansel-Debordeaux, L.; Pinaquy, J.B.; Fernandez, P.; Schulz, J. What about αvβ3 integrins in molecular imaging in oncology? Nucl. Med. Biol., 2018, 62-63, 31-46.
[http://dx.doi.org/10.1016/j.nucmedbio.2018.04.006] [PMID: 29807242]
[129]
Jenkins, W.S.; Vesey, A.T.; Stirrat, C.; Connell, M.; Lucatelli, C.; Neale, A.; Moles, C.; Vickers, A.; Fletcher, A.; Pawade, T.; Wilson, I.; Rudd, J.H.; van Beek, E.J.; Mirsadraee, S.; Dweck, M.R.; Newby, D.E. Cardiac αVβ3 integrin expression following acute myocardial infarction in humans. Heart, 2017, 103(8), 607-615.
[http://dx.doi.org/10.1136/heartjnl-2016-310115] [PMID: 27927700]
[130]
Grönman, M.; Tarkia, M.; Kiviniemi, T.; Halonen, P.; Kuivanen, A.; Savunen, T.; Tolvanen, T.; Teuho, J.; Käkelä, M.; Metsälä, O.; Pietilä, M.; Saukko, P.; Ylä-Herttuala, S.; Knuuti, J.; Roivainen, A.; Saraste, A. Imaging of αvβ3 integrin expression in experimental myocardial ischemia with [68Ga]NODAGA-RGD positron emission tomography. J. Transl. Med., 2017, 15(1), 144.
[http://dx.doi.org/10.1186/s12967-017-1245-1] [PMID: 28629432]
[131]
Meester, E.J.; Krenning, B.J.; de Blois, R.H.; Norenberg, J.P.; de Jong, M.; Bernsen, M.R.; Van der Heiden, K. Imaging of atherosclerosis, targeting LFA-1 on inflammatory cells with 111In-DANBIRT. J. Nucl. Cardiol., 2019, 26(5), 1697-1704.
[http://dx.doi.org/10.1007/s12350-018-1244-5] [PMID: 29536351]
[132]
Mota, R.; Campen, M.J.; Cuellar, M.E.; Garver, W.S.; Hesterman, J.; Qutaish, M.; Daniels, T.; Nysus, M.; Wagner, C.R.; Norenberg, J.P. 111In-DANBIRT In Vivo Molecular Imaging of Inflammatory Cells in Atherosclerosis. Contrast Media Mol. Imaging, 2018, 2018, 6508724.
[http://dx.doi.org/10.1155/2018/6508724] [PMID: 30538613]
[133]
Li, X.; Bauer, W.; Israel, I.; Kreissl, M.C.; Weirather, J.; Richter, D.; Bauer, E.; Herold, V.; Jakob, P.; Buck, A.; Frantz, S.; Samnick, S. Targeting P-selectin by gallium-68-labeled fucoidan positron emission tomography for noninvasive characterization of vulnerable plaques: correlation with in vivo 17.6T MRI. Arterioscler. Thromb. Vasc. Biol., 2014, 34(8), 1661-1667.
[http://dx.doi.org/10.1161/ATVBAHA.114.303485] [PMID: 24903095]
[134]
Chauvierre, C.; Aid-Launais, R.; Aerts, J.; Chaubet, F.; Maire, M.; Chollet, L.; Rolland, L.; Bonafé, R.; Rossi, S.; Bussi, S.; Cabella, C.; Dézsi, L.; Fülöp, T.; Szebeni, J.; Chahid, Y.; Zheng, K.H.; Stroes, E.S.G.; Le Guludec, D.; Rouzet, F.; Letourneur, D. Pharmaceutical Development and Safety Evaluation of a GMP-Grade Fucoidan for Molecular Diagnosis of Cardiovascular Diseases. Mar. Drugs, 2019, 17(12), E699.
[http://dx.doi.org/10.3390/md17120699] [PMID: 31842319]
[135]
Wei, W.; Jiang, D.; Ehlerding, E.B.; Luo, Q.; Cai, W. Noninvasive PET Imaging of T cells. Trends Cancer, 2018, 4(5), 359-373.
[http://dx.doi.org/10.1016/j.trecan.2018.03.009] [PMID: 29709260]
[136]
Krebs, S.; Ahad, A.; Carter, L.M.; Eyquem, J.; Brand, C.; Bell, M.; Ponomarev, V.; Reiner, T.; Meares, C.F.; Gottschalk, S.; Sadelain, M.; Larson, S.M.; Weber, W.A. Antibody with Infinite Affinity for In Vivo Tracking of Genetically Engineered Lymphocytes. J. Nucl. Med., 2018, 59(12), 1894-1900.
[http://dx.doi.org/10.2967/jnumed.118.208041] [PMID: 29903928]
[137]
McCarthy, C.E.; White, J.M.; Viola, N.T.; Gibson, H.M. In vivo Imaging Technologies to Monitor the Immune System. Front. Immunol., 2020, 11, 1067.
[http://dx.doi.org/10.3389/fimmu.2020.01067] [PMID: 32582173]
[138]
Telenga, E.D.; van der Bij, W.; de Vries, E.F.J.; Verschuuren, E.A.M.; Timens, W.; Luurtsema, G.; Slart, R.H.J.A.; Signore, A.; Glaudemans, A.W.J.M. 99mTc-HYNIC-IL-2 scintigraphy to detect acute rejection in lung transplantation patients: a proof-of-concept study. EJNMMI Res., 2019, 9(1), 41.
[http://dx.doi.org/10.1186/s13550-019-0511-z] [PMID: 31076906]
[139]
Vaidyanathan, S.; Patel, C.N.; Scarsbrook, A.F.; Chowdhury, F.U. FDG PET/CT in infection and inflammation- current and emerging clinical applications. Clin. Radiol., 2015, 70(7), 787-800.
[http://dx.doi.org/10.1016/j.crad.2015.03.010] [PMID: 25917543]
[140]
de Vries, E.F.; Roca, M.; Jamar, F.; Israel, O.; Signore, A. Inflammation/Infection Taskgroup of the European Association of Nuclear Medicine. Guidelines for the labelling of leucocytes with (99m)Tc-HMPAO. Eur. J. Nucl. Med. Mol. Imaging, 2010, 37(4), 842-848.
[http://dx.doi.org/10.1007/s00259-010-1394-4] [PMID: 20198473]
[141]
Roca, M.; de Vries, E.F.; Jamar, F.; Israel, O.; Signore, A. Inflammation/Infection Taskgroup of the European Association of Nuclear Medicine. Guidelines for the labelling of leucocytes with (111)In-oxine. Eur. J. Nucl. Med. Mol. Imaging, 2010, 37(4), 835-841.
[http://dx.doi.org/10.1007/s00259-010-1393-5] [PMID: 20198474]
[142]
Tsopelas, C. Radiotracers used for the scintigraphic detection of infection and inflammation. ScientificWorldJournal, 2015, 2015, 676719.
[http://dx.doi.org/10.1155/2015/676719] [PMID: 25741532]
[143]
Charoenphun, P.; Meszaros, L.K.; Chuamsaamarkkee, K.; Sharif- Paghaleh, E.; Ballinger, J.R.; Ferris, T.J.; Went, M.J.; Mullen, G.E.; Blower, P.J. [(89)Zr]oxinate4 for long-term in vivo cell tracking by positron emission tomography. Eur. J. Nucl. Med. Mol. Imaging, 2015, 42(2), 278-287.
[http://dx.doi.org/10.1007/s00259-014-2945-x] [PMID: 25359636]
[144]
Bansal, A.; Pandey, M.K.; Demirhan, Y.E.; Nesbitt, J.J.; Crespo- Diaz, R.J.; Terzic, A.; Behfar, A.; DeGrado, T.R. Novel (89)Zr cell labeling approach for PET-based cell trafficking studies. EJNMMI Res., 2015, 5, 19.
[http://dx.doi.org/10.1186/s13550-015-0098-y] [PMID: 25918673]
[145]
Lagan, J.; Naish, J.H.; Simpson, K.; Zi, M.; Cartwright, E.J.; Foden, P.; Morris, J.; Clark, D.; Birchall, L.; Caldwell, J.; Trafford, A.; Fortune, C.; Cullen, M.; Chaudhuri, N.; Fildes, J.; Sarma, J.; Schelbert, E.B.; Schmitt, M.; Piper Hanley, K.; Miller, C.A. Substrate for the Myocardial Inflammation-Heart Failure Hypothesis Identified Using Novel USPIO Methodology. JACC Cardiovasc. Imaging, 2020, S1936-878X(20)30153-4.
[PMID: 32305466]
[146]
Belderbos, S.; González-Gómez, M.A.; Cleeren, F.; Wouters, J.; Piñeiro, Y.; Deroose, C.M.; Coosemans, A.; Gsell, W.; Bormans, G.; Rivas, J.; Himmelreich, U. Simultaneous in vivo PET/MRI using fluorine-18 labeled Fe3O4@Al(OH)3 nanoparticles: comparison of nanoparticle and nanoparticle-labeled stem cell distribution. EJNMMI Res., 2020, 10(1), 73.
[http://dx.doi.org/10.1186/s13550-020-00655-9] [PMID: 32607918]
[147]
Rangasamy, L.; Geronimo, B.D.; Ortín, I.; Coderch, C.; Zapico, J.M.; Ramos, A.; de Pascual-Teresa, B. Molecular Imaging Probes Based on Matrix Metalloproteinase Inhibitors (MMPIs). Molecules, 2019, 24(16), E2982.
[http://dx.doi.org/10.3390/molecules24162982] [PMID: 31426440]
[148]
Rotteveel, L.; Poot, A.J.; Bogaard, H.J.; Ten Dijke, P.; Lammertsma, A.A.; Windhorst, A.D. In vivo imaging of TGFβ signalling components using positron emission tomography. Drug Discov. Today, 2019, 24(12), 2258-2272.
[http://dx.doi.org/10.1016/j.drudis.2019.08.011] [PMID: 31494189]
[149]
Sahul, Z.H.; Mukherjee, R.; Song, J.; McAteer, J.; Stroud, R.E.; Dione, D.P.; Staib, L.; Papademetris, X.; Dobrucki, L.W.; Duncan, J.S.; Spinale, F.G.; Sinusas, A.J. Targeted imaging of the spatial and temporal variation of matrix metalloproteinase activity in a porcine model of postinfarct remodeling: relationship to myocardial dysfunction. Circ Cardiovasc Imaging, 2011, 4(4), 381-391.
[http://dx.doi.org/10.1161/CIRCIMAGING.110.961854] [PMID: 21505092]
[150]
Thorn, S.L.; Barlow, S.C.; Feher, A.; Stacy, M.R.; Doviak, H.; Jacobs, J.; Zellars, K.; Renaud, J.M.; Klein, R.; deKemp, R.A.; Khakoo, A.Y.; Lee, T.; Spinale, F.G.; Sinusas, A.J. Application of Hybrid Matrix Metalloproteinase-Targeted and Dynamic 201Tl Single-Photon Emission Computed Tomography/Computed Tomography Imaging for Evaluation of Early Post-Myocardial Infarction Remodeling. Circ Cardiovasc Imaging, 2019, 12(11), e009055.
[http://dx.doi.org/10.1161/CIRCIMAGING.119.009055] [PMID: 31707811]
[151]
Liu, Z.; Barber, C.; Wan, L.; Liu, S.; Hui, M.M.; Furenlid, L.R.; Xu, H.; Woolfenden, J.M. SPECT imaging of inflammatory response in ischemic-reperfused rat hearts using a 99mTc-labeled dual-domain cytokine ligand. J. Nucl. Med., 2013, 54(12), 2139-2145.
[http://dx.doi.org/10.2967/jnumed.113.123497] [PMID: 24179185]
[152]
Lindsey, ML; Bolli, R; Canty, JM, Jr; Du, XJ; Frangogiannis, NG; Frantz, S Guidelines for experimental models of myocardial ischemia and infarction. 2018, 314(4), 812-38.
[http://dx.doi.org/10.1152/ajpheart.00335.2017]
[153]
Cohen, M.; Boiangiu, C.; Abidi, M. Therapy for ST-segment elevation myocardial infarction patients who present late or are ineligible for reperfusion therapy. J. Am. Coll. Cardiol., 2010, 55(18), 1895-1906.
[http://dx.doi.org/10.1016/j.jacc.2009.11.087] [PMID: 20430260]
[154]
Gharacholou, S.M.; Alexander, K.P.; Chen, A.Y.; Wang, T.Y.; Melloni, C.; Gibler, W.B.; Pollack, C.V., Jr; Ohman, E.M.; Peterson, E.D.; Roe, M.T. Implications and reasons for the lack of use of reperfusion therapy in patients with ST-segment elevation myocardial infarction: findings from the CRUSADE initiative. Am. Heart J., 2010, 159(5), 757-763.
[http://dx.doi.org/10.1016/j.ahj.2010.02.009] [PMID: 20435183]
[155]
Heusch, G.; Gersh, B.J. The pathophysiology of acute myocardial infarction and strategies of protection beyond reperfusion: a continual challenge. Eur. Heart J., 2017, 38(11), 774-784.
[PMID: 27354052]
[156]
Heusch, G.; Libby, P.; Gersh, B.; Yellon, D.; Böhm, M.; Lopaschuk, G.; Opie, L. Cardiovascular remodelling in coronary artery disease and heart failure. Lancet, 2014, 383(9932), 1933-1943.
[http://dx.doi.org/10.1016/S0140-6736(14)60107-0] [PMID: 24831770]
[157]
Hausenloy, D.J.; Botker, H.E.; Engstrom, T.; Erlinge, D.; Heusch, G.; Ibanez, B.; Kloner, R.A.; Ovize, M.; Yellon, D.M.; Garcia-Dorado, D. Targeting reperfusion injury in patients with ST-segment elevation myocardial infarction: trials and tribulations. Eur. Heart J., 2017, 38(13), 935-941.
[PMID: 27118196]
[158]
Ibáñez, B.; Heusch, G.; Ovize, M.; Van de Werf, F. Evolving therapies for myocardial ischemia/reperfusion injury. J. Am. Coll. Cardiol., 2015, 65(14), 1454-1471.
[http://dx.doi.org/10.1016/j.jacc.2015.02.032] [PMID: 25857912]
[159]
Jennings, R.B.; Murry, C.E.; Steenbergen, C., Jr; Reimer, K.A. Development of cell injury in sustained acute ischemia. Circulation, 1990, 82(3)(Suppl.), II2-II12.
[PMID: 2394018]
[160]
Jennings, R.B.; Reimer, K.A. Lethal myocardial ischemic injury. Am. J. Pathol., 1981, 102(2), 241-255.
[PMID: 7008621]
[161]
Jennings, R.B.; Sommers, H.M.; Smyth, G.A.; Flack, H.A.; Linn, H. Myocardial necrosis induced by temporary occlusion of a coronary artery in the dog. Arch. Pathol., 1960, 70, 68-78.
[PMID: 14407094]
[162]
Dewald, O.; Ren, G.; Duerr, G.D.; Zoerlein, M.; Klemm, C.; Gersch, C.; Tincey, S.; Michael, L.H.; Entman, M.L.; Frangogiannis, N.G. Of mice and dogs: species-specific differences in the inflammatory response following myocardial infarction. Am. J. Pathol., 2004, 164(2), 665-677.
[http://dx.doi.org/10.1016/S0002-9440(10)63154-9] [PMID: 14742270]
[163]
Frantz, S.; Bauersachs, J.; Ertl, G. Post-infarct remodelling: contribution of wound healing and inflammation. Cardiovasc. Res., 2009, 81(3), 474-481.
[http://dx.doi.org/10.1093/cvr/cvn292] [PMID: 18977766]
[164]
Michael, L.H.; Ballantyne, C.M.; Zachariah, J.P.; Gould, K.E.; Pocius, J.S.; Taffet, G.E.; Hartley, C.J.; Pham, T.T.; Daniel, S.L.; Funk, E.; Entman, M.L. Myocardial infarction and remodeling in mice: effect of reperfusion. Am. J. Physiol., 1999, 277(2 Pt 2), H660-H668.
[PMID: 10444492]
[165]
Michael, L.H.; Entman, M.L.; Hartley, C.J.; Youker, K.A.; Zhu, J.; Hall, S.R.; Hawkins, H.K.; Berens, K.; Ballantyne, C.M. Myocardial ischemia and reperfusion: a murine model. Am. J. Physiol., 1995, 269(6 Pt 2), H2147-H2154.
[PMID: 8594926]
[166]
Maxwell, M.P.; Hearse, D.J.; Yellon, D.M. Species variation in the coronary collateral circulation during regional myocardial ischaemia: a critical determinant of the rate of evolution and extent of myocardial infarction. Cardiovasc. Res., 1987, 21(10), 737-746.
[http://dx.doi.org/10.1093/cvr/21.10.737] [PMID: 3440266]
[167]
Swindle, M.M.; Horneffer, P.J.; Gardner, T.J.; Gott, V.L.; Hall, T.S.; Stuart, R.S.; Baumgartner, W.A.; Borkon, A.M.; Galloway, E.; Reitz, B.A. Anatomic and anesthetic considerations in experimental cardiopulmonary surgery in swine. Lab. Anim. Sci., 1986, 36(4), 357-361.
[PMID: 3534438]
[168]
Vatner, S.F. Effects of anesthesia on cardiovascular control mechanisms. Environ. Health Perspect., 1978, 26, 193-206.
[http://dx.doi.org/10.1289/ehp.7826193] [PMID: 363416]
[169]
Caobelli, F.; Wollenweber, T.; Bavendiek, U.; Kühn, C.; Schütze, C.; Geworski, L.; Thackeray, J.T.; Bauersachs, J.; Haverich, A.; Bengel, F.M. Simultaneous dual-isotope solid-state detector SPECT for improved tracking of white blood cells in suspected endocarditis. Eur. Heart J., 2017, 38(6), 436-443.
[PMID: 27469371]
[170]
Adachia, N.; Yoshiib, Y.; Furukawac, T.; Yoshimotod, M.; Takeuchi, Y.; Inubushif, M. In Vivo Simultaneous Imaging of Vascular Pool and Hypoxia with a HT-29 Tumor Model: The Application of Dual-Isotope SPECT/PET/CT. Int. J. Sci. Basic Appl. Res., 2016, 25(1), 26-39.
[PMID: 27398384]
[171]
Wilk, B.; Wisenberg, G.; Dharmakumar, R.; Thiessen, J.D.; Goldhawk, D.E.; Prato, F.S. Hybrid PET/MR imaging in myocardial inflammation post-myocardial infarction. J. Nucl. Cardiol., 2019.
[http://dx.doi.org/10.1007/s12350-019-01973-9] [PMID: 31797321]
[172]
Kossmann, H.; Rischpler, C.; Hanus, F.; Nekolla, S.G.; Kunze, K.P.; Götze, K.; Goedel, A.; Sager, H.; Kastrati, A.; Sinnecker, D.; Kupatt, C.; Ibrahim, T.; Schwaiger, M.; Laugwitz, K.L.; Dirschinger, R.J. Monocyte-platelet aggregates affect local inflammation in patients with acute myocardial infarction. Int. J. Cardiol., 2019, 287, 7-12.
[http://dx.doi.org/10.1016/j.ijcard.2019.04.009] [PMID: 31003796]
[173]
Kunze, K.P.; Dirschinger, R.J.; Kossmann, H.; Hanus, F.; Ibrahim, T.; Laugwitz, K.L.; Schwaiger, M.; Rischpler, C.; Nekolla, S.G. Quantitative cardiovascular magnetic resonance: extracellular volume, native T1 and 18F-FDG PET/CMR imaging in patients after revascularized myocardial infarction and association with markers of myocardial damage and systemic inflammation. J. Cardiovasc. Magn. Reson., 2018, 20(1), 33.
[http://dx.doi.org/10.1186/s12968-018-0454-y] [PMID: 29792210]
[174]
Borchert, T.; Hess, A.; Lukačević, M.; Ross, T.L.; Bengel, F.M.; Thackeray, J.T. Angiotensin-converting enzyme inhibitor treatment early after myocardial infarction attenuates acute cardiac and neuroinflammation without effect on chronic neuroinflammation. Eur. J. Nucl. Med. Mol. Imaging, 2020, 47(7), 1757-1768.
[http://dx.doi.org/10.1007/s00259-020-04736-8] [PMID: 32125488]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy