Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Review Article

Natural Bioactive Compounds as Adjuvant Therapy for Hepatitis C Infection

Author(s): Moema S. Santana*, Rute Lopes, Isabela H. Peron, Carla R. Cruz, Ana M.M. Gaspar and Paulo I. Costa

Volume 17, Issue 5, 2021

Published on: 09 October, 2020

Page: [458 - 469] Pages: 12

DOI: 10.2174/1573401316999201009152726

Price: $65

Abstract

Background: Hepatitis C virus infection is a significant global health burden, which causes acute or chronic hepatitis. Acute hepatitis C is generally asymptomatic and progresses to cure, while persistent infection can progress to chronic liver disease and extrahepatic manifestations. Standard treatment is expensive, poorly tolerated, and has variable sustained virologic responses amongst the different viral genotypes. New therapies involve direct acting antivirals; however, it is also very expensive and may not be accessible for all patients worldwide. In order to provide a complementary approach to the already existing therapies, natural bioactive compounds are investigated as to their several biologic activities, such as direct antiviral properties against hepatitis C, and effects on mitigating chronic progression of the disease, which include hepatoprotective, antioxidant, anticarcinogenic and anti-inflammatory activities; additionally, these compounds present advantages, as chemical diversity, low cost of production and milder or inexistent side effects.

Objective: To present a broad perspective on hepatitis C infection, the chronic disease, and natural compounds with promising anti-HCV activity. Methods: This review consists of a systematic review study about the natural bioactive compounds as a potential therapy for hepatitis C infection.

Results: The quest for natural products has yielded compounds with biologic activity, including viral replication inhibition in vitro, demonstrating antiviral activity against hepatitis C.

Conclusion: One of the greatest advantages of using natural molecules from plant extracts is the low cost of production, not requiring chemical synthesis, which can lead to less expensive therapies available to low and middle-income countries.

Keywords: Hepatitis C virus, natural bioactive compounds, hepatitis, adjuvant therapy, viral replication, molecular pathways.

Graphical Abstract
[1]
Bartenschlager R, Lohmann V, Penin F. The molecular and structural basis of advanced antiviral therapy for hepatitis C virus infection. Nat Rev Microbiol 2013; 11(7): 482-96.
[http://dx.doi.org/10.1038/nrmicro3046] [PMID: 23748342]
[2]
Preciado MV, Valva P, Escobar-Gutierrez A, et al. Hepatitis C virus molecular evolution: transmission, disease progression and antiviral therapy. World J Gastroenterol 2014; 20(43): 15992-6013.
[http://dx.doi.org/10.3748/wjg.v20.i43.15992] [PMID: 25473152]
[3]
Centers for Disease Control and Prevention. Hepatitis C FAQs for health professionals 2020. Available at: www.cdc.gov/hepatitis/hcv/hcvfaq.htm#section1
[4]
World Health Organization. Hepatitis C (Fact Sheet) 2019.www.who.int/mediacentre/factsheets/fs164/en/
[5]
World Health Organization. Global Hepatitis Report 2017. Available at: www.who.int/hepatitis/publications/global-hepatitis-report2017/en/
[6]
Manns MP, Buti M, Gane E, et al. Hepatitis C virus infection. Nat Rev Dis Prim 2017.
[7]
Sociedade Brasileira de Hepatologia. Consenso sobre Hepatite C Crônica da Sociedade Brasileira de Hepatologia 2014. Available at: https://sbhepatologia.org.br/pdf/consenso-sobre-hepatite-cronica.pdf
[8]
Butt AM, Raja AJ, Siddique S, et al. Parallel expression profiling of hepatic and serum microRNA-122 associated with clinical features and treatment responses in chronic hepatitis C patients. Sci Rep 2016; 6: 21510.
[http://dx.doi.org/10.1038/srep21510] [PMID: 26898400]
[9]
Kumthip K, Maneekarn N. The role of HCV proteins on treatment outcomes. Virol J 2015; 12(1): 217.
[http://dx.doi.org/10.1186/s12985-015-0450-x] [PMID: 26666318]
[10]
Liu F, Shimakami T, Murai K, et al. Efficient suppression of hepatitis c virus replication by combination treatment with miR-122 antagonism and direct-acting antivirals in cell culture systems. Sci Rep 2016; 6: 30939.
[http://dx.doi.org/10.1038/srep30939] [PMID: 27484655]
[11]
Tang H, Grisé H. Cellular and molecular biology of HCV infection and hepatitis. Clin Sci (Lond) 2009; 117(2): 49-65.
[http://dx.doi.org/10.1042/CS20080631] [PMID: 19515018]
[12]
Westbrook RH, Dusheiko G. Natural history of hepatitis C. J Hepatol 2014; 61(1)(Suppl.): S58-68.
[http://dx.doi.org/10.1016/j.jhep.2014.07.012] [PMID: 25443346]
[13]
Gonzalez FA, Van den Eynde E, Perez-Hoyos S, et al. Liver stiffness and aspartate aminotransferase levels predict the risk for liver fibrosis progression in hepatitis C virus/HIV-coinfected patients. HIV Med 2015; 16(4): 211-8.
[http://dx.doi.org/10.1111/hiv.12197] [PMID: 25234826]
[14]
Pokorska-Śpiewak M, Kowalik-Mikołajewska B, Aniszewska M, Walewska-Zielecka B, Marczyńska M. The influence of hepatitis B and C virus coinfection on liver histopathology in children. Eur J Pediatr 2015; 174(3): 345-53.
[http://dx.doi.org/10.1007/s00431-014-2402-7] [PMID: 25172445]
[15]
De Nicola S, Dongiovanni P, Aghemo A, et al. Interaction between PNPLA3 I148M variant and age at infection in determining fibrosis progression in chronic hepatitis C. PLoS One 2014; 9(8): e106022.
[http://dx.doi.org/10.1371/journal.pone.0106022] [PMID: 25171251]
[16]
Singal AG, Manjunath H, Yopp AC, et al. The effect of PNPLA3 on fibrosis progression and development of hepatocellular carcinoma: a meta-analysis. Am J Gastroenterol 2014; 109(3): 325-34.
[http://dx.doi.org/10.1038/ajg.2013.476] [PMID: 24445574]
[17]
Nirei K, Matsumura H, Kumakawa M, et al. Steatosis influences the clinical profiles and long-term outcomes of interferon-treated chronic hepatitis C and liver cirrhosis patients. Int J Med Sci 2017; 14(1): 45-52.
[http://dx.doi.org/10.7150/ijms.17202] [PMID: 28138308]
[18]
Amano R, Yamashita A, Kasai H, et al. Cinnamic acid derivatives inhibit hepatitis C virus replication via the induction of oxidative stress. Antiviral Res 2017; 145: 123-30.
[http://dx.doi.org/10.1016/j.antiviral.2017.07.018] [PMID: 28780423]
[19]
Echeverría N, Moratorio G, Cristina J, Moreno P. Hepatitis C virus genetic variability and evolution. World J Hepatol 2015; 7(6): 831-45.
[http://dx.doi.org/10.4254/wjh.v7.i6.831] [PMID: 25937861]
[20]
Peters MG, Terrault NA. Alcohol use and hepatitis C. Hepatology 2002; 36(5)(Suppl. 1): S220-5.
[http://dx.doi.org/10.1053/jhep.2002.36811] [PMID: 12407597]
[21]
Mueller S, Millonig G, Seitz HK. Alcoholic liver disease and hepatitis C: a frequently underestimated combination. World J Gastroenterol 2009; 15(28): 3462-71.
[http://dx.doi.org/10.3748/wjg.15.3462] [PMID: 19630099]
[22]
Vieira-Castro ACM, Oliveira LCM. Impact of alcohol consumption among patients in hepatitis C virus treatment. Arq Gastroenterol 2017; 54(3): 232-7.
[http://dx.doi.org/10.1590/s0004-2803.201700000-33] [PMID: 28724048]
[23]
Larrubia JR, Moreno-Cubero E, Lokhande MU, et al. Adaptive immune response during hepatitis C virus infection. World J Gastroenterol 2014; 20(13): 3418-30.
[http://dx.doi.org/10.3748/wjg.v20.i13.3418] [PMID: 24707125]
[24]
Zheng Z, Sze CW, Keng CT, et al. Hepatitis C virus mediated chronic inflammation and tumorigenesis in the humanised immune system and liver mouse model. PLoS One 2017; 12(9): e0184127.
[http://dx.doi.org/10.1371/journal.pone.0184127] [PMID: 28886065]
[25]
Elsegood CL, Tirnitz-Parker JE, Olynyk JK, Yeoh GC. Immune checkpoint inhibition: prospects for prevention and therapy of hepatocellular carcinoma. Clin Transl Immunology 2017; 6(11): e161.
[http://dx.doi.org/10.1038/cti.2017.47] [PMID: 29326816]
[26]
Fierro NA, González-Aldaco K, Torres-Valadez R, et al. Spontaneous hepatitis C viral clearance and hepatitis C chronic infection are associated with distinct cytokine profiles in Mexican patients. Mem Inst Oswaldo Cruz 2015; 110(2): 267-71.
[http://dx.doi.org/10.1590/0074-02760140377] [PMID: 25946254]
[27]
Jee MH, Hong KY, Park JH, et al. New Mechanism of hepatic fibrogenesis: hepatitis c virus infection induces transforming growth factor β1 production through glucose-regulated protein 94. J Virol 2015; 90(6): 3044-55.
[http://dx.doi.org/10.1128/JVI.02976-15] [PMID: 26719248]
[28]
Sebastiani G, Gkouvatsos K, Pantopoulos K. Chronic hepatitis C and liver fibrosis. World J Gastroenterol 2014; 20(32): 11033-53.
[http://dx.doi.org/10.3748/wjg.v20.i32.11033] [PMID: 25170193]
[29]
Taherkhani R, Farshadpour F. Global elimination of hepatitis C virus infection: progresses and the remaining challenges. World J Hepatol 2017; 9(33): 1239-52.
[http://dx.doi.org/10.4254/wjh.v9.i33.1239] [PMID: 29312527]
[30]
Moriishi K, Matsuura Y. Exploitation of lipid components by viral and host proteins for hepatitis C virus infection. Front Microbiol 2012; 3(54): 54.
[http://dx.doi.org/10.3389/fmicb.2012.00054] [PMID: 22347882]
[31]
Zampino R, Marrone A, Restivo L, et al. Chronic HCV infection and inflammation: clinical impact on hepatic and extra-hepatic manifestations. World J Hepatol 2013; 5(10): 528-40.
[http://dx.doi.org/10.4254/wjh.v5.i10.528] [PMID: 24179612]
[32]
Popescu C-I, Riva L, Vlaicu O, et al. Hepatitis C virus life cycle and lipid metabolism. Biology (Basel) 2014; 3(4): 892-921.
[http://dx.doi.org/10.3390/biology3040892] [PMID: 25517881]
[33]
Scheel TKH, Rice CM. Understanding the hepatitis C virus life cycle paves the way for highly effective therapies. Nat Med 2013; 19(7): 837-49.
[http://dx.doi.org/10.1038/nm.3248] [PMID: 23836234]
[34]
Lovelace ES, Polyak SJ. Natural products as tools for defining how cellular metabolism influences cellular immune and inflammatory function during chronic infection. Viruses 2015; 7(12): 6218-32.
[http://dx.doi.org/10.3390/v7122933] [PMID: 26633463]
[35]
Silva TM, Rodrigues LZ, Nunes GL, Codevilla CF, Silva CB, Menezes CR. Encapsulação de compostos bioativos por coacervação complexa Encapsulation of bioactive compounds by complex coacervation. Ciênc Nat 2015; 37: 56-64.
[http://dx.doi.org/10.5902/2179460X19715]
[36]
World Health Organization. WHO Traditional Medicine Strategy 2014-2023 2013. Available at: apps.who.int/iris/bitstream/10665/92455/1/9789241506090_eng.pdf?ua=1
[37]
Calland N, Dubuisson J, Rouillé Y, Séron K, Hepatitis C. Hepatitis C virus and natural compounds: a new antiviral approach? Viruses 2012; 4(10): 2197-217.
[http://dx.doi.org/10.3390/v4102197] [PMID: 23202460]
[38]
Zakaryan H, Arabyan E, Oo A, Zandi K. Flavonoids: promising natural compounds against viral infections. Arch Virol 2017; 162(9): 2539-51.
[http://dx.doi.org/10.1007/s00705-017-3417-y] [PMID: 28547385]
[39]
Ramos A, Lima C, Pereira-Wilson C. DNA Damage Protection and Induction of Repair by Dietary Phytochemicals and Cancer Prevention: What Do We Know? In: Chen C, Ed. Selected Topics in DNA Repair. 1st ed. London, UK: IntechOpen 2011; pp. 238-70.
[40]
Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci 2016; 5: e47.
[http://dx.doi.org/10.1017/jns.2016.41] [PMID: 28620474]
[41]
Hussain H, Green IR. A patent review of the therapeutic potential of isoflavones (2012-2016). Expert Opin Ther Pat 2017; 27(10): 1135-46.
[http://dx.doi.org/10.1080/13543776.2017.1339791] [PMID: 28586284]
[42]
Thompson M, Jaiswal Y, Wang I, Williams L. Hepatotoxicity: treatment, causes and applications of medicinal plants as therapeutic agents. J Phytopharm 2017; 6(3): 186-93.
[43]
Liu LL, Ha TKQ, Ha W, Oh WK, Yang JL, Shi YP. Sesquiterpenoids with various carbocyclic skeletons from the flowers of Chrysanthemum indicum. J Nat Prod 2017; 80(2): 298-307.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00694] [PMID: 28156114]
[44]
Nemoto K, Ikeda A, Yoshida C, et al. Characteristics of nobiletin- mediated alteration of gene expression in cultured cell lines. Biochem Biophys Res Commun 2013; 431(3): 530-4.
[http://dx.doi.org/10.1016/j.bbrc.2013.01.024] [PMID: 23321314]
[45]
Noguchi S, Atsumi H, Iwao Y, Kan T, Itai S. Nobiletin: a citrus flavonoid displaying potent physiological activity. Acta Crystallogr C Struct Chem 2016; 72(Pt 2): 124-7.
[http://dx.doi.org/10.1107/S2053229616000577] [PMID: 26846496]
[46]
Lee YS, Cha BY, Choi SS, et al. Nobiletin improves obesity and insulin resistance in high-fat diet-induced obese mice. J Nutr Biochem 2013; 24(1): 156-62.
[http://dx.doi.org/10.1016/j.jnutbio.2012.03.014] [PMID: 22898571]
[47]
Nakajima A, Aoyama Y, Shin EJ, et al. Nobiletin, a citrus flavonoid, improves cognitive impairment and reduces soluble Aβ levels in a triple transgenic mouse model of Alzheimer’s disease (3XTg-AD). Behav Brain Res 2015; 289: 69-77.
[http://dx.doi.org/10.1016/j.bbr.2015.04.028] [PMID: 25913833]
[48]
Cui Y, Wu J, Jung SC, et al. Anti-neuroinflammatory activity of nobiletin on suppression of microglial activation. Biol Pharm Bull 2010; 33(11): 1814-21.
[http://dx.doi.org/10.1248/bpb.33.1814] [PMID: 21048305]
[49]
Kimura J, Nemoto K, Degawa M, et al. Upregulation of N-methyl-D-aspartate receptor subunits and c-Fos expressing genes in PC12D cells by nobiletin. Biol Pharm Bull 2014; 37(9): 1555-8.
[http://dx.doi.org/10.1248/bpb.b14-00177] [PMID: 24964900]
[50]
Wu YY, Wan LH, Zheng XW, et al. Inhibitory effects of β,β-dimethylacrylshikonin on hepatocellular carcinoma in vitro and in vivo. Phytother Res 2012; 26(5): 764-71.
[http://dx.doi.org/10.1002/ptr.3623] [PMID: 22109831]
[51]
Li C, Schluesener H. Health-promoting effects of the citrus flavanone hesperidin. Crit Rev Food Sci Nutr 2017; 57(3): 613-31.
[http://dx.doi.org/10.1080/10408398.2014.906382] [PMID: 25675136]
[52]
Assini JM, Mulvihill EE, Sutherland BG, et al. Naringenin prevents cholesterol-induced systemic inflammation, metabolic dysregulation, and atherosclerosis in Ldlr⁻/⁻ mice. J Lipid Res 2013; 54(3): 711-24.
[http://dx.doi.org/10.1194/jlr.M032631] [PMID: 23269394]
[53]
Nahmias Y, Goldwasser J, Casali M, et al. Apolipoprotein B-dependent hepatitis C virus secretion is inhibited by the grapefruit flavonoid naringenin. Hepatology 2008; 47(5): 1437-45.
[http://dx.doi.org/10.1002/hep.22197] [PMID: 18393287]
[54]
Goldwasser J, Cohen PY, Lin W, et al. Naringenin inhibits the assembly and long-term production of infectious hepatitis C virus particles through a PPAR-mediated mechanism. J Hepatol 2011; 55(5): 963-71.
[http://dx.doi.org/10.1016/j.jhep.2011.02.011] [PMID: 21354229]
[55]
Assis RP, Arcaro CA, Gutierres VO, et al. Combined effects of curcumin and lycopene or bixin in yoghurt on inhibition of LDL oxidation and increases in HDL and paraoxonase levels in streptozotocin-diabetic rats. Int J Mol Sci 2017; 18(4): 332.
[http://dx.doi.org/10.3390/ijms18040332]
[56]
Konduru AS, Lee B-C, Li J-D. Curcumin suppresses NTHi-induced CXCL5 expression via inhibition of positive IKKβ pathway and up-regulation of negative MKP-1 pathway. Sci Rep 2016; 6(182): 31695.
[http://dx.doi.org/10.1038/srep31695] [PMID: 27538525]
[57]
Nabavi SF, Daglia M, Moghaddam AH, Habtemariam S, Nabavi SM. Curcumin and liver disease: from chemistry to medicine. Compr Rev Food Sci Food Saf 2014; 13(1): 62-77.
[http://dx.doi.org/10.1111/1541-4337.12047]
[58]
Chen MH, Lee MY, Chuang JJ, et al. Curcumin inhibits HCV replication by induction of heme oxygenase-1 and suppression of AKT. Int J Mol Med 2012; 30(5): 1021-8.
[http://dx.doi.org/10.3892/ijmm.2012.1096] [PMID: 22922731]
[59]
Kim K, Kim KH, Kim HY, Cho HK, Sakamoto N, Cheong J. Curcumin inhibits hepatitis C virus replication via suppressing the Akt-SREBP-1 pathway. FEBS Lett 2010; 584(4): 707-12.
[http://dx.doi.org/10.1016/j.febslet.2009.12.019] [PMID: 20026048]
[60]
Shiu TY, Huang SM, Shih YL, et al. Hepatitis C virus core protein down-regulates p21(Waf1/Cip1) and inhibits curcumin-induced apoptosis through microRNA-345 targeting in human hepatoma cells. PLoS One 2013; 8(4): e61089.
[http://dx.doi.org/10.1371/journal.pone.0061089] [PMID: 23577194]
[61]
Zhou J, Farah BL, Sinha RA, et al. Epigallocatechin-3- gallate (EGCG), a green tea polyphenol, stimulates hepatic autophagy and lipid clearance. PLoS One 2014; 9(1): e87161.
[http://dx.doi.org/10.1371/journal.pone.0087161] [PMID: 24489859]
[62]
Zeng L, Yan J, Luo L, Ma M, Zhu H. Preparation and characterization of (-)-Epigallocatechin-3-gallate (EGCG)-loaded nanoparticles and their inhibitory effects on Human breast cancer MCF-7 cells. Sci Rep 2017; 7(45521): 45521.
[http://dx.doi.org/10.1038/srep45521] [PMID: 28349962]
[63]
Du GJ, Zhang Z, Wen X-D, et al. Epigallocatechin Gallate (EGCG) is the most effective cancer chemopreventive polyphenol in green tea. Nutrients 2012; 4(11): 1679-91.
[http://dx.doi.org/10.3390/nu4111679] [PMID: 23201840]
[64]
Peairs A, Dai R, Gan L, et al. Epigallocatechin-3-gallate (EGCG) attenuates inflammation in MRL/lpr mouse mesangial cells. Cell Mol Immunol 2010; 7(2): 123-32.
[http://dx.doi.org/10.1038/cmi.2010.1] [PMID: 20140007]
[65]
Calland N, Albecka A, Belouzard S, et al. (-)-Epigallocatechin-3-gallate is a new inhibitor of hepatitis C virus entry. Hepatology 2012; 55(3): 720-9.
[http://dx.doi.org/10.1002/hep.24803] [PMID: 22105803]
[66]
Chen C, Qiu H, Gong J, et al. (-)-Epigallocatechin-3-gallate inhibits the replication cycle of hepatitis C virus. Arch Virol 2012; 157(7): 1301-12.
[http://dx.doi.org/10.1007/s00705-012-1304-0] [PMID: 22491814]
[67]
Roh C, Jo SK. (-)-Epigallocatechin gallate inhibits hepatitis C virus (HCV) viral protein NS5B. Talanta 2011; 85(5): 2639-42.
[http://dx.doi.org/10.1016/j.talanta.2011.08.035] [PMID: 21962695]
[68]
Wu YH, Zhang BY, Qiu LP, Guan RF, Ye ZH, Yu XP. Structure Properties and Mechanisms of Action of Naturally Originated Phenolic Acids and Their Derivatives against Human Viral Infections. Curr Med Chem 2017; 24(38): 4279-302.
[http://dx.doi.org/10.2174/0929867324666170815102917] [PMID: 28814240]
[69]
Tanida I, Shirasago Y, Suzuki R, et al. Inhibitory effects of caffeic acid, a coffee-related organic acid, on the propagation of hepatitis C virus. Jpn J Infect Dis 2015; 68(4): 268-75.
[http://dx.doi.org/10.7883/yoken.JJID.2014.309] [PMID: 25672401]
[70]
Ajala OS, Jukov A, Ma CM. Hepatitis C virus inhibitory hydrolysable tannins from the fruits of Terminalia chebula. Fitoterapia 2014; 99: 117-23.
[http://dx.doi.org/10.1016/j.fitote.2014.09.014] [PMID: 25261266]
[71]
Liu S, Chen R, Hagedorn CH. Tannic acid inhibits hepatitis c virus entry into HuH7.5 cells. PLoS One 2015; 10(7): e0131358.
[http://dx.doi.org/10.1371/journal.pone.0131358] [PMID: 26186636]
[72]
Hsu WC, Chang SP, Lin LC, et al. Limonium sinense and gallic acid suppress hepatitis C virus infection by blocking early viral entry. Antiviral Res 2015; 118: 139-47.
[http://dx.doi.org/10.1016/j.antiviral.2015.04.003] [PMID: 25865056]
[73]
Gambini J, Inglés M, Olaso G, et al. Properties of resveratrol: in vitro and in vivo studies about metabolism, bioavailability, and biological effects in animal models and humans. Oxid Med Cell Longev 2015; 2015: 837042.
[http://dx.doi.org/10.1155/2015/837042] [PMID: 26221416]
[74]
Kulkarni SS, Cantó C. The molecular targets of resveratrol. Biochim Biophys Acta 2015; 1852(6): 1114-23.
[http://dx.doi.org/10.1016/j.bbadis.2014.10.005] [PMID: 25315298]
[75]
Abba Y, Hassim H, Hamzah H, Noordin MM. Antiviral activity of resveratrol against human and animal viruses. Adv Virol 2015; 2015: 184241.
[http://dx.doi.org/10.1155/2015/184241] [PMID: 26693226]
[76]
Lee S, Yoon KD, Lee M, et al. Identification of a resveratrol tetramer as a potent inhibitor of hepatitis C virus helicase. Br J Pharmacol 2016; 173(1): 191-211.
[http://dx.doi.org/10.1111/bph.13358] [PMID: 26445091]
[77]
Carreño V. Review article: management of chronic hepatitis C in patients with contraindications to anti-viral therapy. Aliment Pharmacol Ther 2014; 39(2): 148-62.
[http://dx.doi.org/10.1111/apt.12562] [PMID: 24279580]
[78]
Webb AL, McCullough ML. Dietary lignans: potential role in cancer prevention. Nutr Cancer 2005; 51(2): 117-31.
[http://dx.doi.org/10.1207/s15327914nc5102_1] [PMID: 15860433]
[79]
Lan KH, Wang YW, Lee WP, et al. Multiple effects of Honokiol on the life cycle of hepatitis C virus. Liver Int 2012; 32(6): 989-97.
[http://dx.doi.org/10.1111/j.1478-3231.2011.02621.x] [PMID: 22098176]
[80]
Wu SF, Lin CK, Chuang YS, et al. Anti-hepatitis C virus activity of 3-hydroxy caruilignan C from Swietenia macrophylla stems. J Viral Hepat 2012; 19(5): 364-70.
[http://dx.doi.org/10.1111/j.1365-2893.2011.01558.x] [PMID: 22497816]
[81]
Sheriff SA, Devaki T. Lycopene stabilizes liver function during d- galactosamine/lipopolysaccharide induced hepatitis in rats. J Taibah Univ Sci 2013; 7(1): 8-16.
[http://dx.doi.org/10.1016/j.jtusci.2013.01.002]
[82]
El-Agamey A, Lowe GM, McGarvey DJ, et al. Carotenoid radical chemistry and antioxidant/pro-oxidant properties. Arch Biochem Biophys 2004; 430(1): 37-48.
[http://dx.doi.org/10.1016/j.abb.2004.03.007] [PMID: 15325910]
[83]
Sharoni Y, Danilenko M, Dubi N, Ben-Dor A, Levy J. Carotenoids and transcription. Arch Biochem Biophys 2004; 430(1): 89-96.
[http://dx.doi.org/10.1016/j.abb.2004.03.009] [PMID: 15325915]
[84]
Kataria Y, Deaton RJ, Enk E, et al. Retinoid and carotenoid status in serum and liver among patients at high-risk for liver cancer. BMC Gastroenterol 2016; 16(30): 30.
[http://dx.doi.org/10.1186/s12876-016-0432-5] [PMID: 26927700]
[85]
Fanciullino AL, Dhuique-Mayer C, Luro F, Casanova J, Morillon R, Ollitrault P. Carotenoid diversity in cultivated citrus is highly influenced by genetic factors. J Agric Food Chem 2006; 54(12): 4397-406.
[http://dx.doi.org/10.1021/jf0526644] [PMID: 16756373]
[86]
Seren S, Mutchnick M, Hutchinson D, et al. Potential role of lycopene in the treatment of hepatitis C and prevention of hepatocellular carcinoma. Nutr Cancer 2008; 60(6): 729-35.
[http://dx.doi.org/10.1080/01635580802419772] [PMID: 19005972]
[87]
Schläger S, Dräger B. Exploiting plant alkaloids. Curr Opin Biotechnol 2016; 37: 155-64.
[http://dx.doi.org/10.1016/j.copbio.2015.12.003] [PMID: 26748036]
[88]
Amirkia V, Heinrich M. Alkaloids as drug leads – A predictive structural and biodiversity-based analysis. Phytochem Lett 2014; 10: xlviii-liii.
[http://dx.doi.org/10.1016/j.phytol.2014.06.015]
[89]
Yu X, Sainz B Jr, Petukhov PA, Uprichard SL. Identification of hepatitis C virus inhibitors targeting different aspects of infection using a cell-based assay. Antimicrob Agents Chemother 2012; 56(12): 6109-20.
[http://dx.doi.org/10.1128/AAC.01413-12] [PMID: 22948883]
[90]
Jardim ACG, Igloi Z, Shimizu JF, et al. Natural compounds isolated from Brazilian plants are potent inhibitors of hepatitis C virus replication in vitro. Antiviral Res 2015; 115: 39-47.
[http://dx.doi.org/10.1016/j.antiviral.2014.12.018] [PMID: 25557602]
[91]
Cao MM, Zhang Y, Peng ZG, Jiang JD, Gao YJ, Hao XJ. Schoberine B, an alkaloid with an unprecedented straight C 5 side chain, and myriberine B from Myrioneuron faberi. RSC Advances 2016; 6(12): 10180-4.
[http://dx.doi.org/10.1039/C5RA25218K]
[92]
Song D, Wang Z, Mei R, et al. Short and scalable total synthesis of myrioneuron alkaloids (±)-α,β-myrifabral A and B. Org Lett 2016; 18(4): 669-71.
[http://dx.doi.org/10.1021/acs.orglett.6b00005] [PMID: 26848989]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy