Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Mini-Review Article

The Functional Impact of Alternative Splicing and Single Nucleotide Polymorphisms in Rheumatoid Arthritis

Author(s): R. Kowshik Aravilli, S. Laveen Vikram and V. Kohila*

Volume 22, Issue 8, 2021

Published on: 01 October, 2020

Page: [1014 - 1029] Pages: 16

DOI: 10.2174/1389201021666201001142416

Price: $65

Abstract

Advances in genomics and proteomics aid the identification of genes associated with various diseases. Genome-Wide Association Studies (GWAS) have identified multiple loci as risk alleles for susceptibility to Rheumatoid Arthritis (RA). A bisection of RA risk can be attributed to genetic factors. Over 100 associated genetic loci that encompass immune regulatory factors have been found to be linked with RA. Aberrant Single Nucleotide Polymorphisms (SNPs) and alternative splicing mechanisms in such loci induce RA. These aberrations are viewed as potential therapeutic targets due to their association with a multitude of diseases. This review presents a few imperious genes whose alterations can cause severe bone deformities culminating in RA.

Keywords: Rheumatoid arthritis, alternative splicing, bone deformation, inflammation, single nucleotide polymorphisms, autoimmunity.

Graphical Abstract
[1]
Choy, E. Understanding the dynamics: Pathways involved in the pathogenesis of rheumatoid arthritis. Rheumatology (Oxford), 2012, 51(Suppl. 5), v3-v11.
[http://dx.doi.org/10.1093/rheumatology/kes113] [PMID: 22718924]
[2]
Newton, J.L.; Harney, S.M.; Wordsworth, B.P.; Brown, M.A. A review of the MHC genetics of rheumatoid arthritis. Genes Immun., 2004, 5(3), 151-157.
[http://dx.doi.org/10.1038/sj.gene.6364045] [PMID: 14749714]
[3]
Tobón, G.J.; Youinou, P.; Saraux, A. The environment, geo-epidemiology, and autoimmune disease: Rheumatoid arthritis. J. Autoimmun., 2010, 35(1), 10-14.
[http://dx.doi.org/10.1016/j.jaut.2009.12.009] [PMID: 20080387]
[4]
Scott, D.L.; Wolfe, F.; Huizinga, T.W. Rheumatoid arthritis. Lancet, 2010, 376(9746), 1094-1108.
[http://dx.doi.org/10.1016/S0140-6736(10)60826-4] [PMID: 20870100]
[5]
Brookes, A.J. The essence of SNPs. Gene, 1999, 234(2), 177-186.
[http://dx.doi.org/10.1016/S0378-1119(99)00219-X] [PMID: 10395891]
[6]
Cieply, B.; Carstens, R.P. Functional roles of alternative splicing factors in human disease. Wiley Interdiscip. Rev. RNA, 2015, 6(3), 311-326.
[http://dx.doi.org/10.1002/wrna.1276] [PMID: 25630614]
[7]
Tang, J.Y.; Lee, J.C.; Hou, M.F.; Wang, C.L.; Chen, C.C.; Huang, H.W.; Chang, H.W. Alternative splicing for diseases, cancers, drugs, and databases. ScientificWorldJournal, 2013, 2013, 703568.
[http://dx.doi.org/10.1155/2013/703568] [PMID: 23766705]
[8]
Garcia-Blanco, M.A.; Baraniak, A.P.; Lasda, E.L. Alternative splicing in disease and therapy. Nat. Biotechnol., 2004, 22(5), 535-546.
[http://dx.doi.org/10.1038/nbt964] [PMID: 15122293]
[9]
Bessenyei, B.; Márka, M.; Urbán, L.; Zeher, M.; Semsei, I. Single nucleotide polymorphisms: Aging and diseases. Biogerontology, 2004, 5(5), 291-303.
[http://dx.doi.org/10.1007/s10522-004-2567-y] [PMID: 15547317]
[10]
Fontenot, J.D.; Gavin, M.A.; Rudensky, A.Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol., 2003, 4(4), 330-336.
[http://dx.doi.org/10.1038/ni904] [PMID: 12612578]
[11]
Chen, W.; Jin, W.; Hardegen, N.; Lei, K.J.; Li, L.; Marinos, N.; McGrady, G.; Wahl, S.M. Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3. J. Exp. Med., 2003, 198(12), 1875-1886.
[http://dx.doi.org/10.1084/jem.20030152] [PMID: 14676299]
[12]
Owen, C.J.; Eden, J.A.; Jennings, C.E.; Wilson, V.; Cheetham, T.D.; Pearce, S.H.S. Genetic association studies of the FOXP3 gene in Graves’ disease and autoimmune Addison’s disease in the United Kingdom population. J. Mol. Endocrinol., 2006, 37(1), 97-104.
[http://dx.doi.org/10.1677/jme.1.02072] [PMID: 16901927]
[13]
Chatila, T.A.; Blaeser, F.; Ho, N.; Lederman, H.M.; Voulgaropoulos, C.; Helms, C.; Bowcock, A.M. JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation syndrome. J. Clin. Invest., 2000, 106(12), R75-R81.
[http://dx.doi.org/10.1172/JCI11679] [PMID: 11120765]
[14]
Stroud, J.C.; Wu, Y.; Bates, D.L.; Han, A.; Nowick, K.; Paabo, S.; Tong, H.; Chen, L. Structure of the forkhead domain of FOXP2 bound to DNA. Structure, 2006, 14(1), 159-166.
[http://dx.doi.org/10.1016/j.str.2005.10.005] [PMID: 16407075]
[15]
Kaufmann, E.; Knöchel, W. Five years on the wings of fork head. Mech. Dev., 1996, 57(1), 3-20.
[http://dx.doi.org/10.1016/0925-4773(96)00539-4] [PMID: 8817449]
[16]
Kaestner, K.H.; Knöchel, W.; Martínez, D.E. Unified nomenclature for the winged helix/forkhead transcription factors. Genes Dev., 2000, 14(2), 142-146.
[PMID: 10702024]
[17]
Lopes, J.E.; Torgerson, T.R.; Schubert, L.A.; Anover, S.D.; Ocheltree, E.L.; Ochs, H.D.; Ziegler, S.F. Analysis of FOXP3 reveals multiple domains required for its function as a transcriptional repressor. J. Immunol., 2006, 177(5), 3133-3142.
[http://dx.doi.org/10.4049/jimmunol.177.5.3133] [PMID: 16920951]
[18]
McCarty, A.S.; Kleiger, G.; Eisenberg, D.; Smale, S.T. Selective dimerization of a C2H2 zinc finger subfamily. Mol. Cell, 2003, 11(2), 459-470.
[http://dx.doi.org/10.1016/S1097-2765(03)00043-1] [PMID: 12620233]
[19]
Campbell, D.J.; Ziegler, S.F. FOXP3 modifies the phenotypic and functional properties of regulatory T cells. Nat. Rev. Immunol., 2007, 7(4), 305-310.
[http://dx.doi.org/10.1038/nri2061] [PMID: 17380159]
[20]
Ziegler, S.F.; Buckner, J.H. FOXP3 and the regulation of Treg/Th17 differentiation. Microbes Infect., 2009, 11(5), 594-598.
[http://dx.doi.org/10.1016/j.micinf.2009.04.002] [PMID: 19371792]
[21]
Fodor, E.; Garaczi, E.; Polyánka, H.; Koreck, A.; Kemény, L.; Széll, M. The rs3761548 polymorphism of FOXP3 is a protective genetic factor against allergic rhinitis in the Hungarian female population. Hum. Immunol., 2011, 72(10), 926-929.
[http://dx.doi.org/10.1016/j.humimm.2011.06.011] [PMID: 21763379]
[22]
Gao, L.; Li, K.; Li, F.; Li, H.; Liu, L.; Wang, L.; Zhang, Z.; Gao, T.; Liu, Y. Polymorphisms in the FOXP3 gene in Han Chinese psoriasis patients. J. Dermatol. Sci., 2010, 57(1), 51-56.
[http://dx.doi.org/10.1016/j.jdermsci.2009.09.010] [PMID: 19880293]
[23]
Lin, Y.C.; Lee, J.H.; Wu, A.S.H.; Tsai, C.Y.; Yu, H.H.; Wang, L.C.; Yang, Y.H.; Chiang, B.L. Association of single-nucleotide polymorphisms in FOXP3 gene with systemic lupus erythematosus susceptibility: A case-control study. Lupus, 2011, 20(2), 137-143.
[http://dx.doi.org/10.1177/0961203310382428] [PMID: 21078762]
[24]
Inoue, N.; Watanabe, M.; Morita, M.; Tomizawa, R.; Akamizu, T.; Tatsumi, K.; Hidaka, Y.; Iwatani, Y. Association of functional polymorphisms related to the transcriptional level of FOXP3 with prognosis of autoimmune thyroid diseases. Clin. Exp. Immunol., 2010, 162(3), 402-406.
[http://dx.doi.org/10.1111/j.1365-2249.2010.04229.x] [PMID: 20942809]
[25]
André, G.M.; Barbosa, C.P.; Teles, J.S.; Vilarino, F.L.; Christofolini, D.M.; Bianco, B. Analysis of FOXP3 polymorphisms in infertile women with and without endometriosis. Fertil. Steril., 2011, 95(7), 2223-2227.
[http://dx.doi.org/10.1016/j.fertnstert.2011.03.033] [PMID: 21481380]
[26]
Park, O.; Grishina, I.; Leung, P.S.; Gershwin, M.E.; Prindiville, T. Analysis of the Foxp3/scurfin gene in Crohn’s disease. Ann. N. Y. Acad. Sci., 2005, 1051(1), 218-228.
[http://dx.doi.org/10.1196/annals.1361.125] [PMID: 16126962]
[27]
Raskin, L.; Rennert, G.; Gruber, S.B. FOXP3 germline polymorphisms are not associated with risk of breast cancer. Cancer Genet. Cytogenet., 2009, 190(1), 40-42.
[http://dx.doi.org/10.1016/j.cancergencyto.2008.12.005] [PMID: 19264232]
[28]
Ebers, G.C.; Kukay, K.; Bulman, D.E.; Sadovnick, A.D.; Rice, G.; Anderson, C.; Armstrong, H.; Cousin, K.; Bell, R.B.; Hader, W.; Paty, D.W.; Hashimoto, S.; Oger, J.; Duquette, P.; Warren, S.; Gray, T.; O’Connor, P.; Nath, A.; Auty, A.; Metz, L.; Francis, G.; Paulseth, J.E.; Murray, T.J.; Pryse-Phillips, W.; Nelson, R.; Freedman, M.; Brunet, D.; Bouchard, J-P.; Hinds, D.; Risch, N. A full genome search in multiple sclerosis. Nat. Genet., 1996, 13(4), 472-476.
[http://dx.doi.org/10.1038/ng0896-472] [PMID: 8696345]
[29]
Imrie, H.; Vaidya, B.; Perros, P.; Kelly, W.F.; Toft, A.D.; Young, E.T.; Kendall-Taylor, P.; Pearce, S.H. Evidence for a Graves’ disease susceptibility locus at chromosome Xp11 in a United Kingdom population. J. Clin. Endocrinol. Metab., 2001, 86(2), 626-630.
[http://dx.doi.org/10.1210/jc.86.2.626] [PMID: 11158020]
[30]
Taylor, J.C.; Gough, S.C.; Hunt, P.J.; Brix, T.H.; Chatterjee, K.; Connell, J.M.; Franklyn, J.A.; Hegedus, L.; Robinson, B.G.; Wiersinga, W.M.; Wass, J.A.H.; Zabaneh, D.; Mackay, I.; Weetman, A.P. A genome-wide screen in 1119 relative pairs with autoimmune thyroid disease. J. Clin. Endocrinol. Metab., 2006, 91(2), 646-653.
[http://dx.doi.org/10.1210/jc.2005-0686] [PMID: 16278270]
[31]
Cornélis, F.; Fauré, S.; Martinez, M.; Prud’homme, J-F.; Fritz, P.; Dib, C.; Alves, H.; Barrera, P.; de Vries, N.; Balsa, A.; Pascual-Salcedo, D.; Maenaut, K.; Westhovens, R.; Migliorini, P.; Tran, T-H.; Delaye, A.; Prince, N.; Lefevre, C.; Thomas, G.; Poirier, M.; Soubigou, S.; Alibert, O.; Lasbleiz, S.; Fouix, S.; Bouchier, C.; Lioté, F.; Loste, M-N.; Lepage, V.; Charron, D.; Gyapay, G.; Lopes-Vaz, A.; Kuntz, D.; Bardin, T.; Weissenbach, J. ECRAF. New susceptibility locus for rheumatoid arthritis suggested by a genome-wide linkage study. Proc. Natl. Acad. Sci. USA, 1998, 95(18), 10746-10750.
[http://dx.doi.org/10.1073/pnas.95.18.10746] [PMID: 9724775]
[32]
Barrett, J.C.; Hansoul, S.; Nicolae, D.L.; Cho, J.H.; Duerr, R.H.; Rioux, J.D.; Brant, S.R.; Silverberg, M.S.; Taylor, K.D.; Barmada, M.M.; Bitton, A.; Dassopoulos, T.; Datta, L.W.; Green, T.; Griffiths, A.M.; Kistner, E.O.; Murtha, M.T.; Regueiro, M.D.; Rotter, J.I.; Schumm, L.P.; Steinhart, A.H.; Targan, S.R.; Xavier, R.J.; Libioulle, C.; Sandor, C.; Lathrop, M.; Belaiche, J.; Dewit, O.; Gut, I.; Heath, S.; Laukens, D.; Mni, M.; Rutgeerts, P.; Van Gossum, A.; Zelenika, D.; Franchimont, D.; Hugot, J.P.; de Vos, M.; Vermeire, S.; Louis, E.; Cardon, L.R.; Anderson, C.A.; Drummond, H.; Nimmo, E.; Ahmad, T.; Prescott, N.J.; Onnie, C.M.; Fisher, S.A.; Marchini, J.; Ghori, J.; Bumpstead, S.; Gwilliam, R.; Tremelling, M.; Deloukas, P.; Mansfield, J.; Jewell, D.; Satsangi, J.; Mathew, C.G.; Parkes, M.; Georges, M.; Daly, M.J. NIDDK IBD Genetics Consortium. Belgian-French IBD Consortium; Wellcome Trust Case Control Consortium. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat. Genet., 2008, 40(8), 955-962.
[http://dx.doi.org/10.1038/ng.175] [PMID: 18587394]
[33]
Sánchez, E.; Rueda, B.; Orozco, G.; Oliver, J.; Vilchez, J.R.; Paco, L.; López-Nevot, M.A.; Callejas, J.L.; Sabio, J.M.; Gómez-Garcia, M.; Nieto, A.; Delgado, M.; Martín, J. Analysis of a GT microsatellite in the promoter of the foxp3/scurfin gene in autoimmune diseases. Hum. Immunol., 2005, 66(8), 869-873.
[http://dx.doi.org/10.1016/j.humimm.2005.06.001] [PMID: 16216670]
[34]
Paradowska-Gorycka, A.; Jurkowska, M.; Felis-Giemza, A.; Romanowska-Próchnicka, K.; Manczak, M.; Maslinski, S.; Olesinska, M. Genetic polymorphisms of Foxp3 in patients with rheumatoid arthritis. J. Rheumatol., 2015, 42(2), 170-180.
[http://dx.doi.org/10.3899/jrheum.131381] [PMID: 25448791]
[35]
Al-Zifzaf, D.S.; El Bakry, S.A.; Mamdouh, R.; Shawarby, L.A.; Ghaffar, A.Y.A.; Amer, H.A.; Alim, A.A.; Sakr, H.M.; Rahman, R.A. Foxp3+T regulatory cells in rheumatoid arthritis and the imbalance of the Treg/Th17 cytokine axis. Egypt. Rheumatol., 2015, 37(1), 7-15.
[http://dx.doi.org/10.1016/j.ejr.2014.06.004]
[36]
Ryder, L.R.; Bartels, E.M.; Woetmann, A.; Madsen, H.O.; Ødum, N.; Bliddal, H.; Danneskiold-Samsøe, B.; Ribel-Madsen, S.; Ryder, L.P. FoxP3 mRNA splice forms in synovial CD4+ T cells in rheumatoid arthritis and psoriatic arthritis. APMIS, 2012, 120(5), 387-396.
[http://dx.doi.org/10.1111/j.1600-0463.2011.02848.x] [PMID: 22515293]
[37]
Stanford, S.M.; Rapini, N.; Bottini, N. Regulation of TCR signalling by tyrosine phosphatases: From immune homeostasis to autoimmunity. Immunology, 2012, 137(1), 1-19.
[http://dx.doi.org/10.1111/j.1365-2567.2012.03591.x] [PMID: 22862552]
[38]
Bottini, N.; Musumeci, L.; Alonso, A.; Rahmouni, S.; Nika, K.; Rostamkhani, M.; MacMurray, J.; Meloni, G.F.; Lucarelli, P.; Pellecchia, M.; Eisenbarth, G.S.; Comings, D.; Mustelin, T. A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat. Genet., 2004, 36(4), 337-338.
[http://dx.doi.org/10.1038/ng1323] [PMID: 15004560]
[39]
Gomez, L.M.; Anaya, J-M.; Gonzalez, C.I.; Pineda-Tamayo, R.; Otero, W.; Arango, A.; Martín, J. PTPN22 C1858T polymorphism in Colombian patients with autoimmune diseases. Genes Immun., 2005, 6(7), 628-631.
[http://dx.doi.org/10.1038/sj.gene.6364261] [PMID: 16163373]
[40]
Wesoly, J.; van der Helm-van Mil, A.H.M.; Toes, R.E.; Chokkalingam, A.P.; Carlton, V.E.H.; Begovich, A.B.; Huizinga, T.W.J. Association of the PTPN22 C1858T single-nucleotide polymorphism with rheumatoid arthritis phenotypes in an inception cohort. Arthritis Rheum., 2005, 52(9), 2948-2950.
[http://dx.doi.org/10.1002/art.21294] [PMID: 16145680]
[41]
Orozco, G.; Sánchez, E.; González-Gay, M.A.; López-Nevot, M.A.; Torres, B.; Cáliz, R.; Ortego-Centeno, N.; Jiménez-Alonso, J.; Pascual-Salcedo, D.; Balsa, A.; de Pablo, R.; Nuñez-Roldan, A.; González-Escribano, M.F.; Martín, J. Association of a functional single-nucleotide polymorphism of PTPN22, encoding lymphoid protein phosphatase, with rheumatoid arthritis and systemic lupus erythematosus. Arthritis Rheum., 2005, 52(1), 219-224.
[http://dx.doi.org/10.1002/art.20771] [PMID: 15641066]
[42]
Begovich, A.B.; Carlton, V.E.H.; Honigberg, L.A.; Schrodi, S.J.; Chokkalingam, A.P.; Alexander, H.C.; Ardlie, K.G.; Huang, Q.; Smith, A.M.; Spoerke, J.M.; Conn, M.T.; Chang, M.; Chang, S.Y.; Saiki, R.K.; Catanese, J.J.; Leong, D.U.; Garcia, V.E.; McAllister, L.B.; Jeffery, D.A.; Lee, A.T.; Batliwalla, F.; Remmers, E.; Criswell, L.A.; Seldin, M.F.; Kastner, D.L.; Amos, C.I.; Sninsky, J.J.; Gregersen, P.K. A missense single-nucleotide polymorphism in a gene encoding a Protein Tyrosine Phosphatase (PTPN22) is associated with rheumatoid arthritis. Am. J. Hum. Genet., 2004, 75(2), 330-337.
[http://dx.doi.org/10.1086/422827] [PMID: 15208781]
[43]
Seldin, M.F.; Shigeta, R.; Laiho, K.; Li, H.; Saila, H.; Savolainen, A.; Leirisalo-Repo, M.; Aho, K.; Tuomilehto-Wolf, E.; Kaarela, K.; Kauppi, M.; Alexander, H.C.; Begovich, A.B.; Tuomilehto, J. Finnish case-control and family studies support PTPN22 R620W polymorphism as a risk factor in rheumatoid arthritis, but suggest only minimal or no effect in juvenile idiopathic arthritis. Genes Immun., 2005, 6(8), 720-722.
[http://dx.doi.org/10.1038/sj.gene.6364255] [PMID: 16107870]
[44]
Plenge, R.M.; Padyukov, L.; Remmers, E.F.; Purcell, S.; Lee, A.T.; Karlson, E.W.; Wolfe, F.; Kastner, D.L.; Alfredsson, L.; Altshuler, D.; Gregersen, P.K.; Klareskog, L.; Rioux, J.D. Replication of putative candidate-gene associations with rheumatoid arthritis in >4,000 samples from North America and Sweden: Association of susceptibility with PTPN22, CTLA4, and PADI4. Am. J. Hum. Genet., 2005, 77(6), 1044-1060.
[http://dx.doi.org/10.1086/498651] [PMID: 16380915]
[45]
Hinks, A.; Barton, A.; John, S.; Bruce, I.; Hawkins, C.; Griffiths, C.E.M.; Donn, R.; Thomson, W.; Silman, A.; Worthington, J. Association between the PTPN22 gene and rheumatoid arthritis and juvenile idiopathic arthritis in a UK population: Further support that PTPN22 is an autoimmunity gene. Arthritis Rheum., 2005, 52(6), 1694-1699.
[http://dx.doi.org/10.1002/art.21049] [PMID: 15934099]
[46]
Simkins, H.M.A.; Merriman, M.E.; Highton, J.; Chapman, P.T.; O’Donnell, J.L.; Jones, P.B.B.; Gow, P.J.; McLean, L.; Pokorny, V.; Harrison, A.A.; Merriman, T.R. Association of the PTPN22 locus with rheumatoid arthritis in a New Zealand Caucasian cohort. Arthritis Rheum., 2005, 52(7), 2222-2225.
[http://dx.doi.org/10.1002/art.21126] [PMID: 15986352]
[47]
Kyogoku, C.; Langefeld, C.D.; Ortmann, W.A.; Lee, A.; Selby, S.; Carlton, V.E.; Chang, M.; Ramos, P.; Baechler, E.C.; Batliwalla, F.M.; Novitzke, J.; Williams, A.H.; Gillett, C.; Rodine, P.; Graham, R.R.; Ardlie, K.G.; Gaffney, P.M.; Moser, K.L.; Petri, M.; Begovich, A.B.; Gregersen, P.K.; Behrens, T.W. Genetic association of the R620W polymorphism of protein tyrosine phosphatase PTPN22 with human SLE. Am. J. Hum. Genet., 2004, 75(3), 504-507.
[http://dx.doi.org/10.1086/423790] [PMID: 15273934]
[48]
Lea, W.W.; Lee, Y.H. The association between the PTPN22 C1858T polymorphism and systemic lupus erythematosus: A meta-analysis update. Lupus, 2011, 20(1), 51-57.
[http://dx.doi.org/10.1177/0961203310381774] [PMID: 21078766]
[49]
Douroudis, K.; Prans, E.; Haller, K.; Nemvalts, V.; Rajasalu, T.; Tillmann, V.; Kisand, K.; Uibo, R. Protein tyrosine phosphatase non-receptor type 22 gene variants at position 1858 are associated with type 1 and type 2 diabetes in Estonian population. Tissue Antigens, 2008, 72(5), 425-430.
[http://dx.doi.org/10.1111/j.1399-0039.2008.01115.x] [PMID: 18764813]
[50]
Smyth, D.; Cooper, J.D.; Collins, J.E.; Heward, J.M.; Franklyn, J.A.; Howson, J.M.M.; Vella, A.; Nutland, S.; Rance, H.E.; Maier, L.; Barratt, B.J.; Guja, C.; Ionescu-Tîrgoviste, C.; Savage, D.A.; Dunger, D.B.; Widmer, B.; Strachan, D.P.; Ring, S.M.; Walker, N.; Clayton, D.G.; Twells, R.C.J.; Gough, S.C.L.; Todd, J.A. Replication of an association between the lymphoid tyrosine phosphatase locus (LYP/PTPN22) with type 1 diabetes, and evidence for its role as a general autoimmunity locus. Diabetes, 2004, 53(11), 3020-3023.
[http://dx.doi.org/10.2337/diabetes.53.11.3020] [PMID: 15504986]
[51]
Stanford, S.M.; Mustelin, T.M.; Bottini, N. Lymphoid tyrosine phosphatase and autoimmunity: Human genetics rediscovers tyrosine phosphatases. Semin. Immunopathol., 2010, 32(2), 127-136.
[http://dx.doi.org/10.1007/s00281-010-0201-4] [PMID: 20204370]
[52]
Ronninger, M.; Guo, Y.; Shchetynsky, K.; Hill, A.; Khademi, M.; Olsson, T.; Reddy, P.S.; Seddighzadeh, M.; Clark, J.D.; Lin, L-L.; O’Toole, M.; Padyukov, L. The balance of expression of PTPN22 splice forms is significantly different in rheumatoid arthritis patients compared with controls. Genome Med., 2012, 4(1), 2.
[http://dx.doi.org/10.1186/gm301] [PMID: 22264340]
[53]
Rodríguez-Rodríguez, L.; Taib, W.R.W.; Topless, R.; Steer, S.; González-Escribano, M.F.; Balsa, A.; Pascual-Salcedo, D.; González-Gay, M.A.; Raya, E.; Fernandez-Gutierrez, B.; González-Álvaro, I.; Bottini, N.; Witte, T.; Viken, M.K.; Coenen, M.J.H.; van Riel, P.L.C.M.; Franke, B.; den Heijer, M.; Radstake, T.R.D.J.; Wordsworth, P.; Lie, B.A.; Merriman, T.R.; Martín, J. The PTPN22 R263Q polymorphism is a risk factor for rheumatoid arthritis in Caucasian case-control samples. Arthritis Rheum., 2011, 63(2), 365-372.
[http://dx.doi.org/10.1002/art.30145] [PMID: 21279993]
[54]
Totaro, M.C.; Tolusso, B.; Napolioni, V.; Faustini, F.; Canestri, S.; Mannocci, A.; Gremese, E.; Bosello, S.L.; Alivernini, S.; Ferraccioli, G. PTPN22 1858C>T polymorphism distribution in Europe and association with rheumatoid arthritis: Case-control study and meta-analysis. PLoS One, 2011, 6(9), e24292.
[http://dx.doi.org/10.1371/journal.pone.0024292] [PMID: 21949702]
[55]
Carlton, V.E.H.; Hu, X.; Chokkalingam, A.P.; Schrodi, S.J.; Brandon, R.; Alexander, H.C.; Chang, M.; Catanese, J.J.; Leong, D.U.; Ardlie, K.G.; Kastner, D.L.; Seldin, M.F.; Criswell, L.A.; Gregersen, P.K.; Beasley, E.; Thomson, G.; Amos, C.I.; Begovich, A.B. PTPN22 genetic variation: Evidence for multiple variants associated with rheumatoid arthritis. Am. J. Hum. Genet., 2005, 77(4), 567-581.
[http://dx.doi.org/10.1086/468189] [PMID: 16175503]
[56]
Martín, J-E.; Alizadeh, B.Z.; González-Gay, M.A.; Balsa, A.; Pascual-Salcedo, D.; González-Escribano, M.F.; Rodriguez-Rodriguez, L.; Fernández-Gutiérrez, B.; Raya, E.; Coenen, M.J.H.; van Riel, P.; Radstake, T.R.D.J.; Kvien, T.K.; Viken, M.K.; Lie, B.A.; Koeleman, B.P.C.; Martín, J. Evidence for PTPN22 R620W polymorphism as the sole common risk variant for rheumatoid arthritis in the 1p13.2 region. J. Rheumatol., 2011, 38(11), 2290-2296.
[http://dx.doi.org/10.3899/jrheum.110361] [PMID: 21965649]
[57]
Wan Taib, W.R.; Smyth, D.J.; Merriman, M.E.; Dalbeth, N.; Gow, P.J.; Harrison, A.A.; Highton, J.; Jones, P.B.B.; Stamp, L.; Steer, S.; Todd, J.A.; Merriman, T.R. The PTPN22 locus and rheumatoid arthritis: No evidence for an effect on risk independent of Arg620Trp. PLoS One, 2010, 5(10), e13544.
[http://dx.doi.org/10.1371/journal.pone.0013544] [PMID: 20975833]
[58]
Chang, H.H.; Tai, T.S.; Lu, B.; Iannaccone, C.; Cernadas, M.; Weinblatt, M.; Shadick, N.; Miaw, S.C.; Ho, I.C. PTPN22.6, a dominant negative isoform of PTPN22 and potential biomarker of rheumatoid arthritis. PLoS One, 2012, 7(3), e33067.
[http://dx.doi.org/10.1371/journal.pone.0033067] [PMID: 22427951]
[59]
Altieri, D.C. Validating survivin as a cancer therapeutic target. Nat. Rev. Cancer, 2003, 3(1), 46-54.
[http://dx.doi.org/10.1038/nrc968] [PMID: 12509766]
[60]
Ambrosini, G.; Adida, C.; Altieri, D.C. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat. Med., 1997, 3(8), 917-921.
[http://dx.doi.org/10.1038/nm0897-917] [PMID: 9256286]
[61]
Li, F. Survivin study: What is the next wave? J. Cell. Physiol., 2003, 197(1), 8-29.
[http://dx.doi.org/10.1002/jcp.10327] [PMID: 12942537]
[62]
Caldas, H.; Honsey, L.E.; Altura, R.A. Survivin 2α: A novel Survivin splice variant expressed in human malignancies. Mol. Cancer, 2005, 4(1), 11.
[http://dx.doi.org/10.1186/1476-4598-4-11] [PMID: 15743529]
[63]
Badran, A.; Yoshida, A.; Ishikawa, K.; Goi, T.; Yamaguchi, A.; Ueda, T.; Inuzuka, M. Identification of a novel splice variant of the human anti-apoptopsis gene survivin. Biochem. Biophys. Res. Commun., 2004, 314(3), 902-907.
[http://dx.doi.org/10.1016/j.bbrc.2003.12.178] [PMID: 14741722]
[64]
Mahotka, C.; Wenzel, M.; Springer, E.; Gabbert, H.E.; Gerharz, C.D. Survivin-deltaEx3 and survivin-2B: Two novel splice variants of the apoptosis inhibitor survivin with different antiapoptotic properties. Cancer Res., 1999, 59(24), 6097-6102.
[PMID: 10626797]
[65]
Duffy, M.J.; O’Donovan, N.; Brennan, D.J.; Gallagher, W.M.; Ryan, B.M. Survivin: A promising tumor biomarker. Cancer Lett., 2007, 249(1), 49-60.
[http://dx.doi.org/10.1016/j.canlet.2006.12.020] [PMID: 17275177]
[66]
Mahotka, C.; Liebmann, J.; Wenzel, M.; Suschek, C.V.; Schmitt, M.; Gabbert, H.E.; Gerharz, C.D. Differential subcellular localization of functionally divergent survivin splice variants. Cell Death Differ., 2002, 9(12), 1334-1342.
[http://dx.doi.org/10.1038/sj.cdd.4401091] [PMID: 12478470]
[67]
Arora, V.; Cheung, H.H.; Plenchette, S.; Micali, O.C.; Liston, P.; Korneluk, R.G. Degradation of survivin by the X-linked inhibitor of apoptosis (XIAP)-XAF1 complex. J. Biol. Chem., 2007, 282(36), 26202-26209.
[http://dx.doi.org/10.1074/jbc.M700776200] [PMID: 17613533]
[68]
Altieri, D.C. Survivin and IAP proteins in cell-death mechanisms. Biochem. J., 2010, 430(2), 199-205.
[http://dx.doi.org/10.1042/BJ20100814] [PMID: 20704571]
[69]
Zumbrägel, F.K.; Machtens, D.A.; Curth, U.; Lüder, C.G.K.; Reubold, T.F.; Eschenburg, S. Survivin does not influence the anti-apoptotic action of XIAP on caspase-9. Biochem. Biophys. Res. Commun., 2017, 482(4), 530-535.
[http://dx.doi.org/10.1016/j.bbrc.2016.11.094] [PMID: 27865841]
[70]
Li, F.; Ambrosini, G.; Chu, E.Y.; Plescia, J.; Tognin, S.; Marchisio, P.C.; Altieri, D.C. Control of apoptosis and mitotic spindle checkpoint by survivin. Nature, 1998, 396(6711), 580-584.
[http://dx.doi.org/10.1038/25141] [PMID: 9859993]
[71]
Gravina, G.; Wasén, C.; Garcia-Bonete, M.J.; Turkkila, M.; Erlandsson, M.C.; Töyrä Silfverswärd, S.; Brisslert, M.; Pullerits, R.; Andersson, K.M.; Katona, G.; Bokarewa, M.I. Survivin in autoimmune diseases. Autoimmun. Rev., 2017, 16(8), 845-855.
[http://dx.doi.org/10.1016/j.autrev.2017.05.016] [PMID: 28564620]
[72]
Ebrahimiyan, H.; Aslani, S.; Rezaei, N.; Jamshidi, A.; Mahmoudi, M. Survivin and autoimmunity; the ins and outs. Immunol. Lett., 2018, 193, 14-24.
[http://dx.doi.org/10.1016/j.imlet.2017.11.004] [PMID: 29155234]
[73]
Andersson, K.M.E.; Svensson, M.N.D.; Erlandsson, M.C.; Jonsson, I-M.; Bokarewa, M.I. Down-regulation of survivin alleviates experimental arthritis. J. Leukoc. Biol., 2015, 97(1), 135-145.
[http://dx.doi.org/10.1189/jlb.3A0714-317R] [PMID: 25381389]
[74]
Andersson, K.M.E.; Brisslert, M.; Cavallini, N.F.; Svensson, M.N.D.; Welin, A.; Erlandsson, M.C.; Ciesielski, M.J.; Katona, G.; Bokarewa, M.I. Survivin co-ordinates formation of follicular T-cells acting in synergy with Bcl-6. Oncotarget, 2015, 6(24), 20043-20057.
[http://dx.doi.org/10.18632/oncotarget.4994] [PMID: 26343374]
[75]
Bokarewa, M.; Brink, M.; Erlandsson, M.; Rantapää Dahlqvist, S. Survivin but not Fms-like tyrosine kinase 3 ligand is up-regulated before the onset of rheumatoid arthritis: A pilot study. Arthritis Res. Ther., 2014, 16(1), R45.
[http://dx.doi.org/10.1186/ar4474] [PMID: 24495510]
[76]
Turkkila, M.; Andersson, K.M.E.; Amu, S.; Brisslert, M.; Erlandsson, M.C.; Silfverswärd, S.; Bokarewa, M.I. Suppressed diversity of survivin splicing in active rheumatoid arthritis. Arthritis Res. Ther., 2015, 17(1), 175.
[http://dx.doi.org/10.1186/s13075-015-0689-z] [PMID: 26160473]
[77]
Bokarewa, M.; Lindblad, S.; Bokarew, D.; Tarkowski, A. Balance between survivin, a key member of the apoptosis inhibitor family, and its specific antibodies determines erosivity in rheumatoid arthritis. Arthritis Res. Ther., 2005, 7(2), R349-R358.
[http://dx.doi.org/10.1186/ar1498] [PMID: 15743483]
[78]
Smith, M.D.; Weedon, H.; Papangelis, V.; Walker, J.; Roberts-Thomson, P.J.; Ahern, M.J. Apoptosis in the rheumatoid arthritis synovial membrane: Modulation by disease-modifying anti-rheumatic drug treatment. Rheumatology (Oxford), 2010, 49(5), 862-875.
[http://dx.doi.org/10.1093/rheumatology/kep467] [PMID: 20147446]
[79]
Mokuda, S.; Miyazaki, T.; Ito, Y.; Yamasaki, S.; Inoue, H.; Guo, Y.; Kong, W-S.; Kanno, M.; Takasugi, K.; Sugiyama, E.; Masumoto, J. The proto-oncogene survivin splice variant 2B is induced by PDGF and leads to cell proliferation in rheumatoid arthritis fibroblast-like synoviocytes. Sci. Rep., 2015, 5(1), 9795.
[http://dx.doi.org/10.1038/srep09795] [PMID: 25997820]
[80]
Giblin, S.P.; Midwood, K.S. Tenascin-C: Form versus function. Cell Adhes. Migr., 2015, 9(1-2), 48-82.
[http://dx.doi.org/10.4161/19336918.2014.987587] [PMID: 25482829]
[81]
Midwood, K.S.; Orend, G. The role of tenascin-C in tissue injury and tumorigenesis. J. Cell Commun. Signal., 2009, 3(3-4), 287-310.
[http://dx.doi.org/10.1007/s12079-009-0075-1] [PMID: 19838819]
[82]
Chiquet-Ehrismann, R. Tenascins, a growing family of extracellular matrix proteins. Experientia, 1995, 51(9-10), 853-862.
[http://dx.doi.org/10.1007/BF01921736] [PMID: 7556567]
[83]
Erickson, H.P. Tenascin-C, tenascin-R and tenascin-X: A family of talented proteins in search of functions. Curr. Opin. Cell Biol., 1993, 5(5), 869-876.
[http://dx.doi.org/10.1016/0955-0674(93)90037-Q] [PMID: 7694605]
[84]
Hagios, C.; Koch, M.; Spring, J.; Chiquet, M.; Chiquet-Ehrismann, R. Tenascin-Y: A protein of novel domain structure is secreted by differentiated fibroblasts of muscle connective tissue. J. Cell Biol., 1996, 134(6), 1499-1512.
[http://dx.doi.org/10.1083/jcb.134.6.1499] [PMID: 8830777]
[85]
Udalova, I.A.; Ruhmann, M.; Thomson, S.J.P.; Midwood, K.S. Expression and immune function of tenascin-c. Crit. Rev. Immunol., 2012, 31(2), 115-145.
[http://dx.doi.org/10.1615/critrevimmunol.v31.i2.30] [PMID: 21542790]
[86]
Page, T.H.; Charles, P.J.; Piccinini, A.M.; Nicolaidou, V.; Taylor, P.C.; Midwood, K.S. Raised circulating tenascin-C in rheumatoid arthritis. Arthritis Res. Ther., 2012, 14(6), R260.
[http://dx.doi.org/10.1186/ar4105] [PMID: 23193984]
[87]
Goh, F.G.; Piccinini, A.M.; Krausgruber, T.; Udalova, I.A.; Midwood, K.S. Transcriptional regulation of the endogenous danger signal tenascin-C: A novel autocrine loop in inflammation. J. Immunol., 2010, 184(5), 2655-2662.
[http://dx.doi.org/10.4049/jimmunol.0903359] [PMID: 20107185]
[88]
Hasegawa, M.; Nakoshi, Y.; Muraki, M.; Sudo, A.; Kinoshita, N.; Yoshida, T.; Uchida, A. Expression of large tenascin-C splice variants in synovial fluid of patients with rheumatoid arthritis. J. Orthop. Res., 2007, 25(5), 563-568.
[http://dx.doi.org/10.1002/jor.20366] [PMID: 17262825]
[89]
Evans, R. The steroid and thyroid hormone receptor superfamily., Science (80), 1988, 240(4854), 889-895.
[http://dx.doi.org/10.1126/science.3283939]
[90]
Galon, J.; Franchimont, D.; Hiroi, N.; Frey, G.; Boettner, A.; Ehrhart-Bornstein, M.; O’Shea, J.J.; Chrousos, G.P.; Bornstein, S.R. Gene profiling reveals unknown enhancing and suppressive actions of glucocorticoids on immune cells. FASEB J., 2002, 16(1), 61-71.
[http://dx.doi.org/10.1096/fj.01-0245com] [PMID: 11772937]
[91]
Kino, T.; Ichijo, T.; Amin, N.D.; Kesavapany, S.; Wang, Y.; Kim, N.; Rao, S.; Player, A.; Zheng, Y-L.; Garabedian, M.J.; Kawasaki, E.; Pant, H.C.; Chrousos, G.P. Cyclin-dependent kinase 5 differentially regulates the transcriptional activity of the glucocorticoid receptor through phosphorylation: Clinical implications for the nervous system response to glucocorticoids and stress. Mol. Endocrinol., 2007, 21(7), 1552-1568.
[http://dx.doi.org/10.1210/me.2006-0345] [PMID: 17440046]
[92]
Kino, T.; Chrousos, G.P. Glucocorticoid and mineralocorticoid receptors and associated diseases. Essays Biochem., 2004, 40, 137-155.
[http://dx.doi.org/10.1042/bse0400137] [PMID: 15242344]
[93]
Bamberger, C.M.; Bamberger, A.M.; de Castro, M.; Chrousos, G.P. Glucocorticoid receptor beta, a potential endogenous inhibitor of glucocorticoid action in humans. J. Clin. Invest., 1995, 95(6), 2435-2441.
[http://dx.doi.org/10.1172/JCI117943] [PMID: 7769088]
[94]
Kino, T.; Su, Y.A.; Chrousos, G.P. Human glucocorticoid receptor isoform β: Recent understanding of its potential implications in physiology and pathophysiology. Cell. Mol. Life Sci., 2009, 66(21), 3435-3448.
[http://dx.doi.org/10.1007/s00018-009-0098-z] [PMID: 19633971]
[95]
Presul, E.; Schmidt, S.; Kofler, R.; Helmberg, A. Identification, tissue expression, and glucocorticoid responsiveness of alternative first exons of the human glucocorticoid receptor. J. Mol. Endocrinol., 2007, 38(1-2), 79-90.
[http://dx.doi.org/10.1677/jme.1.02183] [PMID: 17242171]
[96]
Turner, J.D.; Muller, C.P. Structure of the glucocorticoid receptor (NR3C1) gene 5′ untranslated region: Identification, and tissue distribution of multiple new human exon 1. J. Mol. Endocrinol., 2005, 35(2), 283-292.
[http://dx.doi.org/10.1677/jme.1.01822] [PMID: 16216909]
[97]
Howard, K.J.; Holley, S.J.; Yamamoto, K.R.; Distelhorst, C.W. Mapping the HSP90 binding region of the glucocorticoid receptor. J. Biol. Chem., 1990, 265(20), 11928-11935.
[PMID: 2365707]
[98]
Denis, M.; Gustafsson, J.A.; Wikström, A.C. Interaction of the Mr = 90,000 heat shock protein with the steroid-binding domain of the glucocorticoid receptor. J. Biol. Chem., 1988, 263(34), 18520-18523.
[PMID: 3192546]
[99]
Czar, M.J.; Lyons, R.H.; Welsh, M.J.; Renoir, J.M.; Pratt, W.B. Evidence that the FK506-binding immunophilin heat shock protein 56 is required for trafficking of the glucocorticoid receptor from the cytoplasm to the nucleus. Mol. Endocrinol., 1995, 9(11), 1549-1560.
[http://dx.doi.org/10.1210/mend.9.11.8584032] [PMID: 8584032]
[100]
Chrousos, G.P.; Kino, T. Intracellular glucocorticoid signaling: A formerly simple system turns stochastic. Sci. STKE, 2005, 2005(304), pe48-pe48.
[http://dx.doi.org/10.1126/stke.3042005pe48] [PMID: 16204701]
[101]
Goulding, N.J. The molecular complexity of glucocorticoid actions in inflammation - a four-ring circus. Curr. Opin. Pharmacol., 2004, 4(6), 629-636.
[http://dx.doi.org/10.1016/j.coph.2004.06.009] [PMID: 15525555]
[102]
Goleva, E.; Li, L.B.; Eves, P.T.; Strand, M.J.; Martin, R.J.; Leung, D.Y.M. Increased glucocorticoid receptor β alters steroid response in glucocorticoid-insensitive asthma. Am. J. Respir. Crit. Care Med., 2006, 173(6), 607-616.
[http://dx.doi.org/10.1164/rccm.200507-1046OC] [PMID: 16387802]
[103]
Derijk, R.H.; Schaaf, M.J.M.; Turner, G.; Datson, N.A.; Vreugdenhil, E.; Cidlowski, J.; de Kloet, E.R.; Emery, P.; Sternberg, E.M.; Detera-Wadleigh, S.D. A human glucocorticoid receptor gene variant that increases the stability of the glucocorticoid receptor β-isoform mRNA is associated with rheumatoid arthritis. J. Rheumatol., 2001, 28(11), 2383-2388.
[PMID: 11708406]
[104]
Lee, C.K.; Lee, E.Y.; Cho, Y.S.; Moon, K.A.; Yoo, B.; Moon, H.B. Increased expression of glucocorticoid receptor β messenger RNA in patients with ankylosing spondylitis. Korean J. Intern. Med. (Korean. Assoc. Intern. Med.), 2005, 20(2), 146-151.
[http://dx.doi.org/10.3904/kjim.2005.20.2.146] [PMID: 16134770]
[105]
Longui, C.A.; Vottero, A.; Adamson, P.C.; Cole, D.E.; Kino, T.; Monte, O.; Chrousos, G.P. Low glucocorticoid receptor α/β ratio in T-cell lymphoblastic leukemia. Horm. Metab. Res., 2000, 32(10), 401-406.
[http://dx.doi.org/10.1055/s-2007-978661] [PMID: 11069204]
[106]
Shahidi, H.; Vottero, A.; Stratakis, C.A.; Taymans, S.E.; Karl, M.; Longui, C.A.; Chrousos, G.P.; Daughaday, W.H.; Gregory, S.A.; Plate, J.M.D. Imbalanced expression of the glucocorticoid receptor isoforms in cultured lymphocytes from a patient with systemic glucocorticoid resistance and chronic lymphocytic leukemia. Biochem. Biophys. Res. Commun., 1999, 254(3), 559-565.
[http://dx.doi.org/10.1006/bbrc.1998.9980] [PMID: 9920778]
[107]
Piotrowski, P.; Burzyński, M.; Lianeri, M.; Mostowska, M.; Wudarski, M.; Chwalińska-Sadowska, H.; Jagodziński, P.P. Glucocorticoid receptor beta splice variant expression in patients with high and low activity of systemic lupus erythematosus. Folia Histochem. Cytobiol., 2007, 45(4), 339-342.
[PMID: 18165172]
[108]
Lesley, J.; Hyman, R. CD44 structure and function. Front. Biosci., 1998, 3(4), d616-d630.
[http://dx.doi.org/10.2741/A306] [PMID: 9634544]
[109]
Naor, D.; Sionov, R.V.; Ish-Shalom, D. CD44: Structure, function, and association with the malignant process. Adv. Cancer Res., 1997, 71, 241-319.
[http://dx.doi.org/10.1016/S0065-230X(08)60101-3] [PMID: 9111868]
[110]
Goodfellow, P.N.; Banting, G.; Wiles, M.V.; Tunnacliffe, A.; Parkar, M.; Solomon, E.; Dalchau, R.; Fabre, J.W. The gene, MIC4, which controls expression of the antigen defined by monoclonal antibody F10.44.2, is on human chromosome 11. Eur. J. Immunol., 1982, 12(8), 659-663.
[http://dx.doi.org/10.1002/eji.1830120807] [PMID: 7140811]
[111]
Jackson, D.G.; Buckley, J.; Bell, J.I. Multiple variants of the human lymphocyte homing receptor CD44 generated by insertions at a single site in the extracellular domain. J. Biol. Chem., 1992, 267(7), 4732-4739.
[PMID: 1537855]
[112]
Screaton, G.R.; Bell, M.V.; Bell, J.I.; Jackson, D.G.; Jackson, D.G. The identification of a new alternative exon with highly restricted tissue expression in transcripts encoding the mouse Pgp-1 (CD44) homing receptor. Comparison of all 10 variable exons between mouse, human, and rat. J. Biol. Chem., 1993, 268(17), 12235-12238.
[PMID: 8509359]
[113]
Basakran, N.S. CD44 as a potential diagnostic tumor marker. Saudi Med. J., 2015, 36(3), 273-279.
[http://dx.doi.org/10.15537/smj.2015.3.9622] [PMID: 25737167]
[114]
Lesley, J.; Hyman, R.; Kincade, P.W. CD44 and its interaction with extracellular matrix. Adv. Immunol., 1993, 54, 271-335.
[http://dx.doi.org/10.1016/S0065-2776(08)60537-4] [PMID: 8379464]
[115]
Grisar, J.; Munk, M.; Steiner, C.W.; Amoyo-Minar, L.; Tohidast-Akrad, M.; Zenz, P.; Steiner, G.; Smolen, J.S. Expression patterns of CD44 and CD44 splice variants in patients with rheumatoid arthritis. Clin. Exp. Rheumatol., 2012, 30(1), 64-72.
[PMID: 22261341]
[116]
Wibulswas, A.; Croft, D.; Pitsillides, A.A.; Bacarese-Hamilton, I.; McIntyre, P.; Genot, E.; Kramer, I.M. Influence of epitopes CD44v3 and CD44v6 in the invasive behavior of fibroblast-like synoviocytes derived from rheumatoid arthritic joints. Arthritis Rheum., 2002, 46(8), 2059-2064.
[http://dx.doi.org/10.1002/art.10421] [PMID: 12209509]
[117]
Tolboom, T.C.A.; Huidekoper, A.L.; Kramer, I.M.; Pieterman, E.; Toes, R.E.M.; Huizinga, T.W.J. Correlation between expression of CD44 splice variant v8-v9 and invasiveness of fibroblast-like synoviocytes in an in vitro system. Clin. Exp. Rheumatol., 2004, 22(2), 158-164.
[PMID: 15083882]
[118]
Renner, F.; Schmitz, M.L. Autoregulatory feedback loops terminating the NF-kappaB response. Trends Biochem. Sci., 2009, 34(3), 128-135.
[http://dx.doi.org/10.1016/j.tibs.2008.12.003] [PMID: 19233657]
[119]
Vereecke, L.; Beyaert, R.; van Loo, G. The ubiquitin-editing enzyme A20 (TNFAIP3) is a central regulator of immunopathology. Trends Immunol., 2009, 30(8), 383-391.
[http://dx.doi.org/10.1016/j.it.2009.05.007] [PMID: 19643665]
[120]
Nenci, A.; Becker, C.; Wullaert, A.; Gareus, R.; van Loo, G.; Danese, S.; Huth, M.; Nikolaev, A.; Neufert, C.; Madison, B.; Gumucio, D.; Neurath, M.F.; Pasparakis, M. Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature, 2007, 446(7135), 557-561.
[http://dx.doi.org/10.1038/nature05698] [PMID: 17361131]
[121]
Coornaert, B.; Carpentier, I.; Beyaert, R. A20: Central gatekeeper in inflammation and immunity. J. Biol. Chem., 2009, 284(13), 8217-8221.
[http://dx.doi.org/10.1074/jbc.R800032200] [PMID: 19008218]
[122]
Verstrepen, L.; Verhelst, K.; van Loo, G.; Carpentier, I.; Ley, S.C.; Beyaert, R. Expression, biological activities and mechanisms of action of A20 (TNFAIP3). Biochem. Pharmacol., 2010, 80(12), 2009-2020.
[http://dx.doi.org/10.1016/j.bcp.2010.06.044] [PMID: 20599425]
[123]
Komander, D.; Barford, D. Structure of the A20 OTU domain and mechanistic insights into deubiquitination. Biochem. J., 2008, 409(1), 77-85.
[http://dx.doi.org/10.1042/BJ20071399] [PMID: 17961127]
[124]
Wertz, I.E.; O’Rourke, K.M.; Zhou, H.; Eby, M.; Aravind, L.; Seshagiri, S.; Wu, P.; Wiesmann, C.; Baker, R.; Boone, D.L.; Ma, A.; Koonin, E.V.; Dixit, V.M. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature, 2004, 430(7000), 694-699.
[http://dx.doi.org/10.1038/nature02794] [PMID: 15258597]
[125]
Bosanac, I.; Wertz, I.E.; Pan, B.; Yu, C.; Kusam, S.; Lam, C.; Phu, L.; Phung, Q.; Maurer, B.; Arnott, D.; Kirkpatrick, D.S.; Dixit, V.M.; Hymowitz, S.G. Ubiquitin binding to A20 ZnF4 is required for modulation of NF-κB signaling. Mol. Cell, 2010, 40(4), 548-557.
[http://dx.doi.org/10.1016/j.molcel.2010.10.009] [PMID: 21095585]
[126]
Lee, E.G. Failure to Regulate TNF-Induced NF-Kappa B and cell death responses in A20-deficient mice. Science, 2000, 289(5488), 2350-2354.
[127]
Wang, X.; Zhu, L.; Liao, Z.; Zhang, F.; Xu, L.; Xu, Y.; Chen, S.; Yang, L.; Zhou, Y.; Li, Y. Alternative expression pattern of MALT1-A20-NF-κB in patients with rheumatoid arthritis. J. Immunol. Res., 2014, 2014, 492872.
[http://dx.doi.org/10.1155/2014/492872] [PMID: 24971370]
[128]
Yoon, H.K.; Byun, H.S.; Lee, H.; Jeon, J.; Lee, Y.; Li, Y.; Jin, E.H.; Kim, J.; Hong, J.H.; Kim, J.H.; Seok, J.H.; Kang, S.W.; Lee, W.H.; Hur, G.M. Intron-derived aberrant splicing of A20 transcript in rheumatoid arthritis. Rheumatology (Oxford), 2013, 52(3), 427-437.
[http://dx.doi.org/10.1093/rheumatology/kes292] [PMID: 23148088]
[129]
Orozco, G.; Hinks, A.; Eyre, S.; Ke, X.; Gibbons, L.J.; Bowes, J.; Flynn, E.; Martin, P.; Wilson, A.G.; Bax, D.E.; Morgan, A.W.; Emery, P.; Steer, S.; Hocking, L.; Reid, D.M.; Wordsworth, P.; Harrison, P.; Thomson, W.; Barton, A.; Worthington, J. Wellcome Trust Case Control Consortium. YEAR consortium. Combined effects of three independent SNPs greatly increase the risk estimate for RA at 6q23. Hum. Mol. Genet., 2009, 18(14), 2693-2699.
[http://dx.doi.org/10.1093/hmg/ddp193] [PMID: 19417005]
[130]
Kim, S.K.; Choe, J.Y.; Bae, J.; Chae, S.C.; Park, D.J.; Kwak, S.G.; Lee, S.S. TNFAIP3 gene polymorphisms associated with differential susceptibility to rheumatoid arthritis and systemic lupus erythematosus in the Korean population. Rheumatology (Oxford), 2014, 53(6), 1009-1013.
[http://dx.doi.org/10.1093/rheumatology/ket473] [PMID: 24489017]
[131]
Ribeiro, R.C.; Kushner, P.J.; Baxter, J.D. The nuclear hormone receptor gene superfamily. Annu. Rev. Med., 1995, 46(1), 443-453.
[http://dx.doi.org/10.1146/annurev.med.46.1.443] [PMID: 7598477]
[132]
Gruber, C.J.; Tschugguel, W.; Schneeberger, C.; Huber, J.C. Production and actions of estrogens. N. Engl. J. Med., 2002, 346(5), 340-352.
[http://dx.doi.org/10.1056/NEJMra000471] [PMID: 11821512]
[133]
Kumar, R.; Zakharov, M.N.; Khan, S.H.; Miki, R.; Jang, H.; Toraldo, G.; Singh, R.; Bhasin, S.; Jasuja, R. The dynamic structure of the estrogen receptor. J. Amino Acids, 2011, 2011, 812540.
[http://dx.doi.org/10.4061/2011/812540] [PMID: 22312471]
[134]
Yaşar, P.; Ayaz, G.; User, S.D.; Güpür, G.; Muyan, M. Molecular mechanism of estrogen-estrogen receptor signaling. Reprod. Med. Biol., 2016, 16(1), 4-20.
[http://dx.doi.org/10.1002/rmb2.12006] [PMID: 29259445]
[135]
Jiang, X.; Zhou, Z.; Zhang, Y.; Yang, H.; Ren, K. An updated meta-analysis of the signal transducer and activator of transcription 4 (STAT4) rs7574865 G/T polymorphism and rheumatoid arthritis risk in an Asian population. Scand. J. Rheumatol., 2014, 43(6), 477-480.
[http://dx.doi.org/10.3109/03009742.2014.918174] [PMID: 25179669]
[136]
Ushiyama, T.; Mori, K.; Inoue, K.; Huang, J.; Nishioka, J.; Hukuda, S. Association of oestrogen receptor gene polymorphisms with age at onset of rheumatoid arthritis. Ann. Rheum. Dis., 1999, 58(1), 7-10.
[http://dx.doi.org/10.1136/ard.58.1.7] [PMID: 10343533]
[137]
Salim, P.H.; Xavier, R.M. Influence of genetic polymorphisms (IL-10/CXCL8/CXCR2/NFκB) on the susceptibility of autoimmune rheumatic diseases. Rev. Bras. Reumatol., 2014, 54(4), 301-310.
[http://dx.doi.org/10.1016/j.rbr.2013.10.006] [PMID: 25627226]
[138]
Gębura, K.; Świerkot, J.; Wysoczańska, B.; Korman, L.; Nowak, B.; Wiland, P.; Bogunia-Kubik, K. Polymorphisms within genes involved in regulation of the NF-κB pathway in patients with rheumatoid arthritis. Int. J. Mol. Sci., 2017, 18(7), 1432.
[http://dx.doi.org/10.3390/ijms18071432] [PMID: 28677621]
[139]
Orozco, G.; Sánchez, E.; Collado, M.D.; López-Nevot, M.A.; Paco, L.; García, A.; Jiménez-Alonso, J.; Martín, J. Analysis of the functional NFKB1 promoter polymorphism in rheumatoid arthritis and systemic lupus erythematosus. Tissue Antigens, 2005, 65(2), 183-186.
[http://dx.doi.org/10.1111/j.1399-0039.2005.00341.x] [PMID: 15713218]
[140]
Bogunia-Kubik, K.; Wysoczańska, B.; Piątek, D.; Iwaszko, M.; Ciechomska, M.; Świerkot, J. Significance of polymorphism and expression of MiR-146a and NF-κB1 genetic variants in patients with rheumatoid arthritis. Arch. Immunol. Ther. Exp. (Warsz.), 2016, 64(S1)(Suppl. 1), 131-136.
[http://dx.doi.org/10.1007/s00005-016-0443-5] [PMID: 28083614]
[141]
Carlberg, C.; Campbell, M.J. Vitamin D receptor signaling mechanisms: Integrated actions of a well-defined transcription factor. Steroids, 2013, 78(2), 127-136.
[http://dx.doi.org/10.1016/j.steroids.2012.10.019] [PMID: 23178257]
[142]
Valdivielso, J.M.; Fernandez, E. Vitamin D receptor polymorphisms and diseases. Clin. Chim. Acta, 2006, 371(1-2), 1-12.
[http://dx.doi.org/10.1016/j.cca.2006.02.016] [PMID: 16563362]
[143]
Cavalcanti, C.A.J. Silva, Jde.A.; Pita, Wde.B.; Veit, T.D.; Monticielo, O.A.; Xavier, R.M.; Brenol, J.C.T.; Brenol, C.V.; Fragoso, T.S.; Barbosa, A.D.; Duarte, Â.L.B.P.; Oliveira, R.D.R.; Louzada-Júnior, P.; Donadi, E.A.; Crovella, S.; Chies, J.A.B.; Sandrin-Garcia, P. Vitamin D receptor polymorphisms and expression profile in rheumatoid arthritis Brazilian patients. Mol. Biol. Rep., 2016, 43(1), 41-51.
[http://dx.doi.org/10.1007/s11033-015-3937-z] [PMID: 26686848]
[144]
Garcia-Lozano, J.R.; Gonzalez-Escribano, M.F.; Valenzuela, A.; Garcia, A.; Núñez-Roldán, A. Association of vitamin D receptor genotypes with early onset rheumatoid arthritis. Eur. J. Immunogenet., 2001, 28(1), 89-93.
[http://dx.doi.org/10.1046/j.1365-2370.2001.00233.x] [PMID: 11251690]
[145]
Hussain, M.R.M.; Baig, M.; Mohamoud, H.S.A.; Ulhaq, Z.; Hoessli, D.C.; Khogeer, G.S.; Al-Sayed, R.R.; Al-Aama, J.Y. BRAF gene: From human cancers to developmental syndromes. Saudi J. Biol. Sci., 2015, 22(4), 359-373.
[http://dx.doi.org/10.1016/j.sjbs.2014.10.002] [PMID: 26150740]
[146]
Raman, M.; Chen, W.; Cobb, M.H. Differential regulation and properties of MAPKs. Oncogene, 2007, 26(22), 3100-3112.
[http://dx.doi.org/10.1038/sj.onc.1210392] [PMID: 17496909]
[147]
Davies, H.; Bignell, G.R.; Cox, C.; Stephens, P.; Edkins, S.; Clegg, S.; Teague, J.; Woffendin, H.; Garnett, M.J.; Bottomley, W.; Davis, N.; Dicks, E.; Ewing, R.; Floyd, Y.; Gray, K.; Hall, S.; Hawes, R.; Hughes, J.; Kosmidou, V.; Menzies, A.; Mould, C.; Parker, A.; Stevens, C.; Watt, S.; Hooper, S.; Wilson, R.; Jayatilake, H.; Gusterson, B.A.; Cooper, C.; Shipley, J.; Hargrave, D.; Pritchard-Jones, K.; Maitland, N.; Chenevix-Trench, G.; Riggins, G.J.; Bigner, D.D.; Palmieri, G.; Cossu, A.; Flanagan, A.; Nicholson, A.; Ho, J.W.C.; Leung, S.Y.; Yuen, S.T.; Weber, B.L.; Seigler, H.F.; Darrow, T.L.; Paterson, H.; Marais, R.; Marshall, C.J.; Wooster, R.; Stratton, M.R.; Futreal, P.A. Mutations of the BRAF gene in human cancer. Nature, 2002, 417(6892), 949-954.
[http://dx.doi.org/10.1038/nature00766] [PMID: 12068308]
[148]
Weisbart, R.H.; Chan, G.; Heinze, E.; Mory, R.; Nishimura, R.N.; Colburn, K. BRAF drives synovial fibroblast transformation in rheumatoid arthritis. J. Biol. Chem., 2010, 285(45), 34299-34303.
[http://dx.doi.org/10.1074/jbc.C110.168195] [PMID: 20843808]
[149]
Arnoux, F.; Fina, F.; Lambert, N.; Balandraud, N.; Martin, M.; Ouafik, L.; Kanaan, S.B.; Roudier, J.; Auger, I. Newly identified BRAF mutation in rheumatoid arthritis. Arthritis Rheumatol., 2016, 68(6), 1377-1383.
[http://dx.doi.org/10.1002/art.39588] [PMID: 26814611]
[150]
Weisbart, R.H.; Chan, G.; Li, E.; Farmani, N.; Heinze, E.; Rubell, A.; Nishimura, R.N.; Colburn, K. BRAF splice variants in rheumatoid arthritis synovial fibroblasts activate MAPK through CRAF. Mol. Immunol., 2013, 55(3-4), 247-252.
[http://dx.doi.org/10.1016/j.molimm.2013.02.001] [PMID: 23517740]
[151]
Gomis-Rüth, F.X. Catalytic domain architecture of metzincin metalloproteases. J. Biol. Chem., 2009, 284(23), 15353-15357.
[http://dx.doi.org/10.1074/jbc.R800069200] [PMID: 19201757]
[152]
Szarvas, T.; vom Dorp, F.; Ergün, S.; Rübben, H. Matrix metalloproteinases and their clinical relevance in urinary bladder cancer. Nat. Rev. Urol., 2011, 8(5), 241-254.
[http://dx.doi.org/10.1038/nrurol.2011.44] [PMID: 21487384]
[153]
Amălinei, C.; Căruntu, I.D.; Giuşcă, S.E.; Bălan, R.A. Matrix metalloproteinases involvement in pathologic conditions. Rom. J. Morphol. Embryol., 2010, 51(2), 215-228.
[PMID: 20495735]
[154]
Mengshol, J.A.; Mix, K.S.; Brinckerhoff, C.E. Matrix metalloproteinases as therapeutic targets in arthritic diseases: Bull’s-eye or missing the mark? Arthritis Rheum., 2002, 46(1), 13-20.
[http://dx.doi.org/10.1002/1529-0131(200201)46:1<13:AID-ART497>3.0.CO;2-S] [PMID: 11817584]
[155]
Ahmed, S.H.; Clark, L.L.; Pennington, W.R.; Webb, C.S.; Bonnema, D.D.; Leonardi, A.H.; McClure, C.D.; Spinale, F.G.; Zile, M.R. Matrix metalloproteinases/tissue inhibitors of metalloproteinases: Relationship between changes in proteolytic determinants of matrix composition and structural, functional, and clinical manifestations of hypertensive heart disease. Circulation, 2006, 113(17), 2089-2096.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.573865] [PMID: 16636176]
[156]
Fanjul-Fernández, M.; Folgueras, A.R.; Cabrera, S.; López-Otín, C. Matrix metalloproteinases: Evolution, gene regulation and functional analysis in mouse models. Biochim. Biophys. Acta, 2010, 1803(1), 3-19.
[http://dx.doi.org/10.1016/j.bbamcr.2009.07.004] [PMID: 19631700]
[157]
Peng, W.J.; Yan, J.W.; Wan, Y.N.; Wang, B.X.; Tao, J.H.; Yang, G.J.; Pan, H.F.; Wang, J. Matrix metalloproteinases: A review of their structure and role in systemic sclerosis. J. Clin. Immunol., 2012, 32(6), 1409-1414.
[http://dx.doi.org/10.1007/s10875-012-9735-7] [PMID: 22767184]
[158]
Kazantseva, M.G.; Hung, N.A.; Highton, J.; Hessian, P.A. MMP expression in rheumatoid inflammation: The rs11568818 polymorphism is associated with MMP-7 expression at an extra-articular site. Genes Immun., 2013, 14(3), 162-169.
[http://dx.doi.org/10.1038/gene.2012.65] [PMID: 23343931]
[159]
Scherer, S.; de Souza, T.B.; de Paoli, J.; Brenol, C.V.; Xavier, R.M.; Brenol, J.C.T.; Chies, J.A.; Simon, D. Matrix metalloproteinase gene polymorphisms in patients with rheumatoid arthritis. Rheumatol. Int., 2010, 30(3), 369-373.
[http://dx.doi.org/10.1007/s00296-009-0974-8] [PMID: 19504098]
[160]
Constantin, A.; Lauwers-Cancès, V.; Navaux, F.; Abbal, M.; van Meerwijk, J.; Mazières, B.; Cambon-Thomsen, A.; Cantagrel, A. Collagenase-1 (MMP-1) and HLA-DRB1 gene polymorphisms in rheumatoid arthritis: A prospective longitudinal study. J. Rheumatol., 2002, 29(1), 15-20.
[PMID: 11824952]
[161]
Dörr, S.; Lechtenböhmer, N.; Rau, R.; Herborn, G.; Wagner, U.; Müller-Myhsok, B.; Hansmann, I.; Keyszer, G. Association of a specific haplotype across the genes MMP1 and MMP3 with radiographic joint destruction in rheumatoid arthritis. Arthritis Res. Ther., 2004, 6(3), R199-R207.
[http://dx.doi.org/10.1186/ar1164] [PMID: 15142265]
[162]
Nemec, P.; Pavkova-Goldbergova, M.; Gatterova, J.; Vasku, A.; Soucek, M. Association of the 5A/6A promoter polymorphism of the MMP-3 gene with the radiographic progression of rheumatoid arthritis. Ann. N. Y. Acad. Sci., 2007, 1110(1), 166-176.
[http://dx.doi.org/10.1196/annals.1423.019] [PMID: 17911432]
[163]
Lee, Y.H.; Kim, H.J.; Rho, Y.H.; Choi, S.J.; Ji, J.D.; Song, G.G. Functional polymorphisms in matrix metalloproteinase-1 and monocyte chemoattractant protein-1 and rheumatoid arthritis. Scand. J. Rheumatol., 2003, 32(4), 235-239.
[http://dx.doi.org/10.1080/03009740310003749] [PMID: 14626631]
[164]
Butler, D.M.; Maini, R.N.; Feldmann, M.; Brennan, F.M. Modulation of proinflammatory cytokine release in rheumatoid synovial membrane cell cultures. Comparison of monoclonal anti TNF-α antibody with the interleukin-1 receptor antagonist. Eur. Cytokine Netw., 1995, 6(4), 225-230.
[PMID: 8789287]
[165]
Krueger, J.M.; Fang, J.; Taishi, P.; Chen, Z.; Kushikata, T.; Gardi, J. Sleep. A physiologic role for IL-1 beta and TNF-alpha. Ann. N. Y. Acad. Sci., 1998, 856, 148-159.
[http://dx.doi.org/10.1111/j.1749-6632.1998.tb08323.x] [PMID: 9917875]
[166]
Tracey, K.J.; Cerami, A. Tumor necrosis factor, other cytokines and disease. Annu. Rev. Cell Biol., 1993, 9(1), 317-343.
[http://dx.doi.org/10.1146/annurev.cb.09.110193.001533] [PMID: 8280464]
[167]
Aguillón, J.C.; Cruzat, A.; Aravena, O.; Salazar, L.; Llanos, C.; Cuchacovich, M. Could Single-Nucleotide Polymorphisms (SNPs) affecting the tumour necrosis factor promoter be considered as part of rheumatoid arthritis evolution? Immunobiology, 2006, 211(1-2), 75-84.
[http://dx.doi.org/10.1016/j.imbio.2005.09.005] [PMID: 16446172]
[168]
Malak, C.A.A.; Shaker, O.G.; Ashour, E.; Magdy, L. Genetic variations of the TNF-α -308 G>A promoter, and TGF-β1 T869C polymorphisms in Egyptian patients with rheumatoid arthritis. Int. J. Clin. Exp. Pathol., 2016, 9(10), 9786-9797.
[169]
Chen, R.; Fang, M.; Cai, Q.; Duan, S.; Lv, K.; Cheng, N.; Ren, D.; Shen, J.; He, D.; He, L.; Sun, S. Tumor necrosis factor alpha -308 polymorphism is associated with rheumatoid arthritis in Han population of Eastern China. Rheumatol. Int., 2007, 28(2), 121-126.
[http://dx.doi.org/10.1007/s00296-007-0409-3] [PMID: 17710405]
[170]
Yen, J.H.; Chen, C.J.; Tsai, W.C.; Lin, C.H.; Ou, T.T.; Wu, C.C.; Liu, H.W. Tumor necrosis factor promoter polymorphisms in patients with rheumatoid arthritis in Taiwan. J. Rheumatol., 2001, 28(8), 1788-1792.
[PMID: 11508580]
[171]
Cvetkovic, J.T.; Wallberg-Jonsson, S.; Stegmayr, B.; Rantapaa-Dahlqvist, S.; Lefvert, A.K. Susceptibility for and clinical manifestations of rheumatoid arthritis are associated with polymorphisms of the TNF-alpha, IL-1beta, and IL-1Ra genes. J. Rheumatol., 2002, 29(2), 212-219.
[PMID: 11838837]
[172]
Ozen, S.; Alikasifoglu, M.; Bakkaloglu, A.; Duzova, A.; Jarosova, K.; Nemcova, D.; Besbas, N.; Vencovsky, J.; Tuncbilek, E. Tumour necrosis factor α G-->A -238 and G-->A -308 polymorphisms in juvenile idiopathic arthritis. Rheumatology (Oxford), 2002, 41(2), 223-227.
[http://dx.doi.org/10.1093/rheumatology/41.2.223] [PMID: 11886974]
[173]
Balog, A.; Gál, J.; Gyulai, Z.; Zsilák, S.; Mándi, Y. Tumour necrosis factor-alpha and heat-shock protein 70-2 gene polymorphisms in a family with rheumatoid arthritis. Acta Microbiol. Immunol. Hung., 2004, 51(3), 263-269.
[http://dx.doi.org/10.1556/AMicr.51.2004.3.4] [PMID: 15571066]
[174]
Khanna, D.; Wu, H.; Park, G.; Gersuk, V.; Gold, R.H.; Nepom, G.T.; Wong, W.K.; Sharp, J.T.; Reed, E.F.; Paulus, H.E.; Tsao, B.P. Western Consortium of Practicing Rheumatologists. Association of tumor necrosis factor α polymorphism, but not the shared epitope, with increased radiographic progression in a seropositive rheumatoid arthritis inception cohort. Arthritis Rheum., 2006, 54(4), 1105-1116.
[http://dx.doi.org/10.1002/art.21750] [PMID: 16572445]
[175]
Danis, V.A.; Millington, M.; Hyland, V.; Lawford, R.; Huang, Q.; Grennan, D. Increased frequency of the uncommon allele of a tumour necrosis factor alpha gene polymorphism in rheumatoid arthritis and systemic lupus erythematosus. Dis. Markers, 1995, 12(2), 127-133.
[http://dx.doi.org/10.1155/1994/756247] [PMID: 7614782]
[176]
Vinasco, J.; Beraún, Y.; Nieto, A.; Fraile, A.; Mataran, L.; Pareja, E.; Martín, J. Polymorphism at the TNF loci in rheumatoid arthritis. Tissue Antigens, 1997, 49(1), 74-78.
[http://dx.doi.org/10.1111/j.1399-0039.1997.tb02715.x] [PMID: 9027971]
[177]
Rodríguez-Carreón, A.A.; Zúñiga, J.; Hernández-Pacheco, G.; Rodríguez-Pérez, J.M.; Pérez-Hernández, N.; Montes de Oca, J.V.; Cardiel, M.H.; Granados, J.; Vargas-Alarcón, G. Tumor necrosis factor-alpha -308 promoter polymorphism contributes independently to HLA alleles in the severity of rheumatoid arthritis in Mexicans. J. Autoimmun., 2005, 24(1), 63-68.
[http://dx.doi.org/10.1016/j.jaut.2004.11.002] [PMID: 15725578]
[178]
Cuenca, J.; Cuchacovich, M.; Pérez, C.; Ferreira, L.; Aguirre, A.; Schiattino, I.; Soto, L.; Cruzat, A.; Salazar-Onfray, F.; Aguillón, J.C. The -308 polymorphism in the Tumour Necrosis Factor (TNF) gene promoter region and ex vivo lipopolysaccharide-induced TNF expression and cytotoxic activity in Chilean patients with rheumatoid arthritis. Rheumatology (Oxford), 2003, 42(2), 308-313.
[http://dx.doi.org/10.1093/rheumatology/keg092] [PMID: 12595628]
[179]
Nemec, P.; Pavkova-Goldbergova, M.; Stouracova, M.; Vasku, A.; Soucek, M.; Gatterova, J. Polymorphism in the tumor necrosis factor-α gene promoter is associated with severity of rheumatoid arthritis in the Czech population. Clin. Rheumatol., 2008, 27(1), 59-65.
[http://dx.doi.org/10.1007/s10067-007-0653-7] [PMID: 17562093]
[180]
Cerami, E.G.; Gross, B.E.; Demir, E.; Rodchenkov, I.; Babur, O.; Anwar, N.; Schultz, N.; Bader, G.D.; Sander, C. Pathway Commons, a web resource for biological pathway data. Nucleic Acids Res., 2011, 39(Database issue), D685-D690.
[http://dx.doi.org/10.1093/nar/gkq1039] [PMID: 21071392]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy