Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Bioactive Principles and Potentiality of Hot Methanolic Extract of the Leaves from Artemisia absinthium L “in vitro Cytotoxicity Against Human MCF-7 Breast Cancer Cells, Antibacterial Study and Wound Healing Activity”

Author(s): Muhammad H. Sultan, Alanazi A. Zuwaiel, Sivakumar S. Moni*, Saeed Alshahrani, Saad S. Alqahtani, Osama Madkhali and Mohamed E. Elmobark

Volume 21, Issue 15, 2020

Page: [1711 - 1721] Pages: 11

DOI: 10.2174/1389201021666200928150519

open access plus

Abstract

Background: Artemisia absinthium L is an ornamental plant widespread in Saudi Arabia. Traditionally, the plant has been used in the Arabic medicine. But the scientific evidence of the bioactive compounds and their medicinal value was not yet explored widely.

Objective: The study was designed to analyse the bioactive principles and medicinal properties of Artemisia absinthium L, a traditional herb grown in southern part of Saudi Arabia.

Methods: The bioactive compounds present in Hot Methanolic Extract of the Leaves (HMEL) of Artemisia absinthium L. was explored by GC-MS analysis. The cytotoxicity effect of HMEL was determined against MCF-7 breast cancer cells ATCC and human colon cancer cells HCT 116 ATCC by performing MTT assay. Morphological changes of HMEL treated MCF-7 were observed under a phasecontrast microscope by staining the cells with neutral red. A Reaction Mixture (RM) of HMEL was prepared in Milli-Q water and antibacterial susceptibility was performed against both Gram-positive and Gram-negative bacteria. Furthermore, in vivo wound healing properties of the RM was screened in male rats and their efficacy was compared with standard povidone iodine cream. Biomarkers such as IL-1β, IL- 6, TNF- α, caspase-9 and caspase-3 levels were determined to qualify the wound healing property.

Results: Epiyangambin, flavone, octadecanoic acid, 2,3-dihydroxypropyl ester, palmitic acid β - monoglyceride, á-D-mannofuranoside, camphor, and terpineol were identified as possible compounds through GC-MS analysis. The HMEL of Artemisia absinthium L was actively inhibiting the proliferation of breast cancer cells MCF-7 ATCC at the concentration of 80.96 ± 3.94 μg/ml as IC50 value but failed to inhibit the proliferation against the treated human colon cancer cells HCT 116 cells ATCC. HMEL of Artemisia absinthium L was showing a moderate spectrum of antibacterial effect against the screened bacteria. RM showed better wound healing property than standard povidone iodine cream that modulates cytokine networks and apoptosis markers levels indicated the healing of wound.

Conclusion: The study suggested that novel anticancer, antibacterial and immune modulatory molecules can be developed from the leaves of Artemisia absinthium L.

Keywords: Herbal plants, Artemisia absinthium, phytoconstituents, solvent extractions, anticancer activity, antibacterial activity, wound healing activity, biomarkers level.

Graphical Abstract
[1]
Asif, H.S.; Tabrej, K. SHPIS: A database of medicinal plants from Saudi Arabia. Int. J. Adv. Comput. Sci. Appl., 2017, 8(5), 49-53.
[2]
Ahmad, R.; Ahmad, N.; Naqvi, A.A.; Shehzad, A.; Al-Ghamdi, M.S. Role of traditional Islamic and Arabic plants in cancer therapy. J. Tradit. Complement. Med., 2016, 7(2), 195-204.
[http://dx.doi.org/10.1016/j.jtcme.2016.05.002] [PMID: 28417090]
[3]
Saad, B.; Said, O. Greco-Arab and Islamic Herbal Medicine: Traditional system, ethics, safety, efficacy, and regulatory issues by Bashar Saad and Omar Said; John Wiley & Sons, Inc: USA, 2011.
[http://dx.doi.org/10.1002/9780470944363]
[4]
Fatemeh, J.K.; Zahra, L.; Hossein, A.K. Medicinal plants: Past history and future perspective. J. Herbmed. Pharmacol., 2018, 7(1), 1-7.
[http://dx.doi.org/10.15171/jhp.2018.01]
[5]
Vickers, A.; Zollman, C.; Lee, R. Herbal medicine. West. J. Med., 2001, 175(2), 125-128.
[http://dx.doi.org/10.1136/ewjm.175.2.125] [PMID: 11483560]
[6]
Ekor, M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol., 2014, 4(177), 177.
[http://dx.doi.org/10.3389/fphar.2013.00177] [PMID: 24454289]
[7]
Hilal, Z.; Anwar, R.; Omar, S.; Bashar, S. Cancer treatment by Greco-Arab and Islamic herbal medicine. Open Nutraceuticals J., 2010, 3, 203-212.
[8]
Parastoo, Z.M.; Hossein, K.; Mahdi, I.; Ameneh, M. Antibacterial activity of Artemisia absinthium essential oil from the Northeast of Iran. J. Med. Plants Nat. Products, 2016, 1-9.
[9]
Moslemi, H.R.; Hoseinzadeh, H.; Badouei, M.A.; Kafshdouzan, K.; Fard, R.M. Antimicrobial activity of Artemisia absinthium against surgical wounds infected by Staphylococcus aureus in a rat model. Indian J. Microbiol., 2012, 52(4), 601-604.
[http://dx.doi.org/10.1007/s12088-012-0283-x] [PMID: 24293717]
[10]
Abad, M.J.; Bedoya, L.M.; Apaza, L.; Bermejo, P. The Artemisia L. genus: A review of bioactive essential oils. Molecules, 2012, 17(3), 2542-2566.
[http://dx.doi.org/10.3390/molecules17032542] [PMID: 22388966]
[11]
Manisha, N.; Maria, A.; Abhay, P.M.; Raffaele, P.; Hari, P.D.; Sergey, P.; Bahare, S.; William, N.S.; Sharifi-Rad, J. Bioactive compounds and health benefits of Artemisia Species. Nat. Prod. Commun., 2019, 14(7), 1-17.
[12]
Bora, K.S.; Sharma, A. The genus Artemisia: A comprehensive review. Pharm. Biol., 2011, 49(1), 101-109.
[http://dx.doi.org/10.3109/13880209.2010.497815] [PMID: 20681755]
[13]
Sarfaraj, H.M.; Sheeba, F.; Saba, A.; Ayub, H.K. Marine natural products: A lead for anti-cancer. Indian J. Geo-Mar. Sci., 2012, 41(1), 27-39.
[14]
Syam, S.; Abdelwahab, S.I.; Al-Mamary, M.A.; Mohan, S. Synthesis of chalcones with anticancer activities. Molecules, 2012, 17(6), 6179-6195.
[http://dx.doi.org/10.3390/molecules17066179] [PMID: 22634834]
[15]
Isani, G.; Bertocchi, M.; Andreani, G.; Farruggia, G.; Cappadone, C.; Salaroli, R.; Forni, M.; Bernardini, C. Cytotoxic effects of Artemisia annua L. and pure artemisinin on the D-17 canine osteosarcoma cell line. Oxid. Med. Cell. Longev., 2019, 20191615758
[http://dx.doi.org/10.1155/2019/1615758] [PMID: 31354901]
[16]
Moni, S.S.; Alam, M.F.; Safhi, M.M.; Jabeen, A.; Sanobar, S.; Siddiqui, R.; Moochikkal, R. Potency of nano-antibacterial formulation from Sargassum binderi against selected human pathogenic bacteria. Braz. J. Pharm. Sci., 2018, 54(4)e17811
[http://dx.doi.org/10.1590/s2175-97902018000417811]
[17]
Sivakumar, S.M.; Alam, M.F.; Makeen, H.A.; Jabeen, A.; Sanobar, S.; Rahimullah, S.; Remesh, M.; Soliman, F. Therapeutic potential of oleic acid nanovesicles prepared from petroleum ether extract of Sargassum binderi in streptozotocin-induced diabetic wound in Wistar rats. Trop. J. Pharm. Res., 2018, 17(11), 2123-2128.
[18]
Pan, S.Y.; Zhou, S.F.; Gao, S.H.; Yu, Z.L.; Zhang, S.F.; Tang, M.K.; Sun, J.N.; Ma, D.L.; Han, Y.F.; Fong, W.F.; Ko, K.M. New perspectives on how to discover drugs from herbal medicines: CAM’s outstanding contribution to modern therapeutics. Evid. Based Complement. Alternat. Med., 2013, 2013627375
[http://dx.doi.org/10.1155/2013/627375] [PMID: 23634172]
[19]
Castro-Faria-Neto, H.C.; Martins, M.A.; Silva, P.M.; Bozza, P.T.; Cruz, H.N.; de Queiroz-Paulo, M.; Kaplan, M.A.; Cordeiro, R.S. Pharmacological profile of epiyangambin: A furofuran lignan with PAF antagonist activity. J. Lipid Mediat., 1993, 7(1), 1-9.
[PMID: 8358020]
[20]
Shen, T.Y.; Hwang, S.B.; Chang, M.N.; Doebber, T.W.; Lam, M.H.; Wu, M.S.; Wang, X.; Han, G.Q.; Li, R.Z. Characterization of a platelet-activating factor receptor antagonist isolated from haifenteng (Piper futokadsura): Specific inhibition of in vitro and in vivo platelet-activating factor-induced effects. Proc. Natl. Acad. Sci. USA, 1985, 82(3), 672-676.
[http://dx.doi.org/10.1073/pnas.82.3.672] [PMID: 2983307]
[21]
Moni, S.S.; Hadi Sultan, M.; Makeen, H.A.; Jabeen, A.; Sanobar, S.; Siddiqui, R.; Ur Rehman, Z.; Alam, M.S.; Ahmad, S.; Elmobark, M.E.; Moochikkal, R. Phytochemical and spectral analysis of the methanolic extracts of leaves of Murraya koenigii of Jazan, Saudi Arabia. Nat. Prod. Res., 2019, 1-5.
[http://dx.doi.org/10.1080/14786419.2019.1679137 ] [PMID: 31631708]
[22]
Abulajiang, T.; Yong, J.; Peng, F.T. Nine lignans from Artemisia absinthium L. J. Chin. Pharm., 2012, 21, 360-364.
[23]
Abotaleb, M.; Samuel, S.M.; Varghese, E.; Varghese, S.; Kubatka, P.; Liskova, A.; Büsselberg, D. Flavonoids in cancer and apoptosis. Cancers (Basel), 2018, 11(1), 1-39.
[http://dx.doi.org/10.3390/cancers11010028] [PMID: 30597838]
[24]
Koyuncu, I. Evaluation of anticancer, antioxidant activity and phenolic compounds of Artemisia absinthium L. Extract. Cell. Mol. Biol., 2018, 64(3), 25-34.
[http://dx.doi.org/10.14715/cmb/2018.64.3.5] [PMID: 29506627]
[25]
Xie, Y.; Yang, W.; Tang, F.; Chen, X.; Ren, L. Antibacterial activities of flavonoids: Structure-activity relationship and mechanism. Curr. Med. Chem., 2015, 22(1), 132-149.
[http://dx.doi.org/10.2174/0929867321666140916113443 ] [PMID: 25245513]
[26]
Okhundedaev, B.S.; Bacher, M.; Mukhamatkhanova, R.F.; Shamyanov, I.J.; Zengin, G.; Böhmdorfer, S.; Mamadalieva, N.Z.; Rosenau, T. Flavone glucosides from Artemisia juncea. Nat. Prod. Res., 2019, 33(15), 2169-2175.
[http://dx.doi.org/10.1080/14786419.2018.1490901 ] [PMID: 30422004]
[27]
Echeverría, J.; Opazo, J.; Mendoza, L.; Urzúa, A.; Wilkens, M. Structure-activity and lipophilicity relationships of selected antibacterial natural flavones and flavanones of Chilean flora. Molecules, 2017, 22(4), 1-14.
[http://dx.doi.org/10.3390/molecules22040608] [PMID: 28394271]
[28]
Mukti, R.P.; Bijaya, P. Cytotoxic activity of crude extracts of Dendrobium amoenum and detection of bioactive compounds by GC-MS. Botanica orientalis. J. Plant Sci., 2017, 11, 38-42.
[29]
Fadeyi, O.E.; Gabriel, O.; Ayorinde, V.O. Isolation and characterization of the chemical constituents of Anacardium occidentale cracked bark. Nat. Prod. Chem. Res., 2015, 3(5), 1-8.
[30]
Tulika, T.; Mala, A. Phytochemical screening and GC-MS analysis of bioactive constituents in the ethanolic extract of Pistia stratiotes L. and Eichhornia crassipes (Mart.) solms. J. Pharmacogn. Phytochem., 2017, 6(1), 195-206.
[31]
Lamya Al-Wahaibi, H.N.; Adeem, M.; Merajuddin, K.; Hamad, Z. Alkhathlan. Comparative study on the essential oils of Artemisia judaica and A. herba-alba from Saudi Arabia. Arab. J. Chem., 2020, 13(1), 2053-2065.
[http://dx.doi.org/10.1016/j.arabjc.2018.03.004]
[32]
Tünay, K.; Ilyas, Y.; Ali, A.; Ramazan, E. Inhibition of various cancer cells proliferation of bornyl acetate and essential oil from Inula graveolens (Linnaeus). Desf. Rec. Nat. Prod., 2018, 12(3), 273-283.
[http://dx.doi.org/10.25135/rnp.30.17.09.057]
[33]
Khan, A.A.; Alanazi, A.M.; Jabeen, M.; Chauhan, A.; Abdelhameed, A.S. Design, synthesis and in vitro anticancer evaluation of a stearic acid-based ester conjugate. Anticancer Res., 2013, 33(6), 2517-2524.
[PMID: 23749903]
[34]
Evans, L.M.; Cowey, S.L.; Siegal, G.P.; Hardy, R.W. Stearate preferentially induces apoptosis in human breast cancer cells. Nutr. Cancer, 2009, 61(5), 746-753.
[http://dx.doi.org/10.1080/01635580902825597] [PMID: 19838949]
[35]
Zafaryab, Md.; Khalid, U.F.; Asad Khan, Md.; Krishnan, H.; Rizvi, M.M.A. In vitro assessment of cytotoxic and apoptotic potential of palmitic acid for breast cancer treatment. Int. J. Life Sci. Res., 2019, 7(1), 166-174.
[36]
Tzeng, H.T.; Chyuan, I.T.; Chen, W.Y. Shaping of innate immune response by fatty acid metabolite palmitate. Cells, 2019, 8(12), 1633.
[http://dx.doi.org/10.3390/cells8121633] [PMID: 31847240]
[37]
Sarwat, F.; Xianjing, H.; Chunhua, H.; Weixiong, Z.; Jing, C.; Min, H.; Gong, R.H.; Minting, C.; Alan, H.M.H.; Tao, S.; Hoi Leong, X.W.; Zhaoxiang, B.; Hiu, Y.K. High-fat diet feeding and palmitic acid increase CRC growth in β2AR-dependent manner. Cell Death Dis., 2019, 10(711), 1-14.
[38]
Chandan, K.; Soumya, K.U.; Pooja, P.J. Gas chromatography/mass spectroscopy analysis of phytochemicals present in orange peel powder and in bread prepared using it. Asian J. Chem., 2018, 30(7), 1599-1602.
[http://dx.doi.org/10.14233/ajchem.2018.21268]
[39]
Rathish Kumar, S.; Suresh, N.; Sagadevan, P. GC-MS analysis of Artemisia vulgaris Linn. Int. J. Biosci. Nanosci., 2015, 2(5), 105-109.
[40]
Khanssa, A.S.; Manal, A.A.; Shatha, A.A.; Noor, A.N.; Mohammed, H.O.; Zeina, M.M. The biological activities of seeds extract for fenugreek and black cumin and its inhibitory influences toward some pathogens. Iraqi Med. J., 2018, 2(2), 46-50.
[41]
Robert, T.; Rodney, Y. Essential oil profiles, Essential oil safety, 2nd ed; Elsevier, Churchill Livingstone, 2014, pp. 187-482.
[42]
Zengin, H.; Baysal, A.H. Antibacterial and antioxidant activity of essential oil terpenes against pathogenic and spoilage-forming bacteria and cell structure-activity relationships evaluated by SEM microscopy. Molecules, 2014, 19(11), 17773-17798.
[http://dx.doi.org/10.3390/molecules191117773 ] [PMID: 25372394]
[43]
Abdul, K.M.S.K.; Pijush, D.; Anwar, M.N. Antibacterial and antifungal evaluation of some derivatives of methyl α-D-mannopyranoside. Int. J. Agric. Biol., 2005, 7(5), 1-3.
[44]
Li, L.; Shi, C.; Yin, Z.; Jia, R.; Peng, L.; Kang, S.; Li, Z. Antibacterial activity of α-terpineol may induce morphostructural alterations in Escherichia coli. Braz. J. Microbiol., 2015, 45(4), 1409-1413.
[http://dx.doi.org/10.1590/S1517-83822014000400035] [PMID: 25763048]
[45]
Guimarães, A.C.; Meireles, L.M.; Lemos, M.F.; Guimarães, M.C.C.; Endringer, D.C.; Fronza, M.; Scherer, R. Antibacterial activity of terpenes and terpenoids present in essential oils. Molecules, 2019, 24(13), 2471.
[http://dx.doi.org/10.3390/molecules24132471] [PMID: 31284397]
[46]
Cory, E.D.C.; Laurie, P.S. The cytokine milieu of diabetic wounds. Diabetes Manag. (Lond.), 2015, 5(6), 525-537.
[http://dx.doi.org/10.2217/dmt.15.44]
[47]
Lopez-Castejon, G.; Brough, D. Understanding the mechanism of IL-1β secretion. Cytokine Growth Factor Rev., 2011, 22(4), 189-195.
[http://dx.doi.org/10.1016/j.cytogfr.2011.10.001] [PMID: 22019906]
[48]
Takeuchi, O.; Akira, S. Pattern recognition receptors and inflammation. Cell, 2010, 140(6), 805-820.
[http://dx.doi.org/10.1016/j.cell.2010.01.022] [PMID: 20303872]
[49]
Yang, L.; Li, D.; Chen, S. Hydrogen water reduces NSE, IL-6, and TNF-α levels in hypoxic-ischemic encephalopathy. Open Med. (Wars.), 2016, 11(1), 399-406.
[http://dx.doi.org/10.1515/med-2016-0072] [PMID: 28352827]
[50]
Lin, Z.Q.; Kondo, T.; Ishida, Y.; Takayasu, T.; Mukaida, N. Essential involvement of IL-6 in the skin wound-healing process as evidenced by delayed wound healing in IL-6-deficient mice. J. Leukoc. Biol., 2003, 73(6), 713-721.
[http://dx.doi.org/10.1189/jlb.0802397] [PMID: 12773503]
[51]
Ashcroft, G.S.; Jeong, M.J.; Ashworth, J.J.; Hardman, M.; Jin, W.; Moutsopoulos, N.; Wild, T.; McCartney-Francis, N.; Sim, D.; McGrady, G.; Song, X.Y.; Wahl, S.M. Tumor necrosis factor-alpha (TNF-α) is a therapeutic target for impaired cutaneous wound healing. Wound Repair Regen., 2012, 20(1), 38-49.
[http://dx.doi.org/10.1111/j.1524-475X.2011.00748.x ] [PMID: 22151742]
[52]
Li, P.; Zhou, L.; Zhao, T.; Liu, X.; Zhang, P.; Liu, Y.; Zheng, X.; Li, Q. Caspase-9: Structure, mechanisms and clinical application. Oncotarget, 2017, 8(14), 23996-24008.
[http://dx.doi.org/10.18632/oncotarget.15098] [PMID: 28177918]
[53]
Enari, M.; Sakahira, H.; Yokoyama, H.; Okawa, K.; Iwamatsu, A.; Nagata, S. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature, 1998, 391(6662), 43-50.
[http://dx.doi.org/10.1038/34112] [PMID: 9422506]
[54]
Tebbey, P.W.; Buttke, T.M. Molecular basis for the immunosuppressive action of stearic acid on T cells. Immunology, 1990, 70(3), 379-384.
[PMID: 2379942]
[55]
Nicholas, D.A.; Zhang, K.; Hung, C.; Glasgow, S.; Aruni, A.W.; Unternaehrer, J.; Payne, K.J.; Langridge, W.H.R.; De Leon, M. Palmitic acid is a toll-like receptor 4 ligand that induces human dendritic cell secretion of IL-1β. PLoS One, 2017, 12(5)e0176793
[http://dx.doi.org/10.1371/journal.pone.0176793] [PMID: 28463985]

© 2024 Bentham Science Publishers | Privacy Policy