Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Research Article

ATP Synthase Inhibitors as Anti-tubercular Agents: QSAR Studies in Novel Substituted Quinolines

Author(s): Anil K. Saxena* and Muneer Alam

Volume 20, Issue 29, 2020

Page: [2723 - 2734] Pages: 12

DOI: 10.2174/1568026620666200903163515

Price: $65

Abstract

Background: Tuberculosis (TB) is a major infectious disease caused by Mycobacterium Tuberculosis. As per the World Health Organization (WHO) report of 2019, there were 1.5 million deaths in the year 2018, mainly because of multi- and extensively drug-resistant tuberculosis (MDR & XDR-TB). Among several antitubercular drugs in clinical trials, bedaquiline (TMC207) is a highly promising drug that was approved by the FDA in 2012 and marketed in 2016 for the treatment of multidrug resistant TB in combination with other drugs. Bedaquiline acts on mycobacterial ATP synthase and is highly effective in replicating as well as on dormant mycobacteria. Several series of substituted quinolines have been reported with their antitubercular and ATP synthase inhibitory activity.

Methods: To understand the role of physicochemical parameters like hydrophobicity, electronic and steric factors in eliciting the biological response, the Quantitative structure-activity relationship (QSAR) studies have been carried out using the computed parameters as independent variable and activity (-log IC50/MIC) as the dependent variable.

Results: The developed QSAR models in terms of positively contributing Molar Refractivity (MR) and negatively contributing Partition Coefficient (PC) and Connolly Molecular Area (CMA) parameters have high predictivity as also shown on external data set and the mean value of the computed 3D parameters of enantiomers may be used in QSAR analysis for racemic compounds.

Conclusion: These results are also substantiated by pharmacophore modeling. The similar dependence of antitubercular activity against whole-cell M.Tb.H37Rv on MR and CMA suggests ATP synthase as the main target for antitubercular activity and the QSAR models may be useful in the identification of novel antitubercular agents.

Keywords: ATP Synthase, Bedaquiline, TMC-207, QSAR, Quinolines, Sulfonamides, Bisquinolines, Tuberculosis.

« Previous
Graphical Abstract
[1]
Dye, C.; Williams, B.G. The population dynamics and control of tuberculosis. Science, 2010, 328(5980), 856-861.
[http://dx.doi.org/10.1126/science.1185449] [PMID: 20466923]
[2]
WHO Global tuberculosis report, 2019. Available from: https://www.who.int/tb/publications/global_report/en/
[3]
Mandavilli, A. Virtually incurable TB warns of impending disaster. Nat. Med., 2007, 13(3), 271.
[http://dx.doi.org/10.1038/nm0307-271a] [PMID: 17342128]
[4]
Gandhi, N.R.; Nunn, P.; Dheda, K.; Schaaf, H.S.; Zignol, M.; van Soolingen, D.; Jensen, P.; Bayona, J. Multidrug-resistant and extensively drug-resistant tuberculosis: a threat to global control of tuberculosis. Lancet, 2010, 375(9728), 1830-1843.
[http://dx.doi.org/10.1016/S0140-6736(10)60410-2] [PMID: 20488523]
[5]
World health organization. Multidrug and extensively drug resistance Tb (M/XDR-TB),Global report on surveillance and response. Available from: 2017.https://www.who.int/tb/features_ archive/m_xdrtb_facts/en/
[6]
WHO WHO treatment guidelines for drug-resistant tuberculosis; World Health Organization: Geneva, 2019.
[7]
Seddon, J.A.; Furin, J.J.; Gale, M.; Del Castillo Barrientos, H.; Hurtado, R.M.; Amanullah, F.; Ford, N.; Starke, J.R.; Schaaf, H.S. Sentinel Project on Pediatric Drug-Resistant Tuberculosis. Caring for children with drug-resistant tuberculosis: practice-based recommendations. Am. J. Respir. Crit. Care Med., 2012, 186(10), 953-964.
[http://dx.doi.org/10.1164/rccm.201206-1001CI] [PMID: 22983960]
[8]
Koul, A.; Arnoult, E.; Lounis, N.; Guillemont, J.; Andries, K. The challenge of new drug discovery for tuberculosis. Nature, 2011, 469(7331), 483-490.
[http://dx.doi.org/10.1038/nature09657] [PMID: 21270886]
[9]
Ma, Z.; Lienhardt, C.; McIlleron, H.; Nunn, A.J.; Wang, X. Global tuberculosis drug development pipeline: the need and the reality. Lancet, 2010, 375(9731), 2100-2109.
[http://dx.doi.org/10.1016/S0140-6736(10)60359-9] [PMID: 20488518]
[10]
Nandi, S.; Ahmed, S.; Saxena, A.K. Combinatorial design and virtual screening of potent anti-tubercular fluoroquinolone and isothiazoloquinolone compounds utilizing QSAR and pharmacophore modelling. SAR QSAR Environ. Res., 2018, 29(2), 151-170.
[http://dx.doi.org/10.1080/1062936X.2017.1419375] [PMID: 29347843]
[11]
Saxena, A.K.; Singh, A. Mycobacterial tuberculosis Enzyme Targets and their Inhibitors. Curr. Top. Med. Chem., 2019, 19(5), 337-355.
[http://dx.doi.org/10.2174/1568026619666190219105722] [PMID: 30806318]
[12]
Roy, K.K.; Singh, S.; Sharma, S.K.; Srivastava, R.; Chaturvedi, V.; Saxena, A.K. Synthesis and biological evaluation of substituted 4-arylthiazol-2-amino derivatives as potent growth inhibitors of replicating Mycobacterium tuberculosis H37Rv. Bioorg. Med. Chem. Lett., 2011, 21(18), 5589-5593.
[http://dx.doi.org/10.1016/j.bmcl.2011.06.076] [PMID: 21783364]
[13]
Saxena, A.K.; Roy, K.K.; Singh, S.; Vishnoi, S.P.; Kumar, A.; Kashyap, V.K.; Kremer, L.; Srivastava, R.; Srivastava, B.S. Identification and characterisation of small-molecule inhibitors of Rv3097c-encoded lipase (LipY) of Mycobacterium tuberculosis that selectively inhibit growth of bacilli in hypoxia. Int. J. Antimicrob. Agents, 2013, 42(1), 27-35.
[http://dx.doi.org/10.1016/j.ijantimicag.2013.03.007] [PMID: 23684389]
[14]
Khan, S.R.; Singh, S.; Roy, K.K.; Akhtar, M.S.; Saxena, A.K.; Krishnan, M.Y. Biological evaluation of novel substituted chloroquinolines targeting mycobacterial ATP synthase. Int. J. Antimicrob. Agents, 2013, 41(1), 41-46.
[http://dx.doi.org/10.1016/j.ijantimicag.2012.09.012] [PMID: 23141113]
[15]
Kumar, S.; Dwivedi, A.P.; Kashyap, V.K.; Saxena, A.K.; Dwivedi, A.K.; Srivastava, R.; Sahu, D.P. Synthesis and biological evaluation of trans 6-methoxy-1,1-dimethyl-2-phenyl-3-aryl-2,3-dihydro-1H-inden-4-yloxyalkylamine derivatives against drug susceptible, non-replicating M. tuberculosis H37Rv and clinical multidrug resistant strains. Bioorg. Med. Chem. Lett., 2013, 23(8), 2404-2407.
[http://dx.doi.org/10.1016/j.bmcl.2013.02.030] [PMID: 23474387]
[16]
FDA Bedaquiline receives accelerated approval from the fda for mdr-tb rx, 2013. Avaialble from: http://www.fda.gov/news/Events/Newsroom/PressAnnouncements/ucm333695.htm
[17]
Koul, A.; Dendouga, N.; Vergauwen, K.; Molenberghs, B.; Vranckx, L.; Willebrords, R.; Ristic, Z.; Lill, H.; Dorange, I.; Guillemont, J.; Bald, D.; Andries, K. Diarylquinolines target subunit c of mycobacterial ATP synthase. Nat. Chem. Biol., 2007, 3(6), 323-324.
[http://dx.doi.org/10.1038/nchembio884] [PMID: 17496888]
[18]
Koul, A.; Vranckx, L.; Dendouga, N.; Balemans, W.; Van den Wyngaert, I.; Vergauwen, K.; Göhlmann, H.W.; Willebrords, R.; Poncelet, A.; Guillemont, J.; Bald, D.; Andries, K. Diarylquinolines are bactericidal for dormant mycobacteria as a result of disturbed ATP homeostasis. J. Biol. Chem., 2008, 283(37), 25273-25280.
[http://dx.doi.org/10.1074/jbc.M803899200] [PMID: 18625705]
[19]
Rao, S.P.; Alonso, S.; Rand, L.; Dick, T.; Pethe, K. The protonmotive force is required for maintaining ATP homeostasis and viability of hypoxic, nonreplicating Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA, 2008, 105(33), 11945-11950.
[http://dx.doi.org/10.1073/pnas.0711697105] [PMID: 18697942]
[20]
Lakshmanan, M.; Xavier, A.S. Bedaquiline - The first ATP synthase inhibitor against multi drug resistant tuberculosis. J. Young Pharm., 2013, 5(4), 112-115.
[http://dx.doi.org/10.1016/j.jyp.2013.12.002] [PMID: 24563587]
[21]
Börsch, M.; Duncan, T.M. Spotlighting motors and controls of single FoF1-ATP synthase. Biochem. Soc. Trans., 2013, 41(5), 1219-1226.
[http://dx.doi.org/10.1042/BST20130101] [PMID: 24059511]
[22]
Iino, R.; Noji, H. Operation mechanism of F(o) F(1)-adenosine triphosphate synthase revealed by its structure and dynamics. IUBMB Life, 2013, 65(3), 238-246.
[http://dx.doi.org/10.1002/iub.1120] [PMID: 23341301]
[23]
Walker, J.E. The ATP synthase: the understood, the uncertain and the unknown. Biochem. Soc. Trans., 2013, 41(1), 1-16.
[http://dx.doi.org/10.1042/BST20110773] [PMID: 23356252]
[24]
Shi, L.; Sohaskey, C.D.; Kana, B.D.; Dawes, S.; North, R.J.; Mizrahi, V.; Gennaro, M.L. Changes in energy metabolism of Mycobacterium tuberculosis in mouse lung and under in vitro conditions affecting aerobic respiration. Proc. Natl. Acad. Sci. USA, 2005, 102(43), 15629-15634.
[http://dx.doi.org/10.1073/pnas.0507850102] [PMID: 16227431]
[25]
Treatment of patients with MDR-TB. Briefing document, TMC 207 (bedaquiline) Anti-infective Drugs Advisory Committee. NDA, 2014, 204-384.
[26]
Kakkar, A.K.; Dahiya, N. Bedaquiline for the treatment of resistant tuberculosis: promises and pitfalls. Tuberculosis (Edinb.), 2014, 94(4), 357-362.
[http://dx.doi.org/10.1016/j.tube.2014.04.001] [PMID: 24841672]
[27]
Mesens, N.; Verbeeck, J.; Rouan, M.; Vanparys, P. Elucidating the role of M2 in the preclinical safety profile of TMC207. Abstract on the 38th Union World Conference on Lung Health, Cape Town, South Africa, 2007.
[28]
Guillemont, J.; Meyer, C.; Poncelet, A.; Bourdrez, X.; Andries, K. Diarylquinolines, synthesis pathways and quantitative structure--activity relationship studies leading to the discovery of TMC207. Future Med. Chem., 2011, 3(11), 1345-1360.
[http://dx.doi.org/10.4155/fmc.11.79] [PMID: 21879841]
[29]
Singh, S.; Roy, K.K.; Khan, S.R.; Kashyap, V.K.; Sharma, A.; Jaiswal, S.; Sharma, S.K.; Krishnan, M.Y.; Chaturvedi, V.; Lal, J.; Sinha, S.; Dasgupta, A.; Srivastava, R.; Saxena, A.K. Novel, potent, orally bioavailable and selective mycobacterial ATP synthase inhibitors that demonstrated activity against both replicating and non-replicating M. tuberculosis. Bioorg. Med. Chem., 2015, 23(4), 742-752.
[http://dx.doi.org/10.1016/j.bmc.2014.12.060] [PMID: 25614114]
[30]
Kaliaa, D.; Kumar, A.; Meenaa, G.; Sethia, K.P.; Sharma, R.; Trivedi, P.; Khan, S.R.; Singh, A.; Sinhg, A.S.; Sharma, S.; Roy, K.K.; Kant, R.; Krishnan, M.Y.; Singh, B.N.; Sinha, S.; Chaturvedi, V.; Saxena, A.K.; Dikshit, D.K. Synthesis and anti-tubercular activity of conformationally-constrained and bisquinoline analogs of TMC207 Med. Chem. Commun. , 2015, 1554-1563.
[http://dx.doi.org/10.1039/C5MD00131E]
[31]
Kamariah, N.; Ragunathan, P.; Shin, J.; Saw, W.G.; Wong, C.F.; Dick, T.; Grüber, G. Unique structural and mechanistic properties of mycobacterial F-ATP synthases: Implications for drug design. Prog. Biophys. Mol. Biol., 2020, 152, 64-73.
[http://dx.doi.org/10.1016/j.pbiomolbio.2019.11.006] [PMID: 31743686]
[32]
Mills, N. ChemDraw Ultra 10.0. J. Am. Chem. Soc., 2006, 128, 13649-13650.
[http://dx.doi.org/10.1021/ja0697875]
[33]
Minitab Ltd. Available from: www.minitab.com
[34]
Sanyal, S.; Amin, S.A.; Adhikari, N.; Jha, T. QSAR modelling on a series of arylsulfonamide-based hydroxamates as potent MMP-2 inhibitors. SAR QSAR Environ. Res., 2019, 30(4), 247-263.
[http://dx.doi.org/10.1080/1062936X.2019.1588159] [PMID: 31012354]
[35]
Bitam, S.; Hamadache, M.; Hanini, S. QSAR model for prediction of the therapeutic potency of N-benzylpiperidine derivatives as AChE inhibitors. SAR QSAR Environ. Res., 2017, 28(6), 471-489.
[http://dx.doi.org/10.1080/1062936X.2017.1331467] [PMID: 28610432]
[36]
Erbil, Y.; Babaarslan, O.; Ilhan, I. A comparative prediction for tensile properties of ternary blended open-end rotor yarns using regression and neural network models. SAR QSAR Environ. Res., 2018, 109(4), 560-568.
[37]
Schrödinger, L.L.C. Phase, version 3.1; Schrödinger, LLC: Newyork, NY, 2009.
[38]
Jaworska, J.; Nikolova-Jeliazkova, N.; Aldenberg, T. QSAR applicabilty domain estimation by projection of the training set descriptor space: a review. Altern. Lab. Anim., 2005, 33(5), 445-459.
[http://dx.doi.org/10.1177/026119290503300508] [PMID: 16268757]
[39]
OECD principles for the validation, for regulatory purposes, of (quantitative) structure-activity relationship models. Available from: https://www.oecd.org/chemicalsafety/risk-assessment/37849-783.pdf

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy