Generic placeholder image

Drug Delivery Letters

Editor-in-Chief

ISSN (Print): 2210-3031
ISSN (Online): 2210-304X

Research Article

Development, Pre-clinical Investigation and Histopathological Evaluation of Metronidazole Loaded Topical Formulation for Treatment of Skin Inflammatory Disorders

Author(s): Divya Thakur, Gurpreet Kaur*, Sheetu Wadhwa and Ashana Puri

Volume 11, Issue 1, 2021

Published on: 21 August, 2020

Page: [16 - 33] Pages: 18

DOI: 10.2174/2210303110999200821123047

Price: $65

Abstract

Background: Metronidazole (MTZ) is an anti-oxidant and anti-inflammatory agent with beneficial therapeutic properties. The hydrophilic nature of the molecule limits its penetration across the skin. Existing commercial formulations have limitations of inadequate drug concentration present at the target site, which requires frequent administration and poor patient compliance.

Objective: The aim of the current study was to develop and evaluate water in oil microemulsion of Metronidazole with higher skin retention for the treatment of inflammatory skin disorders.

Methods: Pseudo ternary phase diagrams were used in order to select the appropriate ratio of surfactant and co-surfactant and identify the microemulsion area. The selected formulation consisted of Capmul MCM as oil, Tween 20 and Span 20 as surfactant and co-surfactant, respectively, and water. The formulation was characterized and evaluated for stability, Ex vivo permeation studies and in vivo anti-inflammatory effect (carrageenan induced rat paw edema, air pouch model), anti-psoriatic activity (mouse-tail test).

Results: The particle size analyses revealed the average diameter and polydispersity index of the selected formulation to be 16 nm and 0.373, respectively. The results of ex vivo permeation studies showed statistically higher mean cumulative amount of MTZ retained in rat skin from microemulsion, i.e., 21.90 ± 1.92 μg/cm2, which was 6.65 times higher as compared to Marketed gel (Metrogyl gel®) with 3.29 ± 0.11 μg/cm2 (p<0.05). The results of in vivo studies suggested the microemulsion based formulation of MTZ to be similar in efficacy to Metrogyl gel®.

Conclusion: Research suggests the efficacy of the developed MTZ loaded microemulsion in the treatment of chronic skin inflammatory disorders.

Keywords: Inflammation, metronidazole, microemulsion, nano-formulation, psoriasis, skin disorders.

Graphical Abstract
[1]
Yamasaki, K.; Gallo, R.L. The molecular pathology of rosacea. J. Dermatol. Sci., 2009, 55(2), 77-81.
[http://dx.doi.org/10.1016/j.jdermsci.2009.04.007] [PMID: 19481425]
[2]
Boehncke, W.H.; Schön, M.P. Psoriasis. Lancet, 2015, 386(9997), 983-994.
[http://dx.doi.org/10.1016/S0140-6736(14)61909-7] [PMID: 26025581]
[3]
Naldi, L. Epidemiology of psoriasis. Curr. Drug Targets Inflamm. Allergy, 2004, 3(2), 121-128.
[http://dx.doi.org/10.2174/1568010043343958] [PMID: 15180464]
[4]
Langley, R.G.; Ellis, C.N. Evaluating psoriasis with psoriasis area and severity index, psoriasis global assessment, and lattice system physician’s global assessment. J. Am. Acad. Dermatol., 2004, 51(4), 563-569.
[http://dx.doi.org/10.1016/j.jaad.2004.04.012] [PMID: 15389191]
[5]
Lindenberg, M.; Kopp, S.; Dressman, J.B. Classification of orally administered drugs on the World Health Organization Model list of Essential Medicines according to the biopharmaceutics classification system. Eur. J. Pharm. Biopharm., 2004, 58(2), 265-278.
[http://dx.doi.org/10.1016/j.ejpb.2004.03.001] [PMID: 15296954]
[6]
Löfmark, S.; Edlund, C.; Nord, C.E.E. Metronidazole is still the drug of choice for treatment of anaerobic infections. Clin. Infect. Dis., 2010, 50(Suppl. 1), S16-S23.
[http://dx.doi.org/10.1086/647939] [PMID: 20067388]
[7]
Abokwidir, M.; Feldman, S.R. Rosacea Management. Skin Appendage Disord., 2016, 2(1-2), 26-34.
[http://dx.doi.org/10.1159/000446215] [PMID: 27843919]
[8]
Rosenburg, E.W.; Patricia, W. Belew. Treatment of psoriasis and seborrheic dermatitis with imidazole antibiotics. U.S. Patent 4,491,588, 1985.
[9]
Goldgar, C.; Keahey, D.J.; Houchins, J. Treatment options for acne rosacea. Am. Fam. Physician, 2009, 80(5), 461-468.
[PMID: 19725487]
[10]
Miyachi, Y. Potential antioxidant mechanism of action for metronidazole: Implications for rosacea management. Adv. Ther., 2001, 18(6), 237-243.
[http://dx.doi.org/10.1007/BF02850193] [PMID: 11841193]
[11]
Narayanan, S.; Hünerbein, A.; Getie, M.; Jäckel, A.; Neubert, R.H. Scavenging properties of metronidazole on free oxygen radicals in a skin lipid model system. J. Pharm. Pharmacol., 2007, 59(8), 1125-1130.
[http://dx.doi.org/10.1211/jpp.59.8.0010] [PMID: 17725855]
[12]
Yu, M.; Ma, H.; Lei, M.; Li, N.; Tan, F. In vitro/in vivo characterization of nanoemulsion formulation of metronidazole with improved skin targeting and anti-rosacea properties. Eur. J. Pharm. Biopharm., 2014, 88(1), 92-103.
[http://dx.doi.org/10.1016/j.ejpb.2014.03.019] [PMID: 24704200]
[13]
Aksamit, B.; Anderson, R.J.; Bhatia, K.; Goyal, S. Stable metronidazole gel formulations. U.S. Patent 2010/0105750 A1, 2010.
[14]
Tirnaksiz, F.; Kayiş, A.; Çelebi, N.; Adişen, E.; Erel, A. Preparation and evaluation of topical microemulsion system containing metronidazole for remission in rosacea. Chem. Pharm. Bull. (Tokyo), 2012, 60(5), 583-592.
[http://dx.doi.org/10.1248/cpb.60.583] [PMID: 22689395]
[15]
Mbah, C.C.; Builders, P.F.; Nzekwe, I.; Kunle, O.; Adikwu, M.; Attama, A. Formulation and In vitro evaluation of pH-responsive ethosomes for vaginal delivery of metronidazole. J. Drug Deliv. Sci. Technol., 2014, 24(6), 565-571.
[http://dx.doi.org/10.1016/S1773-2247(14)50120-7]
[16]
Behera, B.; Biswal, D.; Uvanesh, K.; Srivastava, A.K.; Bhattacharya, M.K.; Paramanik, K.; Pal, K. Modulating the properties of sunflower oil based novel emulgels using castor oil fatty acid ester: Prospects for topical antimicrobial drug delivery. Colloids Surf. B Biointerfaces, 2015, 128, 155-164.
[http://dx.doi.org/10.1016/j.colsurfb.2015.02.026] [PMID: 25747309]
[17]
Lawrence, M.J.; Rees, G.D. Microemulsion-based media as novel drug delivery systems. Adv. Drug Deliv. Rev., 2000, 45(1), 89-121.
[http://dx.doi.org/10.1016/S0169-409X(00)00103-4] [PMID: 11104900]
[18]
Callender, S.P.; Mathews, J.A.; Kobernyk, K.; Wettig, S.D. Microemulsion utility in pharmaceuticals: Implications for multi-drug delivery. Int. J. Pharm., 2017, 526(1-2), 425-442.
[http://dx.doi.org/10.1016/j.ijpharm.2017.05.005] [PMID: 28495500]
[19]
Sharma, A.K.; Garg, T.; Goyal, A.K.; Rath, G. Role of microemuslsions in advanced drug delivery. Artif. Cells Nanomed. Biotechnol., 2016, 44(4), 1177-1185.
[PMID: 25711493]
[20]
Goindi, S.; Kaur, R.; Kaur, R. An ionic liquid-in-water microemulsion as a potential carrier for topical delivery of poorly water soluble drug: Development, ex-vivo and in-vivo evaluation. Int. J. Pharm., 2015, 495(2), 913-923.
[http://dx.doi.org/10.1016/j.ijpharm.2015.09.066] [PMID: 26456294]
[21]
Wankhade, V.; Pande, S.; Tapar, K.; Bobade, N. Design and evaluation of self nanoemulsifying drug delivery systems (SNEDDS) for gliclazide. Der. Pharmacia. Lett, 2010, 2(4), 132-143.
[22]
Lawrence, M.J.; Rees, G.D. Microemulsion based media as novel drug delivery systems. Adv. Drug Deliv. Rev., 2012, 64, 175-193.
[http://dx.doi.org/10.1016/j.addr.2012.09.018] [PMID: 11104900]
[23]
Langasco, R.; Tanrıverdi, S.T.; Özer, Ö.; Roldo, M.; Cossu, M.; Rassu, G.; Giunchedi, P.; Gavini, E. Prolonged skin retention of clobetasol propionate by bio-based microemulsions: A potential tool for scalp psoriasis treatment. Drug Dev. Ind. Pharm., 2018, 44(3), 398-406.
[http://dx.doi.org/10.1080/03639045.2017.1395458] [PMID: 29098874]
[24]
Liu, D.; Kobayashi, T.; Russo, S.; Li, F.; Plevy, S.E.; Gambling, T.M.; Carson, J.L.; Mumper, R.J. In vitro and in vivo evaluation of a water-in-oil microemulsion system for enhanced peptide intestinal delivery. AAPS J., 2013, 15(1), 288-298.
[http://dx.doi.org/10.1208/s12248-012-9441-7] [PMID: 23196806]
[25]
Raza, K.; Singh, B.; Mahajan, A.; Negi, P.; Bhatia, A.; Katare, O.P. Design and evaluation of flexible membrane vesicles (FMVs) for enhanced topical delivery of capsaicin. J. Drug Target., 2011, 19(4), 293-302.
[http://dx.doi.org/10.3109/1061186X.2010.499464] [PMID: 20615093]
[26]
Aggarwal, N.; Goindi, S. Preparation and evaluation of antifungal efficacy of griseofulvin loaded deformable membrane vesicles in optimized guinea pig model of Microsporum canis dermatophytosis. Int. J. Pharm., 2012, 437(1-2), 277-287.
[http://dx.doi.org/10.1016/j.ijpharm.2012.08.015] [PMID: 22939964]
[27]
Puri, A.; Kaur, A.; Raza, K.; Goindi, S.; Katare, O.P. Development and Evaluation of topical microemulsion of dibenzoylmethane for treatment of UV induced photoaging. J. Drug Deliv. Sci. Technol., 2017, 37, 1-12.
[http://dx.doi.org/10.1016/j.jddst.2016.09.010]
[28]
Kaur, A.; Sharma, G.; Gupta, V.; Ratho, R.K.; Katare, O.P. Enhanced acyclovir delivery using w/o type microemulsion: Preclinical assessment of antiviral activity using murine model of zosteriform cutaneous HSV-1 infection. Artif. Cells Nanomed. Biotechnol., 2018, 46(2), 346-354.
[http://dx.doi.org/10.1080/21691401.2017.1313262] [PMID: 28403666]
[29]
Naoui, W.; Bolzinger, M.A.; Fenet, B.; Pelletier, J.; Valour, J.P.; Kalfat, R.; Chevalier, Y. Microemulsion microstructure influences the skin delivery of an hydrophilic drug. Pharm. Res., 2011, 28(7), 1683-1695.
[http://dx.doi.org/10.1007/s11095-011-0404-y] [PMID: 21437791]
[30]
Vicentini, F.T.M.C.; Simi, T.R.M.; Del Ciampo, J.O.; Wolga, N.O.; Pitol, D.L.; Iyomasa, M.M.; Bentley, M.V.; Fonseca, M.J.V. Quercetin in w/o microemulsion: in vitro and in vivo skin penetration and efficacy against UVB-induced skin damages evaluated in vivo. Eur. J. Pharm. Biopharm., 2008, 69(3), 948-957.
[http://dx.doi.org/10.1016/j.ejpb.2008.01.012] [PMID: 18304790]
[31]
Raza, K.; Singh, B.; Lohan, S.; Sharma, G.; Negi, P.; Yachha, Y.; Katare, O.P. Nano-lipoidal carriers of tretinoin with enhanced percutaneous absorption, photostability, biocompatibility and anti-psoriatic activity. Int. J. Pharm., 2013, 456(1), 65-72.
[http://dx.doi.org/10.1016/j.ijpharm.2013.08.019] [PMID: 23973754]
[32]
Kaur, A.; Bhoop, B.S.; Chhibber, S.; Sharma, G.; Gondil, V.S.; Katare, O.P. Supramolecular nano-engineered lipidic carriers based on diflunisal-phospholipid complex for transdermal delivery: QbD based optimization, characterization and preclinical investigations for management of rheumatoid arthritis. Int. J. Pharm., 2017, 533(1), 206-224.
[http://dx.doi.org/10.1016/j.ijpharm.2017.09.041] [PMID: 28943207]
[33]
Kumar, N.; Shishu, D-optimal experimental approach for designing topical microemulsion of itraconazole: Characterization and evaluation of antifungal efficacy against a standardized Tinea pedis infection model in Wistar rats. Eur. J. Pharm. Sci., 2015, 67, 97-112.
[http://dx.doi.org/10.1016/j.ejps.2014.10.014] [PMID: 25445834]
[34]
Ng, S.F.; Rouse, J.J.; Sanderson, F.D.; Meidan, V.; Eccleston, G.M. Validation of a static Franz diffusion cell system for in vitro permeation studies. AAPS PharmSciTech, 2010, 11(3), 1432-1441.
[http://dx.doi.org/10.1208/s12249-010-9522-9] [PMID: 20842539]
[35]
Shishu, ; Aggarwal, N. Preparation of hydrogels of griseofulvin for dermal application. Int. J. Pharm., 2006, 326(1-2), 20-24.
[http://dx.doi.org/10.1016/j.ijpharm.2006.07.001] [PMID: 16920284]
[36]
Sapra, B.; Jain, S.; Tiwary, A.K. Percutaneous permeation enhancement by terpenes: Mechanistic view. AAPS J., 2008, 10(1), 120-132.
[http://dx.doi.org/10.1208/s12248-008-9012-0] [PMID: 18446512]
[37]
Whiteley, P.; Dalrymple, S. Models of inflammation: Carrageenan-induced paw edema in the rat. Curr. Protoc. Pharmacol, 1998, (1), 4-6.
[38]
Duarte, D.B.; Vasko, M.R.; Fehrenbacher, J.C. Models of inflammation: Carrageenan air pouch. Curr. Protocols Pharmacol., 2012, 56(1), 5-6.
[http://dx.doi.org/10.1002/0471141755.ph0506s56] [PMID: 26995549]
[39]
Bosman, B.; Matthiesen, T.; Hess, V.; Friderichs, E. A quantitative method for measuring antipsoriatic activity of drugs by the mouse tail test. Skin Pharmacol., 1992, 5(1), 41-48.
[http://dx.doi.org/10.1159/000211016] [PMID: 1575981]
[40]
Bhatia, A.; Raza, K.; Singh, B.; Katare, O.P. Phospholipid-based formulation with improved attributes of coal tar. J. Cosmet. Dermatol., 2009, 8(4), 282-288.
[http://dx.doi.org/10.1111/j.1473-2165.2009.00468.x] [PMID: 19958432]
[41]
Raza, K.; Singh, B.; Singla, N.; Negi, P.; Singal, P.; Katare, O.P. Nano-lipoidal carriers of isotretinoin with anti-aging potential: Formulation, characterization and biochemical evaluation. J. Drug Target., 2013, 21(5), 435-442.
[http://dx.doi.org/10.3109/1061186X.2012.761224] [PMID: 23336181]
[42]
Roohinejad, S.; Oey, I.; Wen, J.; Lee, S.J.; Everett, D.W.; Burritt, D.J. Formulation of oil-in-water β-carotene microemulsions: Effect of oil type and fatty acid chain length. Food Chem., 2015, 174, 270-278.
[http://dx.doi.org/10.1016/j.foodchem.2014.11.056] [PMID: 25529680]
[43]
Djekic, L.; Primorac, M. The influence of cosurfactants and oils on the formation of pharmaceutical microemulsions based on PEG-8 caprylic/capric glycerides. Int. J. Pharm., 2008, 352(1-2), 231-239.
[http://dx.doi.org/10.1016/j.ijpharm.2007.10.041] [PMID: 18068919]
[44]
Bandivadeka, M.M.; Pancholi, S.S.; Kaul-Ghanekar, R.; Choudhari, A.; Koppikar, S. Self-microemulsifying smaller molecular volume oil (Capmul MCM) using non-ionic surfactants: A delivery system for poorly water-soluble drug. Drug Dev. Ind. Pharm., 2012, 38(7), 883-892.
[http://dx.doi.org/10.3109/03639045.2011.631548] [PMID: 22087760]
[45]
Lawrence, M.J.; Rees, G.D Microemulsions based media as novel drug delivery systems. Adv. Drug Deliv. Rev., 2012, 64, 175-193.
[http://dx.doi.org/10.1016/j.addr.2012.09.018]
[46]
Porras, M.; Solans, C.; Gonzalez, C.; Gutierrez, J.M. Properties of water-in-oil (W/O) nano-emulsions prepared by a low-energy emulsification method. Colloids Surf. A Physicochem. Eng. Asp., 2008, (1-3), 181-188.
[http://dx.doi.org/10.1016/j.colsurfa.2008.04.012]
[47]
Shishu, ; Rajan, S.; Kamalpreet, Development of novel microemulsion-based topical formulations of acyclovir for the treatment of cutaneous herpetic infections. AAPS PharmSciTech, 2009, 10(2), 559-565.
[http://dx.doi.org/10.1208/s12249-009-9242-1] [PMID: 19504745]
[48]
Ustündağ Okur, N.; Apaydın, S.; Karabay Yavaşoğlu, N.Ü.; Yavaşoğlu, A.; Karasulu, H.Y. Evaluation of skin permeation and anti-inflammatory and analgesic effects of new naproxen microemulsion formulations. Int. J. Pharm., 2011, 416(1), 136-144.
[PMID: 21723930]
[49]
Barradas, T.N.; De Campos, V.E.B.; Senna, J.P.; Coutinho, C.D.S.C.; Tebaldi, B.S.; Silva, E.K. G. D. H.; Mansur, C. R. E. Development and characterization of promising o/w nanoemulsions containing sweet fennel essential oil and non-ionic surfactants. Colloids Surf. A Physicochem. Eng. Asp., 2015, 480, 214-221.
[http://dx.doi.org/10.1016/j.colsurfa.2014.12.001]
[50]
Sabale, V.; Vora, S. Formulation and evaluation of microemulsion-based hydrogel for topical delivery. Int. J. Pharm. Investig., 2012, 2(3), 140-149.
[http://dx.doi.org/10.4103/2230-973X.104397] [PMID: 23373005]
[51]
Trivedi, M.K.; Patil, S.; Shettigar, H.; Bairwa, K.; Jana, S. Spectroscopic characterization of biofield treated metronidazole and tinidazole. 2015, 5, 340-344.
[52]
Bumajdad, A.; Eastoe, J. Conductivity of water-in-oil microemulsions stabilized by mixed surfactants. J. Colloid Interface Sci., 2004, 274(1), 268-276.
[http://dx.doi.org/10.1016/j.jcis.2003.12.050] [PMID: 15120301]
[53]
Ge, S.; Lin, Y.; Lu, H.; Li, Q.; He, J.; Chen, B.; Wu, C.; Xu, Y. Percutaneous delivery of econazole using microemulsion as vehicle: Formulation, evaluation and vesicle-skin interaction. Int. J. Pharm., 2014, 465(1-2), 120-131.
[http://dx.doi.org/10.1016/j.ijpharm.2014.02.012] [PMID: 24530389]
[54]
Cornwell, P.A.; Tubek, J.; Van, H.A.H.P.; Little, C.J.; Wiechers, J.W. Glycerylmonocaprylate/caprate as a moderate skin penetration enhancer. Int. J. Pharm., 1998, 171(2), 243-255.
[http://dx.doi.org/10.1016/S0378-5173(98)00194-X]
[55]
Barry, B.W. Mode of action of penetration enhancers in human skin. J. Control. Release, 1987, 6(1), 85-97.
[http://dx.doi.org/10.1016/0168-3659(87)90066-6]
[56]
Naveed, A.; Rehman, M.; Khan, H.; Rasool, F.; Saeed, T.; Murtaza, G. Penetration enhancing effect of polysorbate 20 and 80 on the In vitro percutaneous absorption of L-ascorbic acid. Trop. J. Pharm. Res., 2011, 10(3), 281-288.
[57]
López, A.; Llinares, F.; Cortell, C.; Herráez, M. Comparative enhancer effects of Span20 with Tween20 and Azone on the in vitro percutaneous penetration of compounds with different lipophilicities. Int. J. Pharm., 2000, 202(1-2), 133-140.
[http://dx.doi.org/10.1016/S0378-5173(00)00427-0] [PMID: 10915936]
[58]
Kamatou, G.P.P.; Vermaak, I.; Viljoen, A.M.; Lawrence, B.M. Menthol: A simple monoterpene with remarkable biological properties. Phytochemistry, 2013, 96, 15-25.
[http://dx.doi.org/10.1016/j.phytochem.2013.08.005] [PMID: 24054028]
[59]
Williams, A.C.; Barry, B.W. Penetration Enhancers. Adv. Drug Deliv. Rev., 2012, 64, 128-137.
[http://dx.doi.org/10.1016/j.addr.2012.09.032] [PMID: 15019749]
[60]
Sharma, N.; Ojha, H.; Pathak, D.P.; Goel, R.; Sharma, R.K. Ex-vivo complexation, skin permeation, interaction and cytodermal toxicity studies of p-tertbutylcalix[4]arene nanoemulsion for radiation decontamination. Life Sci., 2017, 168, 65-76.
[http://dx.doi.org/10.1016/j.lfs.2016.11.007] [PMID: 27863957]
[61]
Whiteley, P.; Dalrymple, S. Models of inflammation : Carrageenan-induced paw edema in the rat. Curr. Protoc. Pharmacol., 1998, (1), 4-6.
[62]
Bhatia, A.; Singh, B.; Wadhwa, S.; Raza, K.; Katare, O.P. Novel phospholipid-based topical formulations of tamoxifen: Evaluation for antipsoriatic activity using mouse-tail model. Pharm. Dev. Technol., 2014, 19(2), 160-163.
[http://dx.doi.org/10.3109/10837450.2013.763260] [PMID: 23369039]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy