Generic placeholder image

Current Chemical Biology

Editor-in-Chief

ISSN (Print): 2212-7968
ISSN (Online): 1872-3136

Research Article

Effect of Ionic Strength on the Aggregation Propensity of Aβ1-42 Peptide: An In-silico Study

Author(s): Priyanka Borah and Venkata S.K. Mattaparthi*

Volume 14, Issue 3, 2020

Page: [216 - 226] Pages: 11

DOI: 10.2174/2212796814999200818103157

Price: $65

Abstract

Background: Aggregation of misfolded proteins under stress conditions in the cell might lead to several neurodegenerative disorders. Amyloid-beta (Aβ1-42) peptide, the causative agent of Alzheimer’s disease, has the propensity to fold into β-sheets under stress, forming aggregated amyloid plaques. This is influenced by factors such as pH, temperature, metal ions, mutation of residues, and ionic strength of the solution. There are several studies that have highlighted the importance of ionic strength in affecting the folding and aggregation propensity of Aβ1-42 peptide.

Objective: To understand the effect of ionic strength of the solution on the aggregation propensity of Aβ1-42 peptide, using computational approaches.

Materials and Methods: In this study, Molecular Dynamics (MD) simulations were performed on Aβ1-42 peptide monomer placed in (i) 0 M, (ii) 0.15 M, and (iii) 0.30 M concentration of NaCl solution. To prepare the input files for the MD simulations, we have used the Amberff99SB force field. The conformational dynamics of Aβ1-42 peptide monomer in different ionic strengths of the solutions were illustrated from the analysis of the corresponding MD trajectory using the CPPtraj tool.

Results: From the MD trajectory analysis, we observe that with an increase in the ionic strength of the solution, Aβ1-42 peptide monomer shows a lesser tendency to undergo aggregation. From RMSD and SASA analysis, we noticed that Aβ1-42 peptide monomer undergoes a rapid change in conformation with an increase in the ionic strength of the solution. In addition, from the radius of gyration (Rg) analysis, we observed Aβ1-42 peptide monomer to be more compact at moderate ionic strength of the solution. Aβ1-42 peptide was also found to hold its helical secondary structure at moderate and higher ionic strengths of the solution. The diffusion coefficient of Aβ1-42 peptide monomer was also found to vary with the ionic strength of the solution. We observed a relatively higher diffusion coefficient value for Aβ1-42 peptide at moderate ionic strength of the solution.

Conclusion: Our findings from this computational study highlight the marked effect of ionic strength of the solution on the conformational dynamics and aggregation propensity of Aβ1-42 peptide monomer.

Keywords: Protein misfolding, neurodegenerative disorder, amyloid-beta, protein aggregation, alzheimer's disease, ionic strength.

« Previous
Graphical Abstract
[1]
Chiti F, Dobson CM. Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 2006; 75: 333-66.
[http://dx.doi.org/10.1146/annurev.biochem.75.101304.123901] [PMID: 16756495]
[2]
Sewell RD. Protein misfolding in neurodegenerative diseases: Mechanisms and therapeutic strategies. CRC Press 2007.
[http://dx.doi.org/10.1201/9781420007145]
[3]
Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science 2002; 297(5580): 353-6.
[http://dx.doi.org/10.1126/science.1072994] [PMID: 12130773]
[4]
Müller-Spahn F. Behavioral disturbances in dementia. Dialogues Clin Neurosci 2003; 5(1): 49-59.
[PMID: 22034255]
[5]
Chiti F, Dobson CM. Protein misfolding, amyloid formation, and human disease: A summary of progress over the last decade. Annu Rev Biochem 2017; 86: 27-68.
[http://dx.doi.org/10.1146/annurev-biochem-061516-045115] [PMID: 28498720]
[6]
Bitan G, Kirkitadze MD, Lomakin A, Vollers SS, Benedek GB, Teplow DB. Amyloid β -protein (Abeta) assembly: Abeta 40 and Abeta 42 oligomerize through distinct pathways. Proc Natl Acad Sci USA 2003; 100(1): 330-5.
[http://dx.doi.org/10.1073/pnas.222681699] [PMID: 12506200]
[7]
Ahmed M, Davis J, Aucoin D, et al. Structural conversion of neurotoxic amyloid-beta(1-42) oligomers to fibrils. Nat Struct Mol Biol 2010; 17(5): 561-7.
[http://dx.doi.org/10.1038/nsmb.1799] [PMID: 20383142]
[8]
Tycko R. Molecular structure of amyloid fibrils: Insights from solid-state NMR. Q Rev Biophys 2006; 39(1): 1-55.
[http://dx.doi.org/10.1017/S0033583506004173] [PMID: 16772049]
[9]
Borah P, Mattaparthi VSK. Computational investigation on the role of C-Terminal of human albumin on the dimerization of Aβ1-42 peptide. Biointerface Res Appl Chem 2020; 10(1): 4944-55.
[http://dx.doi.org/10.33263/BRIAC101.944955]
[10]
Sgourakis NG, Yan Y, McCallum SA, Wang C, Garcia AE. The Alzheimer’s peptides Abeta40 and 42 adopt distinct conformations in water: A combined MD/NMR study. J Mol Biol 2007; 368(5): 1448-57.
[http://dx.doi.org/10.1016/j.jmb.2007.02.093] [PMID: 17397862]
[11]
Magalingam KB, Radhakrishnan A, Ping NS, Haleagrahara N. Current concepts of neurodegenerative mechanisms in Alzheimer’s disease. BioMed Res Int 2018; 20183740461
[http://dx.doi.org/10.1155/2018/3740461] [PMID: 29707568]
[12]
Crews L, Masliah E. Molecular mechanisms of neurodegeneration in Alzheimer’s disease. Hum Mol Genet 2010; 19(R1): R12-20.
[http://dx.doi.org/10.1093/hmg/ddq160] [PMID: 20413653]
[13]
Sweeney P, Park H, Baumann M, et al. Protein misfolding in neurodegenerative diseases: Implications and strategies. Transl Neurodegener 2017; 6(1): 6.
[http://dx.doi.org/10.1186/s40035-017-0077-5] [PMID: 28293421]
[14]
Karamanos TK, Kalverda AP, Thompson GS, Radford SE. Mechanisms of amyloid formation revealed by solution NMR. Prog Nucl Magn Reson Spectrosc 2015; 88-89: 86-104.
[http://dx.doi.org/10.1016/j.pnmrs.2015.05.002] [PMID: 26282197]
[15]
Ezkurdia I, del Pozo A, Frankish A, et al. Comparative proteomics reveals a significant bias toward alternative protein isoforms with conserved structure and function. Mol Biol Evol 2012; 29(9): 2265-83.
[http://dx.doi.org/10.1093/molbev/mss100] [PMID: 22446687]
[16]
Tzotzos S, Doig AJ. Amyloidogenic sequences in native protein structures. Protein Sci 2010; 19(2): 327-48.
[http://dx.doi.org/10.1002/pro.314] [PMID: 20027621]
[17]
Jiang D, Rauda I, Han S, Chen S, Zhou F. Aggregation pathways of the amyloid β(1-42) peptide depend on its colloidal stability and ordered β-sheet stacking. Langmuir 2012; 28(35): 12711-21.
[http://dx.doi.org/10.1021/la3021436] [PMID: 22870885]
[18]
López de la Paz M, Serrano L. Sequence determinants of amyloid fibril formation. Proc Natl Acad Sci USA 2004; 101(1): 87-92.
[http://dx.doi.org/10.1073/pnas.2634884100] [PMID: 14691246]
[19]
Jahn TR, Radford SE. Folding versus aggregation: polypeptide conformations on competing pathways. Arch Biochem Biophys 2008; 469(1): 100-17.
[http://dx.doi.org/10.1016/j.abb.2007.05.015] [PMID: 17588526]
[20]
Wood JM. Osmosensing by bacteria: signals and membrane-based sensors. Microbiol Mol Biol Rev 1999; 63(1): 230-62.
[http://dx.doi.org/10.1128/MMBR.63.1.230-262.1999] [PMID: 10066837]
[21]
Marek PJ, Patsalo V, Green DF, Raleigh DP. Ionic strength effects on amyloid formation by amylin are a complicated interplay among Debye screening, ion selectivity, and Hofmeister effects. Biochemistry 2012; 51(43): 8478-90.
[http://dx.doi.org/10.1021/bi300574r] [PMID: 23016872]
[22]
Abedini A, Raleigh DP. The role of His-18 in amyloid formation by human islet amyloid polypeptide. Biochemistry 2005; 44(49): 16284-91.
[http://dx.doi.org/10.1021/bi051432v] [PMID: 16331989]
[23]
Raman B, Chatani E, Kihara M, et al. Critical balance of electrostatic and hydrophobic interactions is required for beta 2-microglobulin amyloid fibril growth and stability. Biochemistry 2005; 44(4): 1288-99.
[http://dx.doi.org/10.1021/bi048029t] [PMID: 15667222]
[24]
Jain S, Udgaonkar JB. Salt-induced modulation of the pathway of amyloid fibril formation by the mouse prion protein. Biochemistry 2010; 49(35): 7615-24.
[http://dx.doi.org/10.1021/bi100745j] [PMID: 20712298]
[25]
Klement K, Wieligmann K, Meinhardt J, Hortschansky P, Richter W, Fändrich M. Effect of different salt ions on the propensity of aggregation and on the structure of Alzheimer’s abeta(1-40) amyloid fibrils. J Mol Biol 2007; 373(5): 1321-33.
[http://dx.doi.org/10.1016/j.jmb.2007.08.068] [PMID: 17905305]
[26]
Bossis F, Palese LL. Amyloid beta(1-42) in aqueous environments: effects of ionic strength and E22Q (Dutch) mutation. Biochim Biophys Acta 2013; 1834(12): 2486-93.
[http://dx.doi.org/10.1016/j.bbapap.2013.08.010] [PMID: 24016775]
[27]
Crescenzi O, Tomaselli S, Guerrini R, et al. Solution structure of the Alzheimer amyloid β-peptide (1-42) in an apolar microenvironment. Similarity with a virus fusion domain. Eur J Biochem 2002; 269(22): 5642-8.
[http://dx.doi.org/10.1046/j.1432-1033.2002.03271.x] [PMID: 12423364]
[28]
Berman HM, Westbrook J, Feng Z, et al. The protein data bank. Nucleic Acids Res 2000; 28(1): 235-42.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[29]
Rose PW, Prlić A, Altunkaya A, et al. The RCSB protein data bank: integrative view of protein, gene and 3D structural information. Nucleic Acids Res 2017; 45(D1): D271-81.
[http://dx.doi.org/10.1093/nar/gkw1000] [PMID: 27794042]
[30]
Pettersen EF, Goddard TD, Huang CC, et al. UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 2004; 25(13): 1605-12.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[31]
Case DA, Babin V, Berryman JT, et al. The FF14SB force field. Amber 2014; 14: 29-31.
[32]
Martínez L, Andrade R, Birgin EG, Martínez JM. PACKMOL: a package for building initial configurations for molecular dynamics simulations. J Comput Chem 2009; 30(13): 2157-64.
[http://dx.doi.org/10.1002/jcc.21224] [PMID: 19229944]
[33]
Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys 1983; 79(2): 926-35.
[http://dx.doi.org/10.1063/1.445869]
[34]
Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C. Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 2006; 65(3): 712-25.
[http://dx.doi.org/10.1002/prot.21123] [PMID: 16981200]
[35]
Salomon‐Ferrer R, Case DA, Walker RC. An overview of the Amber biomolecular simulation package. Wiley Interdiscip Rev Comput Mol Sci 2013; 3(2): 198-210.
[http://dx.doi.org/10.1002/wcms.1121]
[36]
Darden T, York D, Pedersen L. Particle mesh Ewald: An N⋅ log (N) method for Ewald sums in large systems. J Chem Phys 1993; 98(12): 10089-92.
[http://dx.doi.org/10.1063/1.464397]
[37]
Ryckaert JP, Ciccotti G, Berendsen HJ. Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J Comput Phys 1977; 23(3): 327-41.
[http://dx.doi.org/10.1016/0021-9991(77)90098-5]
[38]
Berendsen HJ, Postma JV, van Gunsteren WF, DiNola ARHJ, Haak JR. Molecular dynamics with coupling to an external bath. J Chem Phys 1984; 81(8): 3684-90.
[http://dx.doi.org/10.1063/1.448118]
[39]
Mudi A, Chakravarty C. Effect of the Berendsen thermostat on the dynamical properties of water. Mol Phys 2004; 102(7): 681-5.
[http://dx.doi.org/10.1080/00268970410001698937]
[40]
Roe DR, Cheatham TE III. PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput 2013; 9(7): 3084-95.
[http://dx.doi.org/10.1021/ct400341p] [PMID: 26583988]
[41]
Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 1983; 22(12): 2577-637.
[http://dx.doi.org/10.1002/bip.360221211] [PMID: 6667333]
[42]
Stine WB Jr, Dahlgren KN, Krafft GA, LaDu MJ. In vitro characterization of conditions for amyloid-β peptide oligomerization and fibrillogenesis. J Biol Chem 2003; 278(13): 11612-22.
[http://dx.doi.org/10.1074/jbc.M210207200] [PMID: 12499373]
[43]
Kříž Z, Klusák J, Krištofíková Z, Koča J. How ionic strength affects the conformational behavior of human and rat beta amyloids--a computational study. PLoS One 2013; 8(5)e62914
[http://dx.doi.org/10.1371/journal.pone.0062914] [PMID: 23717395]
[44]
Yu M, Silva TC, van Opstal A, et al. The investigation of protein diffusion via H-cell microfluidics. Biophys J 2019; 116(4): 595-609.
[http://dx.doi.org/10.1016/j.bpj.2019.01.014] [PMID: 30736981]
[45]
Shafrir Y, Durell SR, Anishkin A, Guy HR. Beta-barrel models of soluble amyloid beta oligomers and annular protofibrils. Proteins 2010; 78(16): 3458-72.
[http://dx.doi.org/10.1002/prot.22832] [PMID: 20830782]
[46]
Zidar J, Merzel F. Probing amyloid-beta fibril stability by increasing ionic strengths. J Phys Chem B 2011; 115(9): 2075-81.
[http://dx.doi.org/10.1021/jp109025b] [PMID: 21329333]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy