Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Botanical Therapeutics (Part II): Antimicrobial and In Vitro Anticancer Activity against MCF7 Human Breast Cancer Cells of Chamomile, Parsley and Celery Alcoholic Extracts

Author(s): Corina Danciu, Oana Cioanca, Claudia Watz (Farcaș)*, Monica Hancianu*, Roxana Racoviceanu, Delia Muntean, Istvan Zupko, Camelia Oprean, ">Calin Tatu, Virgil Paunescu, Maria Proks, Zorita Diaconeasa, Codruta Soica, Iulia Pinzaru and Cristina Dehelean

Volume 21, Issue 2, 2021

Published on: 07 August, 2020

Page: [187 - 200] Pages: 14

DOI: 10.2174/1871520620666200807213734

Price: $65

Abstract

Background: This study was designed as a continuation of a complex investigation about the phytochemical composition and biological activity of chamomile, parsley, and celery extracts against A375 human melanoma and dendritic cells.

Objective: The main aim was the evaluation of the antimicrobial potential of selected extracts as well as the in vitro anticancer activity against MCF7 human breast cancer cells.

Methods: In order to complete the picture regarding the phytochemical composition, molecular fingerprint was sketched out by the help of FTIR spectroscopy. The activity of two enzymes (acetylcholinesterase and butyrylcholinesterase) after incubation with the three extracts was spectrophotometrically assessed. The antimicrobial potential was evaluated by disk diffusion method. The in vitro anticancer potential against MCF7 human breast cancer cells was appraised by MTT, LDH, wound healing, cell cycle, DAPI, Annexin-V-PI assays.

Results: The results showed variations between the investigated extracts in terms of inhibitory activity against enzymes, such as acetyl- and butyrilcholinesterase. Chamomile and parsley extracts were active only against tested Gram-positive cocci, while all tested extracts displayed antifungal effects. Among the screened samples at the highest tested concentration, namely 60μg/mL, parsley was the most active extract in terms of reducing the viability of MCF7 - human breast adenocarcinoma cell line and inducing the release of lactate dehydrogenase. On the other hand, chamomile and celery extracts manifested potent anti-migratory effects. Furthermore, celery extract was the most active in terms of total apoptotic events, while chamomile extract induced the highest necrosis rate.

Conclusion: The screened samples containing phytochemicals belonging in majority to the class of flavonoids and polyphenols can represent candidates for antimicrobial and anticancer agents.

Keywords: Chamomile, parsley, celery, lipoxygenase, acetyl- and butyrilcholinesterase, MCF7 cells, antiproliferative, proapoptotic, cytotoxic.

Graphical Abstract
[1]
Cragg, G.M.; Newman, D.J. Natural products: A continuing source of novel drug leads. Biochim. Biophys. Acta, 2013, 1830(6), 3670-3695.
[http://dx.doi.org/10.1016/j.bbagen.2013.02.008] [PMID: 23428572]
[2]
Soica, C.; Trandafirescu, C.; Danciu, C.; Muntean, D.; Dehelean, C.; Simu, G. New improved drug delivery technologies for pentacyclic triterpenes: A review. Protein Pept. Lett., 2014, 21(11), 1137-1145.
[http://dx.doi.org/10.2174/0929866521666140807115109] [PMID: 25106907]
[3]
Oprean, C.; Borcan, F.; Pavel, I.; Dema, A.; Danciu, C.; Soica, C.; Dehelean, C.; Nicu, A.; Ardelean, A.; Cristea, M.; Ivan, A.; Tatu, C.; Bojin, F. In vivo biological evaluation of polyurethane nanostructures with ursolic and oleanolic acids on chemically-induced skin carcinogenesis. In Vivo, 2016, 30(5), 633-638.
[PMID: 27566083]
[4]
Katiyar, C.; Gupta, A.; Kanjilal, S.; Katiyar, S. Drug discovery from plant sources: An integrated approach. Ayu, 2012, 33(1), 10-19.
[http://dx.doi.org/10.4103/0974-8520.100295] [PMID: 23049178]
[5]
Srivastava, J.K.; Shankar, E.; Gupta, S. Chamomile: A herbal medicine of the past with bright future. Mol. Med. Rep., 2010, 3(6), 895-901.
[PMID: 21132119]
[6]
McKay, D.L.; Blumberg, J.B. A review of the bioactivity and potential health benefits of chamomile tea (Matricaria recutita L.). Phytother. Res., 2006, 20(7), 519-530.
[http://dx.doi.org/10.1002/ptr.1900] [PMID: 16628544]
[7]
Gardiner, P. Complementary, holistic, and integrative medicine. Chamomile. Pediatr. Rev., 2007, 28(4), e16-e18.
[http://dx.doi.org/10.1542/pir.28-4-e16] [PMID: 17400821]
[8]
Cvetanović, A.; Švarc-Gajić, J.; Mašković, P.; Savić, S.; Nikolić, L. Antioxidant and biological activity of chamomile extracts obtained by different techniques: Perspective of using superheated water for isolation of biologically active compounds. Ind. Crops Prod., 2015, 65, 582-591.
[http://dx.doi.org/10.1016/j.indcrop.2014.09.044]
[9]
Sęczyk, Ł.; Świeca, M.; Gawlik-Dziki, U.; Luty, M.; Czyż, J. Effect of fortification with parsley (Petroselinum crispum Mill.) leaves on the nutraceutical and nutritional quality of wheat pasta. Food Chem., 2016, 190, 419-428.
[http://dx.doi.org/10.1016/j.foodchem.2015.05.110] [PMID: 26212991]
[10]
Farzaei, M.H.; Abbasabadi, Z.; Ardekani, M.R.S.; Rahimi, R.; Farzaei, F. Parsley: A review of ethnopharmacology, phytochemistry and biological activities. J. Tradit. Chin. Med., 2013, 33(6), 815-826.
[http://dx.doi.org/10.1016/S0254-6272(14)60018-2] [PMID: 24660617]
[11]
Sowbhagya, H.B. Chemistry, technology, and nutraceutical functions of celery (Apium graveolens L.): An overview. Crit. Rev. Food Sci. Nutr., 2014, 54(3), 389-398.
[http://dx.doi.org/10.1080/10408398.2011.586740] [PMID: 24188309]
[12]
Kooti, W.; Ali-Akbari, S.; Asadi-Samani, M.; Ghadery, H.; Ashtray-Larky, D. A review on medicinal plant of Apium graveolens. Adv. Herb. Med., 2015, 1(1), 48-59.
[13]
Kooti, W.; Daraei, N. A review of the antioxidant activity of celery (Apium graveolens L). J. Evid. Based Complement. Alternat. Med., 2017, 22(4), 1029-1034.
[http://dx.doi.org/10.1177/2156587217717415] [PMID: 28701046]
[14]
Powanda, M.C.; Whitehouse, M.W.; Rainsford, K.D. Celery seed and related extracts with antiarthritic, antiulcer, and antimicrobial activities. Prog. Drug Res., 2015, 70, 133-153.
[http://dx.doi.org/10.1007/978-3-0348-0927-6_4] [PMID: 26462366]
[15]
Sung, B.; Chung, H.Y.; Kim, N.D. Role of apigenin in cancer prevention via the induction of apoptosis and autophagy. J. Cancer Prev., 2016, 21(4), 216-226.
[http://dx.doi.org/10.15430/JCP.2016.21.4.216] [PMID: 28053955]
[16]
Danciu, C.; Zupko, I.; Bor, A.; Schwiebs, A.; Radeke, H.; Hancianu, M.; Cioanca, O.; Alexa, E.; Oprean, C.; Bojin, F.; Soica, C.; Paunescu, V.; Dehelean, C.A. Botanical therapeutics: Phytochemical screening and biological assessment of chamomile, parsley and celery extracts against A375 human melanoma and dendritic cells. Int. J. Mol. Sci., 2018, 19(11)E3624
[PMID: 30453564] [http://dx.doi.org/10.3390/ijms19113624]]
[17]
Oprean, C.; Zambori, C.; Borcan, F.; Soica, C.; Zupko, I.; Minorics, R.; Bojin, F.; Ambrus, R.; Muntean, D.; Danciu, C.; Pinzaru, I.A.; Dehelean, C.; Paunescu, V.; Tanasie, G. Anti-proliferative and antibacterialin vitro evaluation of the polyurethane nanostructures incorporating pentacyclic triterpenes. Pharm. Biol., 2016, 54(11), 2714-2722.
[http://dx.doi.org/10.1080/13880209.2016.1180538] [PMID: 27159077]
[18]
Ledeti, I.; Bercean, V.; Alexa, A.; Soica, C.; Suta, L.M.; Dehelean, C.; Trandafirescu, C.; Muntean, D.; Licker, M.; Fulias, A. Preparation and antibacterial properties of substituted 1,2,4-triazoles. J. Chem., 2015, 2015879343
[http://dx.doi.org/10.1155/2015/879343]
[19]
Cioanca, O.; Hancianu, M.; Mihasan, M.; Hritcu, L. Anti-acetylcholinesterase and antioxidant activities of inhaled juniper oil on amyloid beta (1-42)-induced oxidative stress in the rat hippocampus. Neurochem. Res., 2015, 40(5), 952-960.
[http://dx.doi.org/10.1007/s11064-015-1550-0] [PMID: 25743585]
[20]
Perry, N.S.; Houghton, P.J.; Theobald, A.; Jenner, P.; Perry, E.K. In-vitro inhibition of human erythrocyte acetylcholinesterase by salvia lavandulaefolia essential oil and constituent terpenes. J. Pharm. Pharmacol., 2000, 52(7), 895-902.
[http://dx.doi.org/10.1211/0022357001774598] [PMID: 10933142]
[21]
Felice, F.; Zambito, Y.; Belardinelli, E.; Fabiano, A.; Santoni, T.; Di Stefano, R. Effect of different chitosan derivatives onin vitro scratch wound assay: A comparative study. Int. J. Biol. Macromol., 2015, 76, 236-241.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.02.041] [PMID: 25748846]
[22]
Mitchell, D.B.; Santone, K.S.; Acosta, D. Evaluation of cytotoxicity in cultured cells by enzyme leakage. J. Tissue Cult. Methods, 1980, 6, 113.
[http://dx.doi.org/10.1007/BF02082861]
[23]
Weyermann, J.; Lochmann, D.; Zimmer, A. A practical note on the use of cytotoxicity assays. Int. J. Pharm., 2005, 288(2), 369-376.
[http://dx.doi.org/10.1016/j.ijpharm.2004.09.018] [PMID: 15620877]
[24]
Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D.G.; Lightfoot, D.A. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants (Basel), 2017, 6(4)
[http://dx.doi.org/10.3390/plants6040042]]
[25]
Abbas, O.; Géraldine, C.; Yvan, L.; Darly, P.; Hervé, R.; Vincent, B. Phenolic compound explorer: A mid-infrared spectroscopy database. Vib. Spectrosc., 2017, 92, 111-118.
[http://dx.doi.org/10.1016/j.vibspec.2017.05.008]
[26]
Senthilkumar, S.R.; Sivakumar, T.; Arulmozhi, K.T.; Mythili, N.F.T. IR analysis and correlation studies on the antioxidant activity, total phenolics and total flavonoids of Indian commercial teas (Camellia sinensis L.) - A novel approach. Int. Res. J. Biol. Sci., 2017, 6(3), 1-7.
[27]
Türker-Kaya, S.; Huck, C.W. A review of mid-infrared and near-infrared imaging: Principles, concepts and applications in plant tissue analysis. Molecules, 2017, 22(1)E168
[PMID: 28117673] [http://dx.doi.org/10.3390/molecules22010168]]
[28]
Huck, C.W. Advances of infrared spectroscopy in natural product research. Phytochem. Lett., 2015, 11, 384-393.
[http://dx.doi.org/10.1016/j.phytol.2014.10.026]
[29]
Al-Maliki, A.D.M. Isolation and identification of phenols and an alkaloidic compound from Matricaria chamomilla plant flowers and study of their medicinal activity against the pathogenic bacteria of skin infections. J. Univ. Thi-Qar., 2012, 7, 1-16.
[30]
Bijak, M.; Saluk, J.; Tsirigotis-Maniecka, M.; Komorowska, H.; Wachowicz, B.; Zaczyńska, E.; Czarny, A.; Czechowski, F.; Nowak, P.; Pawlaczyk, I. The influence of conjugates isolated from Matricaria chamomilla L. on platelets activity and cytotoxicity. Int. J. Biol. Macromol., 2013, 61, 218-229.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.06.046] [PMID: 23831537]
[31]
Al-Asmari, A.K.; Athar, M.T.; Kadasah, S.G. An updated phytopharmacological review on medicinal plant of Arab region: Apium graveolens Linn. Pharmacogn. Rev., 2017, 11(21), 13-18.
[http://dx.doi.org/10.4103/phrev.phrev_35_16] [PMID: 28503047]
[32]
Grasel, F.S.; Ferrão, M.F.; Wolf, C.R. Development of methodology for identification the nature of the polyphenolic extracts by FTIR associated with multivariate analysis. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2016, 153, 94-101.
[http://dx.doi.org/10.1016/j.saa.2015.08.020] [PMID: 26296253]
[33]
Schulz, H.; Baranska, M. Identification and quantification of valuable plant substances by IR and raman spectroscopy. Vib. Spectrosc., 2007, 43(1), 13-25.
[http://dx.doi.org/10.1016/j.vibspec.2006.06.001]
[34]
Roy, K.; Sarkar, C.K.; Ghosh, C.K. Plant-mediated synthesis of silver nanoparticles using parsley (Petroselinum crispum) leaf extract: Spectral analysis of the particles and antibacterial study. Appl. Nanosci., 2015, 5(8), 945-951.
[http://dx.doi.org/10.1007/s13204-014-0393-3]
[35]
Iswantini, D.; Tuti, H.R.; Latifah, K.D. In vitro inhibition of celery (Apium graveolens L.) extract on the activity of xanthine oxidase and determination of its active compound. Indones. J. Chem., 2012, 12(3), 247-254.
[http://dx.doi.org/10.22146/ijc.21338]
[36]
Szymanska-Chargot, M.; Zdunek, A. Use of FT-IR spectra and PCA to the bulk characterization of cell wall residues of fruits and vegetables along a fraction process. Food Biophys., 2013, 8(1), 29-42.
[http://dx.doi.org/10.1007/s11483-012-9279-7] [PMID: 23487553]
[37]
Pápay, Z.E.; Kállai-Szabó, N.; Ludányi, K.; Klebovich, I.; Antal, I. Development of oral site-specific pellets containing flavonoid extract with antioxidant activity. Eur. J. Pharm. Sci., 2016, 95, 161-169.
[http://dx.doi.org/10.1016/j.ejps.2016.10.029] [PMID: 27989856]
[38]
Vicas, S.I.; Fritea, L.; Laslo, V.; Cavalu, S.; Costea, T. Green biosynthesis of selenium nanoparticles using parsley (Petroselinum crispum) leaves extract. Stud. Univ. Seria Ştiinţele Vieţii, 2017, 27(3), 203-208.
[39]
Roby, M.H.H.; Sarhan, M.A.; Selim, K.A.H.; Khalel, K.I. Antioxidant and antimicrobial activities of essential oil and extracts of fennel (Foeniculum vulgare L.) and chamomile (Matricaria chamomilla L.). Ind. Crops Prod., 2013, 44, 437-445.
[http://dx.doi.org/10.1016/j.indcrop.2012.10.012]
[40]
Dorman, H.J.D.; Deans, S.G. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol., 2000, 88(2), 308-316.
[http://dx.doi.org/10.1046/j.1365-2672.2000.00969.x] [PMID: 10736000]
[41]
Saderi, H.; Owlia, P.; Hosseini, A.; Semiyari, H. Antimicrobial effects of chamomile extract and essential oil on clinically isolated Porphyromonas gingivalis from periodontitis. Acta Hortic., 2004, 6(680)
[http://dx.doi.org/10.17660/ActaHortic.2005.680.21]]
[42]
Wong, P.Y.Y.; Kitts, D.D. Studies on the dual antioxidant and antibacterial properties of parsley (Petroselinum crispum) and cilantro (Coriandrum sativum) extracts. Food Chem., 2006, 97(3), 505-515.
[http://dx.doi.org/10.1016/j.foodchem.2005.05.031]
[43]
Wahba, N.M.; Ahmed, A.S.; Ebraheim, Z.Z. Antimicrobial effects of pepper, parsley, and dill and their roles in the microbiological quality enhancement of traditional Egyptian Kareish cheese. Foodborne Pathog. Dis., 2010, 7(4), 411-418.
[http://dx.doi.org/10.1089/fpd.2009.0412] [PMID: 19919287]
[44]
Linde, G.A.; Gazim, Z.C.; Cardoso, B.K.; Jorge, L.F.; Tešević, V.; Glamoćlija, J.; Soković, M.; Colauto, N.B. Antifungal and antibacterial activities of Petroselinum crispum essential oil. Genet. Mol. Res., 2016, 15(3)
[PMID: 27525894] [http://dx.doi.org/10.4238/gmr.15038538]]
[45]
Gupta, R.; Rath, C.C.; Dash, S.K.; Mishra, R.K. 2004.
[46]
Mushtaq, G.; Greig, N.H.; Khan, J.A.; Kamal, M.A. Status of acetylcholinesterase and butyrylcholinesterase in Alzheimer’s disease and type 2 diabetes mellitus. CNS Neurol. Disord. Drug Targets, 2014, 13(8), 1432-1439.
[http://dx.doi.org/10.2174/1871527313666141023141545] [PMID: 25345511]
[47]
Zakut, H.; Ehrlich, G.; Ayalon, A.; Prody, C.A.; Malinger, G.; Seidman, S.; Ginzberg, D.; Kehlenbach, R.; Soreq, H. Acetylcholinesterase and butyrylcholinesterase genes coamplify in primary ovarian carcinomas. J. Clin. Invest., 1990, 86(3), 900-908.
[http://dx.doi.org/10.1172/JCI114791] [PMID: 2394839]
[48]
Poetsch, N.; Sturdza, A.; Aust, S.; Polterauer, S.; Grimm, C.; Schwameis, R.; Pötter, R.; Koelbl, H.; Reinthaller, A.; Seebacher, V. The value of pretreatment serum butyrylcholinesterase level as a novel prognostic biomarker in patients with cervical cancer treated with primary (chemo-)radiation therapy. Strahlenther. Onkol., 2019, 195(5), 430-440.
[http://dx.doi.org/10.1007/s00066-019-01430-z] [PMID: 30737542]
[49]
Lazarevic-Pasti, T.; Leskovac, A.; Momic, T.; Petrovic, S.; Vasic, V. Modulators of acetylcholinesterase activity: From Alzheimer’s disease to anti-cancer drugs. Curr. Med. Chem., 2017, 24(30), 3283-3309.
[http://dx.doi.org/10.2174/0929867324666170705123509] [PMID: 28685687]
[50]
Xi, H.J.; Wu, R.P.; Liu, J.J.; Zhang, L.J.; Li, Z.S. Role of acetylcholinesterase in lung cancer. Thorac. Cancer, 2015, 6(4), 390-398.
[http://dx.doi.org/10.1111/1759-7714.12249] [PMID: 26273392]
[51]
Schwiebs, A.; Herrero San Juan, M.; Schmidt, K.G.; Wiercinska, E.; Anlauf, M.; Ottenlinger, F.; Thomas, D.; Elwakeel, E.; Weigert, A.; Farin, H.F.; Bonig, H.; Scholich, K.; Geisslinger, G.; Pfeilschifter, J.M.; Radeke, H.H. Cancer-induced inflammation and inflammation-induced cancer in colon: a role for S1P lyase. Oncogene, 2019, 38(24), 4788-4803.
[http://dx.doi.org/10.1038/s41388-019-0758-x] [PMID: 30816345]
[52]
Orafaie, A.; Matin, M.M.; Sadeghian, H. The importance of 15-lipoxygenase inhibitors in cancer treatment. Cancer Metastasis Rev., 2018, 37(2-3), 397-408.
[http://dx.doi.org/10.1007/s10555-018-9738-9] [PMID: 29882120]
[53]
Wisastra, R.; Dekker, F.J. Inflammation, cancer and oxidative lipoxygenase activity are intimately linked. Cancers (Basel), 2014, 6(3), 1500-1521.
[http://dx.doi.org/10.3390/cancers6031500] [PMID: 25037020]
[54]
Patel, V.A.; Longacre, A.; Hsiao, K.; Fan, H.; Meng, F.; Mitchell, J.E.; Rauch, J.; Ucker, D.S.; Levine, J.S. Apoptotic cells, at all stages of the death process, trigger characteristic signaling events that are divergent from and dominant over those triggered by necrotic cells: Implications for the delayed clearance model of autoimmunity. J. Biol. Chem., 2006, 281(8), 4663-4670.
[http://dx.doi.org/10.1074/jbc.M508342200] [PMID: 16377620]
[55]
Smiljkovic, M.; Stanisavljevic, D.; Stojkovic, D.; Petrovic, I.; Marjanovic Vicentic, J.; Popovic, J.; Golic Grdadolnik, S.; Markovic, D.; Sanković-Babiće, S.; Glamoclija, J.; Stevanovic, M.; Sokovic, M. Apigenin-7-O-glucoside versus apigenin: Insight into the modes of anticandidal and cytotoxic actions. EXCLI J., 2017, 16, 795-807.
[PMID: 28827996]
[56]
Srivastava, J.K.; Gupta, S. Antiproliferative and apoptotic effects of chamomile extract in various human cancer cells. J. Agric. Food Chem., 2007, 55(23), 9470-9478.
[http://dx.doi.org/10.1021/jf071953k] [PMID: 17939735]
[57]
Zu, Y.; Yu, H.; Liang, L.; Fu, Y.; Efferth, T.; Liu, X.; Wu, N. Activities of ten essential oils towards Propionibacterium acnes and PC-3, A-549 and MCF-7 cancer cells. Molecules, 2010, 15(5), 3200-3210.
[http://dx.doi.org/10.3390/molecules15053200] [PMID: 20657472]
[58]
Mostafapour Kandelous, H.; Salimi, M.; Khori, V.; Rastkari, N.; Amanzadeh, A.; Salimi, M. Mitochondrial apoptosis induced by Chamaemelum nobile extract in breast cancer cells. Iran. J. Pharm. Res., 2016, 15(Suppl.), 197-204.
[PMID: 28228817]
[59]
Nabavi, S.M.; Habtemariam, S.; Daglia, M.; Nabavi, S.F. Apigenin and breast cancers: From chemistry to medicine. Anticancer. Agents Med. Chem., 2015, 15(6), 728-735.
[http://dx.doi.org/10.2174/1871520615666150304120643] [PMID: 25738871]
[60]
Mocanu, M.M.; Nagy, P.; Szöllősi, J. Chemoprevention of breast cancer by dietary polyphenols. Molecules, 2015, 20(12), 22578-22620.
[http://dx.doi.org/10.3390/molecules201219864] [PMID: 26694341]
[61]
Farshori, N.N.; Al-Sheddi, E.S.; Al-Oqail, M.M.; Musarrat, J.; Al-Khedhairy, A.A.; Siddiqui, M.A. Anticancer activity of Petroselinum sativum seed extracts on MCF-7 human breast cancer cells. Asian Pac. J. Cancer Prev., 2013, 14(10), 5719-5723.
[http://dx.doi.org/10.7314/APJCP.2013.14.10.5719] [PMID: 24289568]
[62]
Tang, E.L.; Rajarajeswaran, J.; Fung, S.; Kanthimathi, M.S. Petroselinum crispum has antioxidant properties, protects against DNA damage and inhibits proliferation and migration of cancer cells. J. Sci. Food Agric., 2015, 95(13), 2763-2771.
[http://dx.doi.org/10.1002/jsfa.7078] [PMID: 25582089]
[63]
Schröder, L.; Koch, J.; Mahner, S.; Kost, B.P.; Hofmann, S.; Jeschke, U.; Haumann, J.; Schmedt, J.; Richter, D.U. The effects of Petroselinum crispum on estrogen receptor-positive benign and malignant mammary cells (MCF12A/MCF7). Anticancer Res., 2017, 37(1), 95-102.
[http://dx.doi.org/10.21873/anticanres.11294] [PMID: 28011479]
[64]
Momtazi, A.A.; Askari-Khorasgani, O.; Abdollahi, E.; Sadeghi-Aliabadi, H.; Mortazaeinezhad, F.; Sahebkar, A. Phytochemical analysis and cytotoxicity evaluation of Kelussia odoratissima Mozaff. J. Acupunct. Meridian Stud., 2017, 10(3), 180-186.
[http://dx.doi.org/10.1016/j.jams.2017.02.002] [PMID: 28712477]
[65]
Köken, T.; Koca, B.; Özkurt, M.; Erkasap, N.; Kuş, G.; Karalar, M. Apium graveolens extract inhibits cell proliferation and expression of vascular endothelial growth factor and induces apoptosis in the human prostatic carcinoma cell line LNCaP. J. Med. Food, 2016, 19(12), 1166-1171.
[http://dx.doi.org/10.1089/jmf.2016.0061] [PMID: 27982754]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy