Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Development and Challenges of the Discovery of HER2 Inhibitors

Author(s): Zhi-Gang Sun*, Liang-Hui Zhao, Zhi-Na Li and Hai-Liang Zhu*

Volume 20, Issue 20, 2020

Page: [2123 - 2134] Pages: 12

DOI: 10.2174/1389557520666200729162118

Price: $65

Abstract

The treatment of cancer has always been a major problem in the world. Some cancers cannot be treated with surgery, but only with cancer drugs. Among many cancer drugs, small molecule inhibitors play an irreplaceable role. HER2 is one of the HER families, and the development of HER2 inhibitors has made a huge contribution to the treatment of cancer. Some HER2 inhibitors are already on the market, and some HER2 inhibitors are undergoing clinical research. The design, synthesis and development of new HER2 inhibitors targeting different targets are also ongoing, and some are even under clinical research. The HER2 inhibitors that are on the market have developed resistance, which brings great challenges to the HER2 inhibitor development in the future. This article reviews the development and challenges of the discovery of HER2 inhibitors.

Keywords: Cancer, HER2, challenges, inhibitors, drug resistance, discovery.

Graphical Abstract
[1]
Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer, 2019, 144(8), 1941-1953.
[http://dx.doi.org/10.1002/ijc.31937] [PMID: 30350310]
[2]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[3]
Chen, W.; Sun, K.; Zheng, R.; Zeng, H.; Zhang, S.; Xia, C.; Yang, Z.; Li, H.; Zou, X.; He, J. Cancer incidence and mortality in China, 2014. Chin. J. Cancer Res., 2018, 30(1), 1-12.
[http://dx.doi.org/10.21147/j.issn.1000-9604.2018.01.01 PMID: 29545714]
[4]
Pilleron, S.; Sarfati, D.; Janssen-Heijnen, M.; Vignat, J.; Ferlay, J.; Bray, F.; Soerjomataram, I. Global cancer incidence in older adults, 2012 and 2035: A population-based study. Int. J. Cancer, 2019, 144(1), 49-58.
[http://dx.doi.org/10.1002/ijc.31664] [PMID: 29978474]
[5]
Ma, J.; Yang, J.; Jian, W.; Wang, X.; Xiao, D.; Xia, W.; Xiong, L.; Ma, D. A novel loss-of-function heterozygous BRCA2 c.8946_8947delAG mutation found in a Chinese woman with family history of breast cancer. J. Cancer Res. Clin. Oncol., 2017, 143(4), 631-637.
[http://dx.doi.org/10.1007/s00432-016-2327-9] [PMID: 28058502]
[6]
Del Risco Kollerud, R.; Ruud, E.; Haugnes, H.S.; Cannon-Albright, L.A.; Thoresen, M.; Nafstad, P.; Vlatkovic, L.; Blaasaas, K.G.; Næss, Ø.; Claussen, B. Family history of cancer and risk of paediatric and young adult’s testicular cancer: A Norwegian cohort study. Br. J. Cancer, 2019, 120(10), 1007-1014.
[http://dx.doi.org/10.1038/s41416-019-0445-2] [PMID: 30967648]
[7]
Knight, J.A.; Fan, J.; Malone, K.E.; John, E.M.; Lynch, C.F.; Langballe, R.; Bernstein, L.; Shore, R.E.; Brooks, J.D.; Reiner, A.S.; Woods, M.; Liang, X.; Bernstein, J.L. WECARE Study Collaborative Group. Alcohol consumption and cigarette smoking in combination: A predictor of contralateral breast cancer risk in the WECARE study. Int. J. Cancer, 2017, 141(5), 916-924.
[http://dx.doi.org/10.1002/ijc.30791] [PMID: 28524234]
[8]
Latifovic, L.; Peacock, S.D.; Massey, T.E.; King, W.D. The influence of alcohol consumption, cigarette smoking, and physical activity on leukocyte telomere length. Cancer Epidemiol. Biomarkers Prev., 2016, 25(2), 374-380.
[http://dx.doi.org/10.1158/1055-9965.EPI-14-1364 PMID: 26656293]
[9]
Sethia, R.; Yumusakhuylu, A.C.; Ozbay, I.; Diavolitsis, V.; Brown, N.V.; Zhao, S.; Wei, L.; Old, M.; Agrawal, A.; Teknos, T.N.; Ozer, E. Quality of life outcomes of transoral robotic surgery with or without adjuvant therapy for oropharyngeal cancer. Laryngoscope, 2018, 128(2), 403-411.
[http://dx.doi.org/10.1002/lary.26796] [PMID: 28771728]
[10]
Hamdy, F.C.; Donovan, J.L.; Lane, J.A.; Mason, M.; Metcalfe, C.; Holding, P.; Davis, M.; Peters, T.J.; Turner, E.L.; Martin, R.M.; Oxley, J.; Robinson, M.; Staffurth, J.; Walsh, E.; Bollina, P.; Catto, J.; Doble, A.; Doherty, A.; Gillatt, D.; Kockelbergh, R.; Kynaston, H.; Paul, A.; Powell, P.; Prescott, S.; Rosario, D.J.; Rowe, E.; Neal, D.E.; Protec, T. Study Group. 10-year outcomes after monitoring, surgery, or radiotherapy for localized prostate cancer. N. Engl. J. Med., 2016, 375(15), 1415-1424.
[http://dx.doi.org/10.1056/NEJMoa1606220] [PMID: 27626136]
[11]
Formenti, S.C.; Rudqvist, N-P.; Golden, E.; Cooper, B.; Wennerberg, E.; Lhuillier, C.; Vanpouille-Box, C.; Friedman, K.; Ferrari de Andrade, L.; Wucherpfennig, K.W.; Heguy, A.; Imai, N.; Gnjatic, S.; Emerson, R.O.; Zhou, X.K.; Zhang, T.; Chachoua, A.; Demaria, S. Radiotherapy induces responses of lung cancer to CTLA-4 blockade. Nat. Med., 2018, 24(12), 1845-1851.
[http://dx.doi.org/10.1038/s41591-018-0232-2] [PMID: 30397353]
[12]
van den Bosch, S.; Vogel, W.V.; Raaijmakers, C.P.; Dijkema, T.; Terhaard, C.H.J.; Al-Mamgani, A.; Kaanders, J.H.A.M. Implications of improved diagnostic imaging of small nodal metastases in head and neck cancer: Radiotherapy target volume transformation and dose de-escalation. Radiother. Oncol., 2018, 128(3), 472-478.
[http://dx.doi.org/10.1016/j.radonc.2018.04.020] [PMID: 29731161]
[13]
Hallemeier, C.L.; Zhang, P.; Pisansky, T.M.; Hanks, G.E.; McGowan, D.G.; Roach, M.; Zeitzer, K.L.; Firat, S.Y.; Husain, S.M.; D’Souza, D.P.; Souhami, L.; Parliament, M.B.; Rosenthal, S.A.; Lukka, H.R.; Rotman, M.; Horwitz, E.M.; Miles, E.F.; Paulus, R.; Sandler, H.M. Prostate-Specific antigen after neoadjuvant androgen suppression in prostate cancer patients receiving short-term androgen suppression and external beam radiation therapy: pooled analysis of four nrg oncology radiation therapy oncology group randomized clinical trials. Intl. J. Radiat. Oncol. Biol. Phys., 2019, 104(5), 1057-1065.
[http://dx.doi.org/10.1016/j.ijrobp.2019.03.049]
[14]
Vogelius, I.R.; Bentzen, S.M. Dose response and fractionation sensitivity of prostate cancer after external beam radiation therapy: a meta-analysis of randomized trials. Int. J. Radiat. Oncol. Biol. Phys., 2018, 100(4), 858-865.
[http://dx.doi.org/10.1016/j.ijrobp.2017.12.011]
[15]
Rydzewski, N.R.; Kanis, M.J.; Donnelly, E.D.; Lurain, J.R.; Strauss, J.B. Role of adjuvant external beam radiotherapy and chemotherapy in one versus two or more node-positive vulvar cancer: A National Cancer Database study. Radiother. Oncol., 2018, 129(3), 534-539.
[http://dx.doi.org/10.1016/j.radonc.2018.03.023] [PMID: 29631932]
[16]
van Driel, W.J.; Koole, S.N.; Sikorska, K.; Schagen van Leeuwen, J.H.; Schreuder, H.W.R.; Hermans, R.H.M.; de Hingh, I.H.J.T.; van der Velden, J.; Arts, H.J.; Massuger, L.F.A.G.; Aalbers, A.G.J.; Verwaal, V.J.; Kieffer, J.M.; Van de Vijver, K.K.; van Tinteren, H.; Aaronson, N.K.; Sonke, G.S. Hyperthermic intraperitoneal chemotherapy in ovarian cancer. N. Engl. J. Med., 2018, 378(3), 230-240.
[http://dx.doi.org/10.1056/NEJMoa1708618] [PMID: 29342393]
[17]
Keklikoglou, I.; Cianciaruso, C.; Güç, E.; Squadrito, M.L.; Spring, L.M.; Tazzyman, S.; Lambein, L.; Poissonnier, A.; Ferraro, G.B.; Baer, C.; Cassará, A.; Guichard, A.; Iruela-Arispe, M.L.; Lewis, C.E.; Coussens, L.M.; Bardia, A.; Jain, R.K.; Pollard, J.W.; De Palma, M. Chemotherapy elicits pro-metastatic extracellular vesicles in breast cancer models. Nat. Cell Biol., 2019, 21(2), 190-202.
[http://dx.doi.org/10.1038/s41556-018-0256-3] [PMID: 30598531]
[18]
Dougan, M.; Dranoff, G.; Dougan, S.K. Cancer immunotherapy: Beyond checkpoint blockade. Ann. Rev. Cancer Biol., 2019, 3, 55-75.
[http://dx.doi.org/10.1146/annurev-cancerbio-030518-055552]
[19]
Moreno, A.C.; Sahni, S.K.; Smith, T.L.; Batur, P. Women’s health 2019: Osteoporosis, breast cancer, contraception, and hormone therapy. Cleve. Clin. J. Med., 2019, 86(6), 400-406.
[http://dx.doi.org/10.3949/ccjm.86a.18130] [PMID: 31204979]
[20]
Arnedos, M.; Vicier, C.; Loi, S.; Lefebvre, C.; Michiels, S.; Bonnefoi, H.; Andre, F. Precision medicine for metastatic breast cancer--limitations and solutions. Nat. Rev. Clin. Oncol., 2015, 12(12), 693-704.
[http://dx.doi.org/10.1038/nrclinonc.2015.123] [PMID: 26196250]
[21]
Felsenstein, K.M.; Theodorescu, D. Precision medicine for urothelial bladder cancer: Update on tumour genomics and immunotherapy. Nat. Rev. Urol., 2018, 15(2), 92-111.
[http://dx.doi.org/10.1038/nrurol.2017.179] [PMID: 29133939]
[22]
Brown, C. Targeted therapy: An elusive cancer target. Nature, 2016, 537(7620), S106-S108.
[http://dx.doi.org/10.1038/537S106a] [PMID: 27626779]
[23]
Taylor, C.W.; Kirby, A.M. Cardiac side-effects from breast cancer radiotherapy. Clin. Oncol. (R. Coll. Radiol.), 2015, 27(11), 621-629.
[http://dx.doi.org/10.1016/j.clon.2015.06.007] [PMID: 26133462]
[24]
Oun, R.; Moussa, Y.E.; Wheate, N.J. The side effects of platinum-based chemotherapy drugs: A review for chemists. Dalton Trans., 2018, 47(19), 6645-6653.
[http://dx.doi.org/10.1039/C8DT00838H] [PMID: 29632935]
[25]
Tao, J.J.; Visvanathan, K.; Wolff, A.C. Long term side effects of adjuvant chemotherapy in patients with early breast cancer. Breast, 2015, 24(Suppl. 2), S149-S153.
[http://dx.doi.org/10.1016/j.breast.2015.07.035 PMID: 26299406]
[26]
Ke, X.; Shen, L. Molecular targeted therapy of cancer: The progress and future prospect. Front. Lab. Med., 2017, 1(2), 69-75.
[http://dx.doi.org/10.1016/j.flm.2017.06.001]
[27]
Rahmanian, N.; Eskandani, M.; Barar, J.; Omidi, Y. Recent trends in targeted therapy of cancer using graphene oxide-modified multifunctional nanomedicines. J. Drug Target., 2017, 25(3), 202-215.
[http://dx.doi.org/10.1080/1061186X.2016.1238475 PMID: 27646598]
[28]
Sun, Z-G.; Liu, J-H.; Zhang, J-M.; Qian, Y. Research progress of Axl inhibitors. Curr. Top. Med. Chem., 2019, 19(15), 1338-1349.
[http://dx.doi.org/10.2174/1568026619666190620155613 PMID: 31218961]
[29]
Sun, Z-G.; Yang, Y-A.; Zhang, Z-G.; Zhu, H-L. Optimization techniques for novel c-Met kinase inhibitors. Expert Opin. Drug Discov., 2019, 14(1), 59-69.
[http://dx.doi.org/10.1080/17460441.2019.1551355 PMID: 30518273]
[30]
Pao, W.; Chmielecki, J. Rational, biologically based treatment of EGFR-mutant non-small-cell lung cancer. Nat. Rev. Cancer, 2010, 10(11), 760-774.
[http://dx.doi.org/10.1038/nrc2947] [PMID: 20966921]
[31]
Teng, Y.H-F.; Tan, W-J.; Thike, A-A.; Cheok, P-Y.; Tse, G.M-K.; Wong, N-S.; Yip, G.W-C.; Bay, B-H.; Tan, P-H. Mutations in the Epidermal Growth Factor Receptor (EGFR) gene in triple negative breast cancer: possible implications for targeted therapy. Breast Cancer Res., 2011, 13(2), R35.
[http://dx.doi.org/10.1186/bcr2857] [PMID: 21457545]
[32]
Lee, K-F.; Simon, H.; Chen, H.; Bates, B.; Hung, M-C.; Hauser, C. Requirement for neuregulin receptor erbB2 in neural and cardiac development. Nature, 1995, 378(6555), 394-398.
[http://dx.doi.org/10.1038/378394a0] [PMID: 7477377]
[33]
Negro, A.; Brar, B.K.; Lee, K-F. Essential roles of Her2/erbB2 in cardiac development and function. Recent Prog. Horm. Res., 2004, 59(1), 1-12.
[http://dx.doi.org/10.1210/rp.59.1.1] [PMID: 14749494]
[34]
Crone, S.A.; Zhao, Y-Y.; Fan, L.; Gu, Y.; Minamisawa, S.; Liu, Y.; Peterson, K.L.; Chen, J.; Kahn, R.; Condorelli, G.; Ross, J., Jr; Chien, K.R.; Lee, K.F. ErbB2 is essential in the prevention of dilated cardiomyopathy. Nat. Med., 2002, 8(5), 459-465.
[http://dx.doi.org/10.1038/nm0502-459] [PMID: 11984589]
[35]
Fiszman, G.L.; Jasnis, M.A. Molecular mechanisms of trastuzumab resistance in HER2 overexpressing breast cancer. Intl. J. Breast Cancer, 2011, 2011352182
[http://dx.doi.org/10.4061/2011/352182]
[36]
Chen, F.; Ma, K.; Madajewski, B.; Zhuang, L.; Zhang, L.; Rickert, K.; Marelli, M.; Yoo, B.; Turker, M.Z.; Overholtzer, M.; Quinn, T.P.; Gonen, M.; Zanzonico, P.; Tuesca, A.; Bowen, M.A.; Norton, L.; Subramony, J.A.; Wiesner, U.; Bradbury, M.S. Ultrasmall targeted nanoparticles with engineered antibody fragments for imaging detection of HER2-overexpressing breast cancer. Nat. Commun., 2018, 9(1), 4141.
[http://dx.doi.org/10.1038/s41467-018-06271-5] [PMID: 30297810]
[37]
Fujimoto, M.; Matsuzaki, I.; Nishino, M.; Iwahashi, Y.; Warigaya, K.; Kojima, F.; Ono, K.; Murata, S-I. HER2 is frequently overexpressed in hepatoid adenocarcinoma and gastric carcinoma with enteroblastic differentiation: A comparison of 35 cases to 334 gastric carcinomas of other histological types. J. Clin. Pathol., 2018, 71(7), 600-607.
[http://dx.doi.org/10.1136/jclinpath-2017-204928 PMID: 29305518]
[38]
Qiu, Y.; Ravi, L.; Kung, H-J. Requirement of ErbB2 for signalling by interleukin-6 in prostate carcinoma cells. Nature, 1998, 393(6680), 83-85.
[http://dx.doi.org/10.1038/30012] [PMID: 9590694]
[39]
Lewis, G.D.; Lofgren, J.A.; McMurtrey, A.E.; Nuijens, A.; Fendly, B.M.; Bauer, K.D.; Sliwkowski, M.X. Growth regulation of human breast and ovarian tumor cells by heregulin: Evidence for the requirement of ErbB2 as a critical component in mediating heregulin responsiveness. Cancer Res., 1996, 56(6), 1457-1465.
[PMID: 8640840]
[40]
Xiang, L.; Jiang, W.; Ye, S.; He, T.; Pei, X.; Li, J.; Chan, D.W.; Ngan, H.Y.S.; Li, F.; Tao, P.; Shen, X.; Zhou, X.; Wu, X.; Yang, G.; Yang, H. ERBB2 mutation: A promising target in non-squamous cervical cancer. Gynecol. Oncol., 2018, 148(2), 311-316.
[http://dx.doi.org/10.1016/j.ygyno.2017.12.023] [PMID: 29279289]
[41]
Joshi, S.K.; Keck, J.M.; Eide, C.A.; Bottomly, D.; Traer, E.; Tyner, J.W.; McWeeney, S.K.; Tognon, C.E.; Druker, B.J. ERBB2/HER2 mutations are transforming and therapeutically targetable in leukemia. Leukemia, 2020.
[http://dx.doi.org/10.1038/s41375-020-0844-7]
[43]
Crosby, E.J.; Gwin, W.; Blackwell, K.; Marcom, P.K.; Chang, S.; Maecker, H.T.; Broadwater, G.; Hyslop, T.; Kim, S.; Rogatko, A.; Lubkov, V.; Snyder, J.C.; Osada, T.; Hobeika, A.C.; Morse, M.A.; Lyerly, H.K.; Hartman, Z.C. Vaccine-induced memory CD8+ T cells provide clinical benefit in HER2 expressing breast cancer: a mouse to human translational study. Clin. Cancer Res., 2019, 25(9), 2725-2736.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-3102 PMID: 30635338]
[44]
Arab, A.; Yazdian-Robati, R.; Behravan, J. HER2-Positive Breast Cancer Immunotherapy: A focus on vaccine development. Arch. Immunol. Ther. Exp. (Warsz.), 2020, 68(1), 2.
[http://dx.doi.org/10.1007/s00005-019-00566-1] [PMID: 31915932]
[45]
Mittendorf, E.A.; Lu, B.; Melisko, M.; Price Hiller, J.; Bondarenko, I.; Brunt, A.M.; Sergii, G.; Petrakova, K.; Peoples, G.E. Efficacy and safety analysis of nelipepimut-s vaccine to prevent breast cancer recurrence: A randomized, multicenter, Phase III clinical trial. Clin. Cancer Res., 2019, 25(14), 4248-4254.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-2867 PMID: 31036542]
[46]
Pheneger, T.; Bouhana, K.; Anderson, D.; Garrus, J.; Ahrendt, K.; Allen, S.; von Carlowitz, I.; Greschuk, J.; Gross, S.; Hoffman, K.; Lemieux, C.; Lyssikatos, J.; Callejo, M.; Tarlton, G.; Wallace, E.; Winski, S.; Woessner, R.; Zhao, Q.; Marmsater, F.; Lee, P. Abstract #1795: In Vitro and in vivo activity of ARRY-380: A potent, small molecule inhibitor of ErbB2. Cancer Res., 2009, 69(9), 1795.
[47]
Medicine, U.S.N.L.O. A Study of tucatinib vs. placebo in combination with ado-trastuzumab emtansine (T-DM1) for patients with advanced or metastatic HER2+ breast cancer. https://clinicaltrials.gov/ct2/show/NCT03975647(Accessed August 26, 2020).
[48]
Murthy, R.K.; Hamilton, E.P.; Ferrario, C.; Aucoin, N.; Falkson, C.I.; Chamberlain, M.C.; Gray, T.; Borges, V.F. Clinical benefit of tucatinib after isolated brain progression: A retrospective pooled analysis of tucatinib phase 1b studies in HER2+ breast cancer. J. Clin. Oncol., 2018, 36(Suppl. 15), 1015-1015.
[http://dx.doi.org/10.1200/JCO.2018.36.15_suppl.1015]
[49]
Murthy, R.; Borges, V.F.; Conlin, A.; Chaves, J.; Chamberlain, M.; Gray, T.; Vo, A.; Hamilton, E. Tucatinib with capecitabine and trastuzumab in advanced HER2-positive metastatic breast cancer with and without brain metastases: A non-randomised, open-label, phase 1b study. Lancet Oncol., 2018, 19(7), 880-888.
[http://dx.doi.org/10.1016/S1470-2045(18)30256-0 PMID: 29804905]
[50]
Li, X.; Yang, C.; Wan, H.; Zhang, G.; Feng, J.; Zhang, L.; Chen, X.; Zhong, D.; Lou, L.; Tao, W.; Zhang, L. Discovery and development of pyrotinib: A novel irreversible EGFR/HER2 dual tyrosine kinase inhibitor with favorable safety profiles for the treatment of breast cancer. Eur. J. Pharm. Sci., 2017, 110, 51-61.
[http://dx.doi.org/10.1016/j.ejps.2017.01.021] [PMID: 28115222]
[51]
Blair, H.A. Pyrotinib: First global approval. Drugs, 2018, 78(16), 1751-1755.
[http://dx.doi.org/10.1007/s40265-018-0997-0] [PMID: 30341682]
[52]
Li, Q.; Guan, X.; Chen, S.; Yi, Z.; Lan, B.; Xing, P.; Fan, Y.; Wang, J.; Luo, Y.; Yuan, P.; Cai, R.; Zhang, P.; Li, Q.; Zhong, D.; Zhang, Y.; Zou, J.; Zhu, X.; Ma, F.; Xu, B. Safety, efficacy, and biomarker analysis of pyrotinib in combination with capecitabine in HER2-positive metastatic breast cancer patients: A phase I clinical trial. Clin. Cancer Res., 2019, 25(17), 5212-5220.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-4173]
[53]
Ma, F.; Ouyang, Q.; Li, W.; Jiang, Z.; Tong, Z.; Liu, Y.; Li, H.; Yu, S.; Feng, J.; Wang, S.; Hu, X.; Zou, J.; Zhu, X.; Xu, B. Pyrotinib Or lapatinib combined with capecitabine In Her2-Positive metastatic breast cancer with prior taxanes, anthracyclines, and/or trastuzumab: A randomized, Phase Ii study. J. Clin. Oncol., 2019, 37(29), 2610-2619.
[http://dx.doi.org/10.1200/JCO.19.00108] [PMID: 31430226]
[54]
Dungo, R.T.; Keating, G.M. Afatinib: First global approval. Drugs, 2013, 73(13), 1503-1515.
[http://dx.doi.org/10.1007/s40265-013-0111-6] [PMID: 23982599]
[55]
Li, D.; Ambrogio, L.; Shimamura, T.; Kubo, S.; Takahashi, M.; Chirieac, L.R.; Padera, R.F.; Shapiro, G.I.; Baum, A.; Himmelsbach, F.; Rettig, W.J.; Meyerson, M.; Solca, F.; Greulich, H.; Wong, K.K. BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene, 2008, 27(34), 4702-4711.
[http://dx.doi.org/10.1038/onc.2008.109] [PMID: 18408761]
[56]
Torigoe, H.; Shien, K.; Takeda, T.; Yoshioka, T.; Namba, K.; Sato, H.; Suzawa, K.; Yamamoto, H.; Soh, J.; Sakaguchi, M.; Tomida, S.; Miyoshi, S.; Toyooka, S. Abstract 1832: Acquired resistance mechanisms to afatinib in lung cancer cells harboring HER2 alterations. Cancer Research., 2018, 78(Suppl. 13), 1832.
[http://dx.doi.org/10.1158/1538-7445.AM2018-1832]
[57]
Gallant, J. Development of afatinib resistance in lung adenocarcinoma: Case report. Reactions, 2016, 1619, 17-17.
[58]
Wong, T.W.; Lee, F.Y.; Yu, C.; Luo, F.R.; Oppenheimer, S.; Zhang, H.; Smykla, R.A.; Mastalerz, H.; Fink, B.E.; Hunt, J.T.; Gavai, A.V.; Vite, G.D. Preclinical antitumor activity of BMS-599626, a pan-HER kinase inhibitor that inhibits HER1/HER2 homodimer and heterodimer signaling. Clin. Cancer Res., 2006, 12(20 Pt 1), 6186-6193.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-0642 PMID: 17062696]
[59]
Soria, J-C.; Cortes, J.; Massard, C.; Armand, J-P.; De Andreis, D.; Ropert, S.; Lopez, E.; Catteau, A.; James, J.; Marier, J-F.; Beliveau, M.; Martell, R.E.; Baselga, J. Phase I safety, pharmacokinetic and pharmacodynamic trial of BMS-599626 (AC480), an oral pan-HER receptor tyrosine kinase inhibitor, in patients with advanced solid tumors. Ann. Oncol., 2012, 23(2), 463-471.
[http://dx.doi.org/10.1093/annonc/mdr137] [PMID: 21576284]
[60]
Rabindran, S.K.; Discafani, C.M.; Rosfjord, E.C.; Baxter, M.; Floyd, M.B.; Golas, J.; Hallett, W.A.; Johnson, B.D.; Nilakantan, R.; Overbeek, E.; Reich, M.F.; Shen, R.; Shi, X.; Tsou, H.R.; Wang, Y.F.; Wissner, A. Antitumor activity of HKI-272, an orally active, irreversible inhibitor of the HER-2 tyrosine kinase. Cancer Res., 2004, 64(11), 3958-3965.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-2868 PMID: 15173008]
[61]
Wong, K-K.; Fracasso, P.M.; Bukowski, R.M.; Lynch, T.J.; Munster, P.N.; Shapiro, G.I.; Jänne, P.A.; Eder, J.P.; Naughton, M.J.; Ellis, M.J.; Jones, S.F.; Mekhail, T.; Zacharchuk, C.; Vermette, J.; Abbas, R.; Quinn, S.; Powell, C.; Burris, H.A. A phase I study with neratinib (HKI-272), an irreversible pan ErbB receptor tyrosine kinase inhibitor, in patients with solid tumors. Clin. Cancer Res., 2009, 15(7), 2552-2558.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-1978 PMID: 19318484]
[62]
Sequist, L.V.; Besse, B.; Lynch, T.J.; Miller, V.A.; Wong, K.K.; Gitlitz, B.; Eaton, K.; Zacharchuk, C.; Freyman, A.; Powell, C.; Ananthakrishnan, R.; Quinn, S.; Soria, J.C. Neratinib, an irreversible pan-ErbB receptor tyrosine kinase inhibitor: Results of a phase II trial in patients with advanced non-small-cell lung cancer. J. Clin. Oncol., 2010, 28(18), 3076-3083.
[http://dx.doi.org/10.1200/JCO.2009.27.9414] [PMID: 20479403]
[63]
Freedman, R.A.; Gelman, R.S.; Wefel, J.S.; Melisko, M.E.; Hess, K.R.; Connolly, R.M.; Van Poznak, C.H.; Niravath, P.A.; Puhalla, S.L.; Ibrahim, N.; Blackwell, K.L.; Moy, B.; Herold, C.; Liu, M.C.; Lowe, A.; Agar, N.Y.; Ryabin, N.; Farooq, S.; Lawler, E.; Rimawi, M.F.; Krop, I.E.; Wolff, A.C.; Winer, E.P.; Lin, N.U. Translational Breast Cancer Research Consortium (TBCRC) 022: A phase II trial of neratinib for patients with human epidermal growth factor receptor 2-positive breast cancer and brain metastases. J. Clin. Oncol., 2016, 34(9), 945-952.
[http://dx.doi.org/10.1200/JCO.2015.63.0343] [PMID: 26834058]
[64]
Ishikawa, T.; Seto, M.; Banno, H.; Kawakita, Y.; Oorui, M.; Taniguchi, T.; Ohta, Y.; Tamura, T.; Nakayama, A.; Miki, H.; Kamiguchi, H.; Tanaka, T.; Habuka, N.; Sogabe, S.; Yano, J.; Aertgeerts, K.; Kamiyama, K. Design and synthesis of novel human epidermal growth factor receptor 2 (HER2)/epidermal growth factor receptor (EGFR) dual inhibitors bearing a pyrrolo[3,2-d]pyrimidine scaffold. J. Med. Chem., 2011, 54(23), 8030-8050.
[http://dx.doi.org/10.1021/jm2008634] [PMID: 22003817]
[65]
Doi, T.; Takiuchi, H.; Ohtsu, A.; Fuse, N.; Goto, M.; Yoshida, M.; Dote, N.; Kuze, Y.; Jinno, F.; Fujimoto, M.; Takubo, T.; Nakayama, N.; Tsutsumi, R. Phase I first-in-human study of TAK-285, a novel investigational dual HER2/EGFR inhibitor, in cancer patients. Br. J. Cancer, 2012, 106(4), 666-672.
[http://dx.doi.org/10.1038/bjc.2011.590] [PMID: 22240796]
[66]
Erdő, F.; Gordon, J.; Wu, J-T.; Sziráki, I. Verification of brain penetration of the unbound fraction of a novel HER2/EGFR dual kinase inhibitor (TAK-285) by microdialysis in rats. Brain Res. Bull., 2012, 87(4-5), 413-419.
[http://dx.doi.org/10.1016/j.brainresbull.2012.01.002 PMID: 22245027]
[67]
Wu, J.; Liao, M.; Gordon, J.; Zhu, Q.; Yu, S.; Bulychev, A.; Xia, C. TAK-285, a Novel HER2/EGFR inhibitor, penetrates the CNS in rats with an intact Blood Brain Barrier (BBB). Cancer Res., 2009, 69(Suppl. 24), 5098.
[http://dx.doi.org/10.1158/0008-5472.SABCS-09-5098 ]
[68]
Hayashi, A.; Tamura, T.; Yusa, T.; Takagi, S.; Ohta, Y. A novel HER2 inhibitor TAK-285 overcomes trastuzumab resistance of HER2-over-expressing breast cancer. Cancer Res., 2009, 69(Suppl. 2), 3143.
[http://dx.doi.org/10.1158/0008-5472.SABCS-3143 ]
[69]
Cai, X.; Zhai, H-X.; Wang, J.; Forrester, J.; Qu, H.; Yin, L.; Lai, C-J.; Bao, R.; Qian, C. Discovery of 7-(4-(3-ethynylphenylamino)-7-methoxyquinazolin-6-yloxy)-N-hydroxyheptanamide (CUDc-101) as a potent multi-acting HDAC, EGFR, and HER2 inhibitor for the treatment of cancer. J. Med. Chem., 2010, 53(5), 2000-2009.
[http://dx.doi.org/10.1021/jm901453q] [PMID: 20143778]
[70]
Shimizu, T.; Tolcher, A.W.; LoRusso, P.; Papadopoulos, K.; Patnaik, A.; Smith, L.; Keegan, M. 364 The first-in-human, first-in-class study of CUDC-101, a multi-targeted inhibitor of HDAC, EGFR, and HER2: A Phase I study in patients with advanced cancer. Europ. J. Cancer, Suppl., 2010, 8(7), 115.
[http://dx.doi.org/10.1016/S1359-6349(10)72071-1.]
[71]
Schlaff, C.D.; Arscott, W.T.; Gordon, I.; Camphausen, K.A.; Tandle, A. Human EGFR-2, EGFR and HDAC triple-inhibitor CUDC-101 enhances radiosensitiviy of GBM cells. Biomed. Res. J., 2015, 2(1), 105-119.
[http://dx.doi.org/10.4103/2349-3666.240616]
[72]
Moertl, S.; Payer, S.; Kell, R.; Winkler, K.; Anastasov, N.; Atkinson, M.J. Comparison of radiosensitization by HDAC inhibitors CUDC-101 and SAHA in pancreatic cancer cells. Int. J. Mol. Sci., 2019, 20(13), 3259.
[http://dx.doi.org/10.3390/ijms20133259] [PMID: 31269745]
[73]
Tanaka, H.; Hirata, M.; Shinonome, S.; Wada, T.; Iguchi, M.; Dohi, K.; Inoue, M.; Ishioka, Y.; Hojo, K.; Yamada, T.; Sugimoto, T.; Masuno, K.; Nezasa, K.; Sato, N.; Matsuo, K.; Yonezawa, S.; Frenkel, E.P.; Shichijo, M. Preclinical antitumor activity of S-222611, an oral reversible tyrosine kinase inhibitor of epidermal growth factor receptor and human epidermal growth factor receptor 2. Cancer Sci., 2014, 105(8), 1040-1048.
[http://dx.doi.org/10.1111/cas.12449] [PMID: 24837299]
[74]
Arkenau, H-T.; Italiano, A.; Mak, G.; Toulmonde, M.; Baird, R.D.; Garcia-Corbacho, J.; Plummer, R.; Flynn, M.; Forster, M.; Wilson, R.H.; Tosi, D.; Adenis, A.; Donaldson, K.; Posner, J.; Kawabata, I.; Arimura, A.; Deva, S.; Spicer, J. An extended phase Ib study of epertinib, an orally active reversible dual EGFR/HER2 tyrosine kinase inhibitor, in patients with solid tumours. Eur. J. Cancer, 2018, 103, 17-23.
[http://dx.doi.org/10.1016/j.ejca.2018.07.134] [PMID: 30196106]
[75]
Cha, M.Y.; Lee, K.O.; Kim, M.; Song, J.Y.; Lee, K.H.; Park, J.; Chae, Y.J.; Kim, Y.H.; Suh, K.H.; Lee, G.S.; Park, S.B.; Kim, M.S. Antitumor activity of HM781-36B, a highly effective pan-HER inhibitor in erlotinib-resistant NSCLC and other EGFR-dependent cancer models. Int. J. Cancer, 2012, 130(10), 2445-2454.
[http://dx.doi.org/10.1002/ijc.26276] [PMID: 21732342]
[76]
Kim, T.M.; Lee, K-W.; Oh, D-Y.; Lee, J-S. Im, S.-A.; Kim, D.-W.; Han, S.-W.; Kim, Y. J.; Kim, T.-Y.; Kim, J. H.; Park, K.-M.; Son, J.; Bang, Y.-J., A phase I study of HM781-36B, a novel pan-HER inhibitor, in patients (pts) with advanced solid tumors. J. Clin. Oncol., 2012, 30(Suppl. 15), 3076-3076.
[http://dx.doi.org/10.1200/jco.2012.30.15_suppl.3076]
[77]
Kim, Y.J.; Oh, J.; Kim, T.M. Phase I study to evaluate the safety and to assess the food effect of HM781-36B, a novel pan-HER inhibitor continuously given in patients with advanced solid tumors. Gastric Cancer, 2013, 3, 15.
[78]
Park, Y.H.; Lee, K.H.; Sohn, J.H.; Lee, K.S.; Jung, K.H.; Kim, J.H.; Lee, K.H.; Ahn, J.S.; Kim, T.Y.; Kim, G.M.; Park, I.H.; Kim, S.B.; Kim, S.H.; Han, H.S. Im, Y.H.; Ahn, J.H.; Kim, J.Y.; Kang, J.; Im, S.A. A phase II trial of the pan-HER inhibitor poziotinib, in patients with HER2-positive metastatic breast cancer who had received at least two prior HER2-directed regimens: Results of the NOV120101-203 trial. Int. J. Cancer, 2018, 143(12), 3240-3247.
[http://dx.doi.org/10.1002/ijc.31651] [PMID: 29978467]
[79]
Kim, T-Y.; Han, H.S.; Lee, K-W.; Zang, D.Y.; Rha, S.Y.; Park, Y.I.; Kim, J-S.; Lee, K-H.; Park, S.H.; Song, E-K.; Jung, S.A.; Lee, N.; Kim, Y.H.; Cho, J.Y.; Bang, Y.J. A phase I/II study of poziotinib combined with paclitaxel and trastuzumab in patients with HER2-positive advanced gastric cancer. Gastric Cancer, 2019, 22(6), 1206-1214.
[http://dx.doi.org/10.1007/s10120-019-00958-4] [PMID: 30945121]
[80]
Engelman, J.A.; Zejnullahu, K.; Gale, C-M.; Lifshits, E.; Gonzales, A.J.; Shimamura, T.; Zhao, F.; Vincent, P.W.; Naumov, G.N.; Bradner, J.E.; Althaus, I.W.; Gandhi, L.; Shapiro, G.I.; Nelson, J.M.; Heymach, J.V.; Meyerson, M.; Wong, K.K.; Jänne, P.A. PF00299804, an irreversible pan-ERBB inhibitor, is effective in lung cancer models with EGFR and ERBB2 mutations that are resistant to gefitinib. Cancer Res., 2007, 67(24), 11924-11932.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1885 PMID: 18089823]
[81]
Shirley, M. Dacomitinib: First global approval. Drugs, 2018, 78(18), 1947-1953.
[http://dx.doi.org/10.1007/s40265-018-1028-x] [PMID: 30506139]
[82]
van Geel, R.M.J.M.; van Brummelen, E.M.J.; Eskens, F.A.L.M.; Huijberts, S.C.F.A.; de Vos, F.Y.F.L.; Lolkema, M.P.J.K.; Devriese, L.A.; Opdam, F.L.; Marchetti, S.; Steeghs, N.; Monkhorst, K.; Thijssen, B.; Rosing, H.; Huitema, A.D.R.; Beijnen, J.H.; Bernards, R.; Schellens, J.H.M. Phase 1 study of the pan-HER inhibitor dacomitinib plus the MEK1/2 inhibitor PD-0325901 in patients with KRAS-mutation-positive colorectal, non-small-cell lung and pancreatic cancer. Br. J. Cancer, 2020, 122(8), 1166-1174.
[http://dx.doi.org/10.1038/s41416-020-0776-z] [PMID: 32147669]
[83]
Rusnak, D.W.; Lackey, K.; Affleck, K.; Wood, E.R.; Alligood, K.J.; Rhodes, N.; Keith, B.R.; Murray, D.M.; Knight, W.B.; Mullin, R.J.; Gilmer, T.M. The effects of the novel, reversible epidermal growth factor receptor/ErbB-2 tyrosine kinase inhibitor, GW2016, on the growth of human normal and tumor-derived cell lines in vitro and in vivo. Mol. Cancer Ther., 2001, 1(2), 85-94.
[PMID: 12467226]
[84]
Moy, B.; Kirkpatrick, P.; Kar, S.; Goss, P. Lapatinib. Nat. Rev. Drug Discov., 2007, 6(6), 431-432.
[http://dx.doi.org/10.1038/nrd2332]
[85]
Rothé, F.; Silva, M.J.; Venet, D.; Campbell, C.; Bradburry, I.; Rouas, G.; de Azambuja, E.; Maetens, M.; Fumagalli, D.; Rodrik-Outmezguine, V.; Di Cosimo, S.; Rosa, D.; Chia, S.; Wardley, A.; Ueno, T.; Janni, W.; Huober, J.; Baselga, J.; Piccart, M.; Loi, S.; Sotiriou, C.; Dawson, S.J.; Ignatiadis, M. Circulating tumor DNA in HER2-amplified breast cancer: A translational research substudy of the NeoALTTO phase III trial. Clin. Cancer Res., 2019, 25(12), 3581-3588.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-2521 PMID: 30862692]
[86]
Huober, J.B.; Holmes, E.M.; Baselga, J.; De Azambuja, E.; Untch, M.; Fumagalli, D.; Sarp, S.; Lang, I.; Smith, I.E.; Boyle, F.M.; Xu, B.; Lecocq, C.; De La Pena, L.; Jackisch, C.; Gelber, R.D.; Piccart-Gebhart, M.J.; Di Cosimo, S. Survival outcomes of the NeoALTTO study: Updated results of a randomized multicenter phase III neoadjuvant trial. J. Clin. Oncol., 2017, 35(Suppl. 15), 512-512.
[http://dx.doi.org/10.1200/JCO.2017.35.15_suppl.512]
[87]
Hickinson, D.M.; Klinowska, T.; Speake, G.; Vincent, J.; Trigwell, C.; Anderton, J.; Beck, S.; Marshall, G.; Davenport, S.; Callis, R.; Mills, E.; Grosios, K.; Smith, P.; Barlaam, B.; Wilkinson, R.W.; Ogilvie, D. AZD8931, an equipotent, reversible inhibitor of signaling by epidermal growth factor receptor, ERBB2 (HER2), and ERBB3: A unique agent for simultaneous ERBB receptor blockade in cancer. Clin. Cancer Res., 2010, 16(4), 1159-1169.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-2353 PMID: 20145185]
[88]
Johnston, S.; Basik, M.; Hegg, R.; Lausoontornsiri, W.; Grzeda, L.; Clemons, M.; Dreosti, L.; Mann, H.; Stuart, M.; Cristofanilli, M. Inhibition of EGFR, HER2, and HER3 signaling with AZD8931 in combination with anastrozole as an anticancer approach: Phase II randomized study in women with endocrine-therapy-naïve advanced breast cancer. Breast Cancer Res. Treat., 2016, 160(1), 91-99.
[http://dx.doi.org/10.1007/s10549-016-3979-5] [PMID: 27654971]
[89]
Thomas, A.; Virdee, P.S.; Eatock, M.; Lord, S.R.; Falk, S.; Anthoney, D.A.; Turkington, R.C.; Goff, M.; Elhussein, L.; Collins, L.; Love, S.; Moschandreas, J.; Middleton, M.R. Dual Erb B Inhibition in Oesophago-gastric Cancer (DEBIOC): A phase I dose escalating safety study and randomised dose expansion of AZD8931 in combination with oxaliplatin and capecitabine chemotherapy in patients with oesophagogastric adenocarcinoma. Eur. J. Cancer, 2020, 124, 131-141.
[http://dx.doi.org/10.1016/j.ejca.2019.10.010] [PMID: 31765988]
[90]
Yang, B.; Yang, Y-S.; Yang, N.; Li, G.; Zhu, H-L. Design, biological evaluation and 3D QSAR studies of novel dioxin-containing pyrazoline derivatives with thiourea skeleton as selective HER-2 inhibitors. Sci. Rep., 2016, 6, 27571.
[http://dx.doi.org/10.1038/srep27571] [PMID: 27273260]
[91]
Sadek, M.M.; Serrya, R.A.; Kafafy, A-H.N.; Ahmed, M.; Wang, F.; Abouzid, K.A. Discovery of new HER2/EGFR dual kinase inhibitors based on the anilinoquinazoline scaffold as potential anti-cancer agents. J. Enzyme Inhib. Med. Chem., 2014, 29(2), 215-222.
[http://dx.doi.org/10.3109/14756366.2013.765417] [PMID: 23402383]
[92]
Milik, S.N.; Abdel-Aziz, A.K.; Lasheen, D.S.; Serya, R.A.T.; Minucci, S.; Abouzid, K.A.M. Surmounting the resistance against EGFR inhibitors through the development of thieno[2,3-d]pyrimidine-based dual EGFR/HER2 inhibitors. Eur. J. Med. Chem., 2018, 155, 316-336.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.011] [PMID: 29902719]
[93]
Sangani, C.B.; Makawana, J.A.; Duan, Y-T.; Yin, Y.; Teraiya, S.B.; Thumar, N.J.; Zhu, H-L. Design, synthesis and molecular modeling of biquinoline-pyridine hybrids as a new class of potential EGFR and HER-2 kinase inhibitors. Bioorg. Med. Chem. Lett., 2014, 24(18), 4472-4476.
[http://dx.doi.org/10.1016/j.bmcl.2014.07.094] [PMID: 25172421]
[94]
Ren, Y-J.; Wang, Z-C.; Zhang, X.; Qiu, H-Y.; Wang, P-F.; Gong, H-B.; Jiang, A-Q.; Zhu, H-L. EGFR/HER-2 inhibitors: synthesis, biological evaluation and 3D-QSAR analysis of dihydropyridine-containing thiazolinone derivatives. RSC Adv., 2015, 5(28), 21445-21454.
[http://dx.doi.org/10.1039/C4RA10606G]
[95]
Tao, X-X.; Duan, Y-T.; Chen, L-W.; Tang, D-J.; Yang, M-R.; Wang, P-F.; Xu, C.; Zhu, H-L. Design, synthesis and biological evaluation of pyrazolyl-nitroimidazole derivatives as potential EGFR/HER-2 kinase inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(2), 677-683.
[http://dx.doi.org/10.1016/j.bmcl.2015.11.040] [PMID: 26652482]
[96]
Lyu, A.; Fang, L.; Gou, S. Design and synthesis of Lapatinib derivatives containing a branched side chain as HER1/HER2 targeting antitumor drug candidates. Eur. J. Med. Chem., 2014, 87, 631-642.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.006] [PMID: 25305330]
[97]
Elkamhawy, A.; Farag, A.K.; Viswanath, A.N.I.; Bedair, T.M.; Leem, D.G.; Lee, K-T.; Pae, A.N.; Roh, E.J. Targeting EGFR/HER2 tyrosine kinases with a new potent series of 6-substituted 4-anilinoquinazoline hybrids: Design, synthesis, kinase assay, cell-based assay, and molecular docking. Bioorg. Med. Chem. Lett., 2015, 25(22), 5147-5154.
[http://dx.doi.org/10.1016/j.bmcl.2015.10.003] [PMID: 26475520]
[98]
Yin, S.; Tang, C.; Wang, B.; Zhang, Y.; Zhou, L.; Xue, L.; Zhang, C. Design, synthesis and biological evaluation of novel EGFR/HER2 dual inhibitors bearing a oxazolo[4,5-g]quinazolin-2(1H)-one scaffold. Eur. J. Med. Chem., 2016, 120, 26-36.
[http://dx.doi.org/10.1016/j.ejmech.2016.04.072] [PMID: 27187856]
[99]
Alsaid, M.S.; Al-Mishari, A.A.; Soliman, A.M.; Ragab, F.A.; Ghorab, M.M. Discovery of Benzo[g]quinazolin benzenesulfonamide derivatives as dual EGFR/HER2 inhibitors. Eur. J. Med. Chem., 2017, 141, 84-91.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.061] [PMID: 29028534]
[100]
Ghorab, M.M.; Alsaid, M.S.; Soliman, A.M.; Al-Mishari, A.A. Benzo[g]quinazolin-based scaffold derivatives as dual EGFR/HER2 inhibitors. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 67-73.
[http://dx.doi.org/10.1080/14756366.2017.1389922 PMID: 29098904]
[101]
Soliman, A.M.; Alqahtani, A.S.; Ghorab, M. Novel sulphonamide benzoquinazolinones as dual EGFR/HER2 inhibitors, apoptosis inducers and radiosensitizers. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1030-1040.
[http://dx.doi.org/10.1080/14756366.2019.1609469 PMID: 31074303]
[102]
Elmetwally, S.A.; Saied, K.F.; Eissa, I.H.; Elkaeed, E.B. Design, synthesis and anticancer evaluation of thieno[2,3-d]pyrimidine derivatives as dual EGFR/HER2 inhibitors and apoptosis inducers. Bioorg. Chem., 2019.88102944
[http://dx.doi.org/10.1016/j.bioorg.2019.102944] [PMID: 31051400]
[103]
Sever, B.; Altıntop, M.D.; Radwan, M.O.; Özdemir, A.; Otsuka, M.; Fujita, M.; Ciftci, H.I. Design, synthesis and biological evaluation of a new series of thiazolyl-pyrazolines as dual EGFR and HER2 inhibitors. Eur. J. Med. Chem., 2019.182111648
[http://dx.doi.org/10.1016/j.ejmech.2019.111648 PMID: 31493743]
[104]
Irie, H.; Ito, K.; Fujioka, Y.; Oguchi, K.; Fujioka, A.; Hashimoto, A.; Ohsawa, H.; Tanaka, K.; Funabashi, K.; Araki, H.; Kawai, Y.; Shimamura, T.; Wadhwa, R.; Ohkubo, S.; Matsuo, K. TAS0728, a covalent-binding, HER2-selective kinase inhibitor shows potent antitumor activity in preclinical models. Mol. Cancer Ther., 2019, 18(4), 733-742.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-1085 PMID: 30787176]
[105]
Li, J.; Wang, H.; Li, J.; Bao, J.; Wu, C. Discovery of a potential HER2 inhibitor from natural products for the treatment of HER2-positive breast cancer. Int. J. Mol. Sci., 2016, 17(7), 1055.
[http://dx.doi.org/10.3390/ijms17071055] [PMID: 27376283]
[106]
Jin, S.; Sun, X.; Liu, D.; Xie, H.; Rao, Y. Design, synthesis and biological study of potent and covalent HER-2 tyrosine kinase inhibitors with low cytotoxicity in vitro. Chem. Pap., 2019, 73(6), 1333-1345.
[http://dx.doi.org/10.1007/s11696-019-00686-0]
[107]
Zahreddine, H.; Borden, K.L. Mechanisms and insights into drug resistance in cancer. Front. Pharmacol., 2013, 4, 28.
[http://dx.doi.org/10.3389/fphar.2013.00028] [PMID: 23504227]
[108]
de Vree, J.M.L.; Jacquemin, E.; Sturm, E.; Cresteil, D.; Bosma, P.J.; Aten, J.; Deleuze, J-F.; Desrochers, M.; Burdelski, M.; Bernard, O.; Oude Elferink, R.P.; Hadchouel, M. Mutations in the MDR3 gene cause progressive familial intrahepatic cholestasis. Proc. Natl. Acad. Sci. USA, 1998, 95(1), 282-287.
[http://dx.doi.org/10.1073/pnas.95.1.282] [PMID: 9419367]
[109]
Mansoori, B.; Mohammadi, A.; Davudian, S.; Shirjang, S.; Baradaran, B. The different mechanisms of cancer drug resistance: A brief review. Adv. Pharm. Bull., 2017, 7(3), 339-348.
[http://dx.doi.org/10.15171/apb.2017.041] [PMID: 29071215]
[110]
Campo, M.; Gerber, D.; Gainor, J.F.; Heist, R.S.; Temel, J.S.; Shaw, A.T.; Fidias, P.; Muzikansky, A.; Engelman, J.A.; Sequist, L.V. Acquired resistance to first-line afatinib and the challenges of prearranged progression biopsies. J. Thorac. Oncol., 2016, 11(11), 2022-2026.
[http://dx.doi.org/10.1016/j.jtho.2016.06.032] [PMID: 27553514]
[111]
Wu, S-G.; Liu, Y-N.; Tsai, M-F.; Chang, Y-L.; Yu, C-J.; Yang, P-C.; Yang, J.C-H.; Wen, Y-F.; Shih, J-Y. The mechanism of acquired resistance to irreversible EGFR tyrosine kinase inhibitor-afatinib in lung adenocarcinoma patients. Oncotarget, 2016, 7(11), 12404-12413.
[http://dx.doi.org/10.18632/oncotarget.7189] [PMID: 26862733]
[112]
Nakamura, T.; Nakashima, C.; Komiya, K.; Kitera, K.; Hirai, M.; Kimura, S.; Aragane, N. Mechanisms of acquired resistance to afatinib clarified with liquid biopsy. PLoS One, 2018, 13(12)e0209384
[http://dx.doi.org/10.1371/journal.pone.0209384] [PMID: 30550608]
[113]
Manca, P.; Russano, M.; Pantano, F.; Tonini, G.; Santini, D. Change from lung adenocarcinoma to small cell lung cancer as a mechanism of resistance to afatinib. Oncotarget, 2017, 8(35), 59986-59990.
[http://dx.doi.org/10.18632/oncotarget.17607] [PMID: 28938699]
[114]
McNeil, C. Two targets, one drug for new EGFR inhibitors. J. Natl. Cancer Inst., 2006, 98(16), 1102-1103.
[http://dx.doi.org/10.1093/jnci/djj350] [PMID: 16912259]
[115]
Ivy, S.P.; Wick, J.Y.; Kaufman, B.M. An overview of small-molecule inhibitors of VEGFR signaling. Nat. Rev. Clin. Oncol., 2009, 6(10), 569-579.
[http://dx.doi.org/10.1038/nrclinonc.2009.130] [PMID: 19736552]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy