Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

Molecular Dynamics in Esophageal Adenocarcinoma: Who’s in Control?

Author(s): Tong Dang and Jianyuan Chai*

Volume 20, Issue 10, 2020

Page: [789 - 801] Pages: 13

DOI: 10.2174/1568009620666200720011341

Price: $65

Abstract

Esophageal adenocarcinoma (EAC) is one of the fastest-growing cancers in the world. It occurs primarily due to the chronic gastroesophageal reflux disease (GERD), during which the esophageal epithelium is frequently exposed to the acidic fluid coming up from the stomach. This triggers gene mutations in the esophageal cells, which may lead to EAC development. While p53 is activated to get rid of the mutated cells, NFκB orchestrates the remaining cells to heal the wound. However, if the mutations happen to TP53 (a common occasion), the mutant product turns to support tumorigenesis. In this case, NFκB goes along with the mutant p53 to facilitate cancer progression. TRAIL is one of the cytokines produced in response to GERD episodes and it can kill cancer cells selectively, but its clinical use has not been as successful as expected, because some highly sophisticated defense mechanisms against TRAIL have developed during the malignancy. To clear the obstacles for TRAIL action, using a second agent to disarm the cancer cells is required. CCN1 appears to be such a molecule. While supporting normal esophageal cell growth, CCN1 suppresses malignant transformation by inhibiting NFκB and kills the EAC cell through TRAIL-mediated apoptosis.

Keywords: Esophageal cancer, p53, NFkB, TRAIL, CCN1, gastroesophageal reflux disease (GERD), esophageal cells.

Graphical Abstract
[1]
Chai, J. Esophagus and esophageal cancer.Esophageal Cancer and Beyond; Chai, J., Ed.; IntechOpen: London, 2018, pp. 1-10.
[2]
Chai, J.; Jamal, M.M. Esophageal malignancy: a growing concern. World J. Gastroenterol., 2012, 18(45), 6521-6526.
[http://dx.doi.org/10.3748/wjg.v18.i45.6521] [PMID: 23236223]
[3]
Fitzmaurice, C.; Abate, D.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdel-Rahman, O.; Abdelalim, A.; Abdoli, A.; Abdollahpour, I.; Abdulle, A.S.M.; Abebe, N.D.; Abraha, H.N.; Abu-Raddad, L.J.; Abualhasan, A.; Adedeji, I.A.; Advani, S.M.; Afarideh, M.; Afshari, M.; Aghaali, M.; Agius, D.; Agrawal, S.; Ahmadi, A.; Ahmadian, E.; Ahmadpour, E.; Ahmed, M.B.; Akbari, M.E.; Akinyemiju, T.; Al-Aly, Z. AlAbdulKader, A.M.; Alahdab, F.; Alam, T.; Alamene, G.M.; Alemnew, B.T.T.; Alene, K.A.; Alinia, C.; Alipour, V.; Aljunid, S.M.; Bakeshei, F.A.; Almadi, M.A.H.; Almasi-Hashiani, A.; Alsharif, U.; Alsowaidi, S.; Alvis-Guzman, N.; Amini, E.; Amini, S.; Amoako, Y.A.; Anbari, Z.; Anber, N.H.; Andrei, C.L.; Anjomshoa, M.; Ansari, F.; Ansariadi, A.; Appiah, S.C.Y.; Arab-Zozani, M.; Arabloo, J.; Arefi, Z.; Aremu, O.; Areri, H.A.; Artaman, A.; Asayesh, H.; Asfaw, E.T.; Ashagre, A.F.; Assadi, R.; Ataeinia, B.; Atalay, H.T.; Ataro, Z.; Atique, S.; Ausloos, M.; Avila-Burgos, L.; Avokpaho, E.F.G.A.; Awasthi, A.; Awoke, N.; Ayala Quintanilla, B.P.; Ayanore, M.A.; Ayele, H.T.; Babaee, E.; Bacha, U.; Badawi, A.; Bagherzadeh, M.; Bagli, E.; Balakrishnan, S.; Balouchi, A.; Bärnighausen, T.W.; Battista, R.J.; Behzadifar, M.; Behzadifar, M.; Bekele, B.B.; Belay, Y.B.; Belayneh, Y.M.; Berfield, K.K.S.; Berhane, A.; Bernabe, E.; Beuran, M.; Bhakta, N.; Bhattacharyya, K.; Biadgo, B.; Bijani, A.; Bin Sayeed, M.S.; Birungi, C.; Bisignano, C.; Bitew, H.; Bjørge, T.; Bleyer, A.; Bogale, K.A.; Bojia, H.A.; Borzì, A.M.; Bosetti, C.; Bou-Orm, I.R.; Brenner, H.; Brewer, J.D.; Briko, A.N.; Briko, N.I.; Bustamante-Teixeira, M.T.; Butt, Z.A.; Carreras, G.; Carrero, J.J.; Carvalho, F.; Castro, C.; Castro, F.; Catalá-López, F.; Cerin, E.; Chaiah, Y.; Chanie, W.F.; Chattu, V.K.; Chaturvedi, P.; Chauhan, N.S.; Chehrazi, M.; Chiang, P.P.; Chichiabellu, T.Y.; Chido-Amajuoyi, O.G.; Chimed-Ochir, O.; Choi, J.J.; Christopher, D.J.; Chu, D.T.; Constantin, M.M.; Costa, V.M.; Crocetti, E.; Crowe, C.S.; Curado, M.P.; Dahlawi, S.M.A.; Damiani, G.; Darwish, A.H.; Daryani, A.; das Neves, J.; Demeke, F.M.; Demis, A.B.; Demissie, B.W.; Demoz, G.T.; Denova-Gutiérrez, E.; Derakhshani, A.; Deribe, K.S.; Desai, R.; Desalegn, B.B.; Desta, M.; Dey, S.; Dharmaratne, S.D.; Dhimal, M.; Diaz, D.; Dinberu, M.T.T.; Djalalinia, S.; Doku, D.T.; Drake, T.M.; Dubey, M.; Dubljanin, E.; Duken, E.E.; Ebrahimi, H.; Effiong, A.; Eftekhari, A.; El Sayed, I.; Zaki, M.E.S.; El-Jaafary, S.I.; El-Khatib, Z.; Elemineh, D.A.; Elkout, H.; Ellenbogen, R.G.; Elsharkawy, A.; Emamian, M.H.; Endalew, D.A.; Endries, A.Y.; Eshrati, B.; Fadhil, I.; Fallah, V.; Faramarzi, M.; Farhangi, M.A.; Farioli, A.; Farzadfar, F.; Fentahun, N.; Fernandes, E.; Feyissa, G.T.; Filip, I.; Fischer, F.; Fisher, J.L.; Force, L.M.; Foroutan, M.; Freitas, M.; Fukumoto, T.; Futran, N.D.; Gallus, S.; Gankpe, F.G.; Gayesa, R.T.; Gebrehiwot, T.T.; Gebremeskel, G.G.; Gedefaw, G.A.; Gelaw, B.K.; Geta, B.; Getachew, S.; Gezae, K.E.; Ghafourifard, M.; Ghajar, A.; Ghashghaee, A.; Gholamian, A.; Gill, P.S.; Ginindza, T.T.G.; Girmay, A.; Gizaw, M.; Gomez, R.S.; Gopalani, S.V.; Gorini, G.; Goulart, B.N.G.; Grada, A.; Ribeiro Guerra, M.; Guimaraes, A.L.S.; Gupta, P.C.; Gupta, R.; Hadkhale, K.; Haj-Mirzaian, A.; Haj-Mirzaian, A.; Hamadeh, R.R.; Hamidi, S.; Hanfore, L.K.; Haro, J.M.; Hasankhani, M.; Hasanzadeh, A.; Hassen, H.Y.; Hay, R.J.; Hay, S.I.; Henok, A.; Henry, N.J.; Herteliu, C.; Hidru, H.D.; Hoang, C.L.; Hole, M.K.; Hoogar, P.; Horita, N.; Hosgood, H.D.; Hosseini, M.; Hosseinzadeh, M.; Hostiuc, M.; Hostiuc, S.; Househ, M.; Hussen, M.M.; Ileanu, B.; Ilic, M.D.; Innos, K.; Irvani, S.S.N.; Iseh, K.R.; Islam, S.M.S.; Islami, F.; Jafari Balalami, N.; Jafarinia, M.; Jahangiry, L.; Jahani, M.A.; Jahanmehr, N.; Jakovljevic, M.; James, S.L.; Javanbakht, M.; Jayaraman, S.; Jee, S.H.; Jenabi, E.; Jha, R.P.; Jonas, J.B.; Jonnagaddala, J.; Joo, T.; Jungari, S.B.; Jürisson, M.; Kabir, A.; Kamangar, F.; Karch, A.; Karimi, N.; Karimian, A.; Kasaeian, A.; Kasahun, G.G.; Kassa, B.; Kassa, T.D.; Kassaw, M.W.; Kaul, A.; Keiyoro, P.N.; Kelbore, A.G.; Kerbo, A.A.; Khader, Y.S.; Khalilarjmandi, M.; Khan, E.A.; Khan, G.; Khang, Y.H.; Khatab, K.; Khater, A.; Khayamzadeh, M.; Khazaee-Pool, M.; Khazaei, S.; Khoja, A.T.; Khosravi, M.H.; Khubchandani, J.; Kianipour, N.; Kim, D.; Kim, Y.J.; Kisa, A.; Kisa, S.; Kissimova-Skarbek, K.; Komaki, H.; Koyanagi, A.; Krohn, K.J.; Bicer, B.K.; Kugbey, N.; Kumar, V.; Kuupiel, D.; La Vecchia, C.; Lad, D.P.; Lake, E.A.; Lakew, A.M.; Lal, D.K.; Lami, F.H.; Lan, Q.; Lasrado, S.; Lauriola, P.; Lazarus, J.V.; Leigh, J.; Leshargie, C.T.; Liao, Y.; Limenih, M.A.; Listl, S.; Lopez, A.D.; Lopukhov, P.D.; Lunevicius, R.; Madadin, M.; Magdeldin, S.; El Razek, H.M.A.; Majeed, A.; Maleki, A.; Malekzadeh, R.; Manafi, A.; Manafi, N.; Manamo, W.A.; Mansourian, M.; Mansournia, M.A.; Mantovani, L.G.; Maroufizadeh, S.; Martini, S.M.S.; Mashamba-Thompson, T.P.; Massenburg, B.B.; Maswabi, M.T.; Mathur, M.R.; McAlinden, C.; McKee, M.; Meheretu, H.A.A.; Mehrotra, R.; Mehta, V.; Meier, T.; Melaku, Y.A.; Meles, G.G.; Meles, H.G.; Melese, A.; Melku, M.; Memiah, P.T.N.; Mendoza, W.; Menezes, R.G.; Merat, S.; Meretoja, T.J.; Mestrovic, T.; Miazgowski, B.; Miazgowski, T.; Mihretie, K.M.M.; Miller, T.R.; Mills, E.J.; Mir, S.M.; Mirzaei, H.; Mirzaei, H.R.; Mishra, R.; Moazen, B.; Mohammad, D.K.; Mohammad, K.A.; Mohammad, Y.; Darwesh, A.M.; Mohammadbeigi, A.; Mohammadi, H.; Mohammadi, M.; Mohammadian, M.; Mohammadian-Hafshejani, A.; Mohammadoo-Khorasani, M.; Mohammadpourhodki, R.; Mohammed, A.S.; Mohammed, J.A.; Mohammed, S.; Mohebi, F.; Mokdad, A.H.; Monasta, L.; Moodley, Y.; Moosazadeh, M.; Moossavi, M.; Moradi, G.; Moradi-Joo, M.; Moradi-Lakeh, M.; Moradpour, F.; Morawska, L.; Morgado-da-Costa, J.; Morisaki, N.; Morrison, S.D.; Mosapour, A.; Mousavi, S.M.; Muche, A.A.; Muhammed, O.S.S.; Musa, J.; Nabhan, A.R.; Naderi, M.; Nagarajan, A.J.; Nagel, G.; Nahvijou, A.; Naik, G.; Najafi, F.; Naldi, L.; Nam, H.S.; Nasiri, N.; Nazari, J.; Negoi, I.; Neupane, S.; Newcomb, P.A.; Nggada, H.A.; Ngunjiri, J.W.; Nguyen, C.T.; Nikniaz, L.; Ningrum, D.N.A.; Nirayo, Y.L.; Nixon, M.R.; Nnaji, C.A.; Nojomi, M.; Nosratnejad, S.; Shiadeh, M.N.; Obsa, M.S.; Ofori-Asenso, R.; Ogbo, F.A.; Oh, I.H.; Olagunju, A.T.; Olagunju, T.O.; Oluwasanu, M.M.; Omonisi, A.E.; Onwujekwe, O.E.; Oommen, A.M.; Oren, E.; Ortega-Altamirano, D.D.V.; Ota, E.; Otstavnov, S.S.; Owolabi, M.O.; P A, M.; Padubidri, J.R.; Pakhale, S.; Pakpour, A.H.; Pana, A.; Park, E.K.; Parsian, H.; Pashaei, T.; Patel, S.; Patil, S.T.; Pennini, A.; Pereira, D.M.; Piccinelli, C.; Pillay, J.D.; Pirestani, M.; Pishgar, F.; Postma, M.J.; Pourjafar, H.; Pourmalek, F.; Pourshams, A.; Prakash, S.; Prasad, N.; Qorbani, M.; Rabiee, M.; Rabiee, N.; Radfar, A.; Rafiei, A.; Rahim, F.; Rahimi, M.; Rahman, M.A.; Rajati, F.; Rana, S.M.; Raoofi, S.; Rath, G.K.; Rawaf, D.L.; Rawaf, S.; Reiner, R.C.; Renzaho, A.M.N.; Rezaei, N.; Rezapour, A.; Ribeiro, A.I.; Ribeiro, D.; Ronfani, L.; Roro, E.M.; Roshandel, G.; Rostami, A.; Saad, R.S.; Sabbagh, P.; Sabour, S.; Saddik, B.; Safiri, S.; Sahebkar, A.; Salahshoor, M.R.; Salehi, F.; Salem, H.; Salem, M.R.; Salimzadeh, H.; Salomon, J.A.; Samy, A.M.; Sanabria, J.; Santric Milicevic, M.M.; Sartorius, B.; Sarveazad, A.; Sathian, B.; Satpathy, M.; Savic, M.; Sawhney, M.; Sayyah, M.; Schneider, I.J.C.; Schöttker, B.; Sekerija, M.; Sepanlou, S.G.; Sepehrimanesh, M.; Seyedmousavi, S.; Shaahmadi, F.; Shabaninejad, H.; Shahbaz, M.; Shaikh, M.A.; Shamshirian, A.; Shamsizadeh, M.; Sharafi, H.; Sharafi, Z.; Sharif, M.; Sharifi, A.; Sharifi, H.; Sharma, R.; Sheikh, A.; Shirkoohi, R.; Shukla, S.R.; Si, S.; Siabani, S.; Silva, D.A.S.; Silveira, D.G.A.; Singh, A.; Singh, J.A.; Sisay, S.; Sitas, F.; Sobngwi, E.; Soofi, M.; Soriano, J.B.; Stathopoulou, V.; Sufiyan, M.B.; Tabarés-Seisdedos, R.; Tabuchi, T.; Takahashi, K.; Tamtaji, O.R.; Tarawneh, M.R.; Tassew, S.G.; Taymoori, P.; Tehrani-Banihashemi, A.; Temsah, M.H.; Temsah, O.; Tesfay, B.E.; Tesfay, F.H.; Teshale, M.Y.; Tessema, G.A.; Thapa, S.; Tlaye, K.G.; Topor-Madry, R.; Tovani-Palone, M.R.; Traini, E.; Tran, B.X.; Tran, K.B.; Tsadik, A.G.; Ullah, I.; Uthman, O.A.; Vacante, M.; Vaezi, M.; Varona Pérez, P.; Veisani, Y.; Vidale, S.; Violante, F.S.; Vlassov, V.; Vollset, S.E.; Vos, T.; Vosoughi, K.; Vu, G.T.; Vujcic, I.S.; Wabinga, H.; Wachamo, T.M.; Wagnew, F.S.; Waheed, Y.; Weldegebreal, F.; Weldesamuel, G.T.; Wijeratne, T.; Wondafrash, D.Z.; Wonde, T.E.; Wondmieneh, A.B.; Workie, H.M.; Yadav, R.; Yadegar, A.; Yadollahpour, A.; Yaseri, M.; Yazdi-Feyzabadi, V.; Yeshaneh, A.; Yimam, M.A.; Yimer, E.M.; Yisma, E.; Yonemoto, N.; Younis, M.Z.; Yousefi, B.; Yousefifard, M.; Yu, C.; Zabeh, E.; Zadnik, V.; Moghadam, T.Z.; Zaidi, Z.; Zamani, M.; Zandian, H.; Zangeneh, A.; Zaki, L.; Zendehdel, K.; Zenebe, Z.M.; Zewale, T.A.; Ziapour, A.; Zodpey, S.; Murray, C.J.L. Global Burden of Disease Cancer Collaboration. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2017: A systematic analysis for the global burden of disease study. JAMA Oncol., 2019, 5, 1749-1768.
[http://dx.doi.org/10.1001/jamaoncol.2019.2996] [PMID: 31560378]
[4]
Malhotra, G.K.; Yanala, U.; Ravipati, A.; Follet, M.; Vijayakumar, M.; Are, C. Global trends in esophageal cancer. J. Surg. Oncol., 2017, 115(5), 564-579.
[http://dx.doi.org/10.1002/jso.24592] [PMID: 28320055]
[5]
Castellsagué, X.; Muñoz, N.; De Stefani, E.; Victora, C.G.; Castelletto, R.; Rolón, P.A.; Quintana, M.J. Independent and joint effects of tobacco smoking and alcohol drinking on the risk of esophageal cancer in men and women. Int. J. Cancer, 1999, 82(5), 657-664.
[http://dx.doi.org/10.1002/(SICI)1097-0215(19990827)82:5<657:AID-IJC7>3.0.CO;2-C] [PMID: 10417762]
[6]
Eriksen, M.P.; Mackay, J.; Schluger, N.W. The Tobacco Atlas. Georgia; American Cancer Society Publishing: Atlanta, 2015.
[7]
Corley, D.A. Obesity and the rising incidence of oesophageal and gastric adenocarcinoma: what is the link? Gut, 2007, 56(11), 1493-1494.
[http://dx.doi.org/10.1136/gut.2007.124255] [PMID: 17938426]
[8]
Milivojevic, V.; Milosavljevic, T. Burden of gastroduodenal diseases from the global perspective; Curr. Treat Options Gastro, 2020.
[9]
Finucane, M.M.; Stevens, G.A.; Cowan, M.J.; Danaei, G.; Lin, J.K.; Paciorek, C.J.; Singh, G.M.; Gutierrez, H.R.; Lu, Y.; Bahalim, A.N.; Farzadfar, F.; Riley, L.M.; Ezzati, M. Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group. (Body Mass Index). National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9·1 million participants. Lancet, 2011, 377(9765), 557-567.
[http://dx.doi.org/10.1016/S0140-6736(10)62037-5] [PMID: 21295846]
[10]
Ng, M.; Fleming, T.; Robinson, M.; Thomson, B.; Graetz, N.; Margono, C.; Mullany, E.C.; Biryukov, S.; Abbafati, C.; Abera, S.F.; Abraham, J.P.; Abu-Rmeileh, N.M.; Achoki, T.; AlBuhairan, F.S.; Alemu, Z.A.; Alfonso, R.; Ali, M.K.; Ali, R.; Guzman, N.A.; Ammar, W.; Anwari, P.; Banerjee, A.; Barquera, S.; Basu, S.; Bennett, D.A.; Bhutta, Z.; Blore, J.; Cabral, N.; Nonato, I.C.; Chang, J.C.; Chowdhury, R.; Courville, K.J.; Criqui, M.H.; Cundiff, D.K.; Dabhadkar, K.C.; Dandona, L.; Davis, A.; Dayama, A.; Dharmaratne, S.D.; Ding, E.L.; Durrani, A.M.; Esteghamati, A.; Farzadfar, F.; Fay, D.F.; Feigin, V.L.; Flaxman, A.; Forouzanfar, M.H.; Goto, A.; Green, M.A.; Gupta, R.; Hafezi-Nejad, N.; Hankey, G.J.; Harewood, H.C.; Havmoeller, R.; Hay, S.; Hernandez, L.; Husseini, A.; Idrisov, B.T.; Ikeda, N.; Islami, F.; Jahangir, E.; Jassal, S.K.; Jee, S.H.; Jeffreys, M.; Jonas, J.B.; Kabagambe, E.K.; Khalifa, S.E.; Kengne, A.P.; Khader, Y.S.; Khang, Y.H.; Kim, D.; Kimokoti, R.W.; Kinge, J.M.; Kokubo, Y.; Kosen, S.; Kwan, G.; Lai, T.; Leinsalu, M.; Li, Y.; Liang, X.; Liu, S.; Logroscino, G.; Lotufo, P.A.; Lu, Y.; Ma, J.; Mainoo, N.K.; Mensah, G.A.; Merriman, T.R.; Mokdad, A.H.; Moschandreas, J.; Naghavi, M.; Naheed, A.; Nand, D.; Narayan, K.M.; Nelson, E.L.; Neuhouser, M.L.; Nisar, M.I.; Ohkubo, T.; Oti, S.O.; Pedroza, A.; Prabhakaran, D.; Roy, N.; Sampson, U.; Seo, H.; Sepanlou, S.G.; Shibuya, K.; Shiri, R.; Shiue, I.; Singh, G.M.; Singh, J.A.; Skirbekk, V.; Stapelberg, N.J.; Sturua, L.; Sykes, B.L.; Tobias, M.; Tran, B.X.; Trasande, L.; Toyoshima, H.; van de Vijver, S.; Vasankari, T.J.; Veerman, J.L.; Velasquez-Melendez, G.; Vlassov, V.V.; Vollset, S.E.; Vos, T.; Wang, C.; Wang, X.; Weiderpass, E.; Werdecker, A.; Wright, J.L.; Yang, Y.C.; Yatsuya, H.; Yoon, J.; Yoon, S.J.; Zhao, Y.; Zhou, M.; Zhu, S.; Lopez, A.D.; Murray, C.J.; Gakidou, E. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet, 2014, 384(9945), 766-781.
[http://dx.doi.org/10.1016/S0140-6736(14)60460-8] [PMID: 24880830]
[11]
Souza, R.F. From reflux esophagitis to esophageal adenocarcinoma. Dig. Dis., 2016, 34(5), 483-490.
[http://dx.doi.org/10.1159/000445225] [PMID: 27331918]
[12]
Ireland, A.P.; Peters, J.H.; Smyrk, T.C.; DeMeester, T.R.; Clark, G.W.; Mirvish, S.S.; Adrian, T.E. Gastric juice protects against the development of esophageal adenocarcinoma in the rat. Ann. Surg., 1996, 224(3), 358-370.
[http://dx.doi.org/10.1097/00000658-199609000-00012] [PMID: 8813264]
[13]
Debruyne, P.R.; Witek, M.; Gong, L.; Birbe, R.; Chervoneva, I.; Jin, T.; Domon-Cell, C.; Palazzo, J.P.; Freund, J.N.; Li, P.; Pitari, G.M.; Schulz, S.; Waldman, S.A. Bile acids induce ectopic expression of intestinal guanylyl cyclase C Through nuclear factor-kappaB and Cdx2 in human esophageal cells. Gastroenterology, 2006, 130(4), 1191-1206.
[http://dx.doi.org/10.1053/j.gastro.2005.12.032] [PMID: 16618413]
[14]
Dang, T.; Meng, X.; Modak, C.; Wu, J.; Chang, Z.; Che, N.; Narvaez, R.; Chai, J. Overexpression of CCN1 in Het1A cells attenuates bile-induced esophageal metaplasia through suppressing non-canonical NFκB activation. Cytokine, 2019, 116, 61-69.
[http://dx.doi.org/10.1016/j.cyto.2018.12.020] [PMID: 30685604]
[15]
Kauer, W.K.; Peters, J.H.; DeMeester, T.R.; Feussner, H.; Ireland, A.P.; Stein, H.J.; Siewert, R.J. Composition and concentration of bile acid reflux into the esophagus of patients with gastroesophageal reflux disease. Surgery, 1997, 122(5), 874-881.
[http://dx.doi.org/10.1016/S0039-6060(97)90327-5] [PMID: 9369886]
[16]
Vogelstein, B.; Fearon, E.R.; Hamilton, S.R.; Kern, S.E.; Preisinger, A.C.; Leppert, M.; Nakamura, Y.; White, R.; Smits, A.M.; Bos, J.L. Genetic alterations during colorectal-tumor development. N. Engl. J. Med., 1988, 319(9), 525-532.
[http://dx.doi.org/10.1056/NEJM198809013190901] [PMID: 2841597]
[17]
Sottoriva, A.; Kang, H.; Ma, Z.; Graham, T.A.; Salomon, M.P.; Zhao, J.; Marjoram, P.; Siegmund, K.; Press, M.F.; Shibata, D.; Curtis, C. A Big Bang model of human colorectal tumor growth. Nat. Genet., 2015, 47(3), 209-216.
[http://dx.doi.org/10.1038/ng.3214] [PMID: 25665006]
[18]
Cross, W.Ch.; Graham, T.A.; Wright, N.A. New paradigms in clonal evolution: punctuated equilibrium in cancer. J. Pathol., 2016, 240(2), 126-136.
[http://dx.doi.org/10.1002/path.4757] [PMID: 27282810]
[19]
Chai, J. Gastric ulcer healing – Role of serum response factor.Peptic Ulcer Disease; Chai, J., Ed.; IntechOpen: London, 2011, pp. 143-164.
[20]
Modak, C.; Chai, J. Serum response factor: look into the gut. World J. Gastroenterol., 2010, 16(18), 2195-2201.
[http://dx.doi.org/10.3748/wjg.v16.i18.2195] [PMID: 20458756]
[21]
Chai, J.; Tarnawski, A.S. Serum response factor: discovery, biochemistry, biological roles and implications for tissue injury healing. J. Physiol. Pharmacol., 2002, 53(2), 147-157.
[PMID: 12120892]
[22]
Dulak, A.M.; Stojanov, P.; Peng, S.; Lawrence, M.S.; Fox, C.; Stewart, C.; Bandla, S.; Imamura, Y.; Schumacher, S.E.; Shefler, E.; McKenna, A.; Carter, S.L.; Cibulskis, K.; Sivachenko, A.; Saksena, G.; Voet, D.; Ramos, A.H.; Auclair, D.; Thompson, K.; Sougnez, C.; Onofrio, R.C.; Guiducci, C.; Beroukhim, R.; Zhou, Z.; Lin, L.; Lin, J.; Reddy, R.; Chang, A.; Landrenau, R.; Pennathur, A.; Ogino, S.; Luketich, J.D.; Golub, T.R.; Gabriel, S.B.; Lander, E.S.; Beer, D.G.; Godfrey, T.E.; Getz, G.; Bass, A.J. Exome and whole-genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity. Nat. Genet., 2013, 45(5), 478-486.
[http://dx.doi.org/10.1038/ng.2591] [PMID: 23525077]
[23]
Cancer Genome Atlas Research Network. Integrated genomic characterization of oesophageal carcinoma. Nature, 2017, 541(7636), 169-175.
[http://dx.doi.org/10.1038/nature20805] [PMID: 28052061]
[24]
Smeenk, L.; van Heeringen, S.J.; Koeppel, M.; Gilbert, B.; Janssen-Megens, E.; Stunnenberg, H.G.; Lohrum, M. Role of p53 serine 46 in p53 target gene regulation. PLoS One, 2011, 6(3), e17574.
[http://dx.doi.org/10.1371/journal.pone.0017574] [PMID: 21394211]
[25]
Menendez, D.; Nguyen, T.A.; Freudenberg, J.M.; Mathew, V.J.; Anderson, C.W.; Jothi, R.; Resnick, M.A. Diverse stresses dramatically alter genome-wide p53 binding and transactivation landscape in human cancer cells. Nucleic Acids Res., 2013, 41(15), 7286-7301.
[http://dx.doi.org/10.1093/nar/gkt504] [PMID: 23775793]
[26]
McDade, S.S.; Patel, D.; Moran, M.; Campbell, J.; Fenwick, K.; Kozarewa, I.; Orr, N.J.; Lord, C.J.; Ashworth, A.A.; McCance, D.J. Genome-wide characterization reveals complex interplay between TP53 and TP63 in response to genotoxic stress. Nucleic Acids Res., 2014, 42(10), 6270-6285.
[http://dx.doi.org/10.1093/nar/gku299] [PMID: 24823795]
[27]
Baugh, E.H.; Ke, H.; Levine, A.J.; Bonneau, R.A.; Chan, C.S. Why are there hotspot mutations in the TP53 gene in human cancers? Cell Death Differ., 2017, 2017, 1-7.
[PMID: 29099487]
[28]
Reid, B.J. p53 and neoplastic progression in Barrett’s esophagus. Am. J. Gastroenterol., 2001, 96(5), 1321-1323.
[http://dx.doi.org/10.1111/j.1572-0241.2001.03844.x] [PMID: 11374661]
[29]
Fischer, M. Census and evaluation of p53 target genes. Oncogene, 2017, 36(28), 3943-3956.
[http://dx.doi.org/10.1038/onc.2016.502] [PMID: 28288132]
[30]
Hainaut, P.; Pfeifer, G.P. Somatic TP53 Mutations in the era of genome sequencing. Cold Spring Harb. Perspect. Med., 2016, 6(11), 1-22.
[http://dx.doi.org/10.1101/cshperspect.a026179] [PMID: 27503997]
[31]
Ben-Neriah, Y.; Karin, M. Inflammation meets cancer, with NF-κB as the matchmaker. Nat. Immunol., 2011, 12(8), 715-723.
[http://dx.doi.org/10.1038/ni.2060] [PMID: 21772280]
[32]
Hayden, M.S.; Ghosh, S. Regulation of NF-κB by TNF family cytokines. Semin. Immunol., 2014, 26(3), 253-266.
[http://dx.doi.org/10.1016/j.smim.2014.05.004] [PMID: 24958609]
[33]
Devin, A.; Cook, A.; Lin, Y.; Rodriguez, Y.; Kelliher, M.; Liu, Z. The distinct roles of TRAF2 and RIP in IKK activation by TNF-R1: TRAF2 recruits IKK to TNF-R1 while RIP mediates IKK activation. Immunity, 2000, 12(4), 419-429.
[http://dx.doi.org/10.1016/S1074-7613(00)80194-6] [PMID: 10795740]
[34]
Sun, S.C. The noncanonical NF-κB pathway. Immunol. Rev., 2012, 246(1), 125-140.
[http://dx.doi.org/10.1111/j.1600-065X.2011.01088.x] [PMID: 22435551]
[35]
Oeckinghaus, A.; Hayden, M.S.; Ghosh, S. Crosstalk in NF-κB signaling pathways. Nat. Immunol., 2011, 12(8), 695-708.
[http://dx.doi.org/10.1038/ni.2065] [PMID: 21772278]
[36]
Ruland, J. Return to homeostasis: downregulation of NF-κB responses. Nat. Immunol., 2011, 12(8), 709-714.
[http://dx.doi.org/10.1038/ni.2055] [PMID: 21772279]
[37]
Zetoune, F.S.; Murthy, A.R.; Shao, Z.; Hlaing, T.; Zeidler, M.G.; Li, Y.; Vincenz, C. A20 inhibits NF-kappa B activation downstream of multiple Map3 kinases and interacts with the I kappa B signalosome. Cytokine, 2001, 15(6), 282-298.
[http://dx.doi.org/10.1006/cyto.2001.0921] [PMID: 11594795]
[38]
Webster, G.A.; Perkins, N.D. Transcriptional cross talk between NF-kappaB and p53. Mol. Cell. Biol., 1999, 19(5), 3485-3495.
[http://dx.doi.org/10.1128/MCB.19.5.3485] [PMID: 10207072]
[39]
Schneider, G.; Henrich, A.; Greiner, G.; Wolf, V.; Lovas, A.; Wieczorek, M.; Wagner, T.; Reichardt, S.; von Werder, A.; Schmid, R.M.; Weih, F.; Heinzel, T.; Saur, D.; Krämer, O.H. Cross talk between stimulated NF-kappaB and the tumor suppressor p53. Oncogene, 2010, 29(19), 2795-2806.
[http://dx.doi.org/10.1038/onc.2010.46] [PMID: 20190799]
[40]
Vaughan, C.A.; Singh, S.; Windle, B.; Sankala, H.M.; Graves, P.R.; Andrew Yeudall, W.; Deb, S.P.; Deb, S. p53 mutants induce transcription of NF-κB2 in H1299 cells through CBP and STAT binding on the NF-κB2 promoter and gain of function activity. Arch. Biochem. Biophys., 2012, 518(1), 79-88.
[http://dx.doi.org/10.1016/j.abb.2011.12.006] [PMID: 22198284]
[41]
Wajant, H. Death receptors. Essays Biochem., 2003, 39, 53-71.
[http://dx.doi.org/10.1042/bse0390053] [PMID: 14585074]
[42]
Micheau, O.; Shirley, S.; Dufour, F. Death receptors as targets in cancer. Br. J. Pharmacol., 2013, 169(8), 1723-1744.
[http://dx.doi.org/10.1111/bph.12238] [PMID: 23638798]
[43]
Lavrik, I.N. Systems biology of death receptor networks: live and let die. 2014.
[44]
Dostert, C.; Grusdat, M.; Letellier, E.; Brenner, D. The TNF family of ligands and receptors: Communication modules in the immune system and beyond. Physiol. Rev., 2019, 99(1), 115-160.
[http://dx.doi.org/10.1152/physrev.00045.2017] [PMID: 30354964]
[45]
Hehlgans, T.; Pfeffer, K. The intriguing biology of the tumour necrosis factor/tumour necrosis factor receptor superfamily: players, rules and the games. Immunology, 2005, 115(1), 1-20.
[http://dx.doi.org/10.1111/j.1365-2567.2005.02143.x] [PMID: 15819693]
[46]
Kimberley, F.C.; Screaton, G.R. Following a TRAIL: update on a ligand and its five receptors. Cell Res., 2004, 14(5), 359-372.
[http://dx.doi.org/10.1038/sj.cr.7290236] [PMID: 15538968]
[47]
Dang, T.; Modak, C.; Meng, X.; Wu, J.; Narvaez, R.; Chai, J. CCN1 sensitizes esophageal cancer cells to TRAIL-mediated apoptosis. Exp. Cell Res., 2017, 361(1), 163-169.
[http://dx.doi.org/10.1016/j.yexcr.2017.10.015] [PMID: 29055676]
[48]
Meng, X.; Chang, Z.; Che, N.; Wu, J.; Dang, T.; Chai, J. Acid/bile exposure triggers TRAIL-mediated apoptosis in esophageal cancer cells by suppressing the decoy receptors and c-FLIPR. Int. J. Biochem. Cell Biol., 2020, 122105736.
[49]
Neumann, S.; Hasenauer, J.; Pollak, N.; Scheurich, P. Dominant negative effects of tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) receptor 4 on TRAIL receptor 1 signaling by formation of heteromeric complexes. J. Biol. Chem., 2014, 289(23), 16576-16587.
[http://dx.doi.org/10.1074/jbc.M114.559468] [PMID: 24764293]
[50]
Sanlioglu, A.D.; Dirice, E.; Aydin, C.; Erin, N.; Koksoy, S.; Sanlioglu, S. Surface TRAIL decoy receptor-4 expression is correlated with TRAIL resistance in MCF7 breast cancer cells. BMC Cancer, 2005, 5, 54.
[http://dx.doi.org/10.1186/1471-2407-5-54] [PMID: 15916713]
[51]
Aydin, C.; Sanlioglu, A.D.; Karacay, B.; Ozbilim, G.; Dertsiz, L.; Ozbudak, O.; Akdis, C.A.; Sanlioglu, S. Decoy receptor-2 small interfering RNA (siRNA) strategy employing three different siRNA constructs in combination defeats adenovirus-transferred tumor necrosis factor-related apoptosis-inducing ligand resistance in lung cancer cells. Hum. Gene Ther., 2007, 18(1), 39-50.
[http://dx.doi.org/10.1089/hum.2006.111] [PMID: 17187448]
[52]
Riccioni, R.; Pasquini, L.; Mariani, G.; Saulle, E.; Rossini, A.; Diverio, D.; Pelosi, E.; Vitale, A.; Chierichini, A.; Cedrone, M.; Foà, R.; Lo Coco, F.; Peschle, C.; Testa, U. TRAIL decoy receptors mediate resistance of acute myeloid leukemia cells to TRAIL. Haematologica, 2005, 90(5), 612-624.
[PMID: 15921376]
[53]
Lane, D.; Matte, I.; Laplante, C.; Garde-Granger, P.; Rancourt, C.; Piché, A. Osteoprotegerin (OPG) activates integrin, focal adhesion kinase (FAK), and Akt signaling in ovarian cancer cells to attenuate TRAIL-induced apoptosis. J. Ovarian Res., 2013, 6(1), 82.
[http://dx.doi.org/10.1186/1757-2215-6-82] [PMID: 24267510]
[54]
Cao, X.; Pobezinskaya, Y.L.; Morgan, M.J.; Liu, Z. The role of TRADD in TRAIL-induced apoptosis and signaling. FASEB J. 2011; 25: 1353-1358Kantari C, Walczak H. Caspase-8 and Bid: Caught in the act between death receptors and mitochondria. Biochim. Biophys. Acta Mol. Cell Res., 2011, 1813, 558-563.
[55]
Falschlehner, C.; Emmerich, C.H.; Gerlach, B.; Walczak, H. TRAIL signalling: decisions between life and death. Int. J. Biochem. Cell Biol., 2007, 39(7-8), 1462-1475.
[http://dx.doi.org/10.1016/j.biocel.2007.02.007] [PMID: 17403612]
[56]
Siegmund, D.; Lang, I.; Wajant, H. Cell death-independent activities of the death receptors CD95, TRAILR1, and TRAILR2. FEBS J., 2017, 284(8), 1131-1159.
[http://dx.doi.org/10.1111/febs.13968] [PMID: 27865080]
[57]
Chang, Z.; Dang, T.; Che, N.; Yu, H.; Chai, J.; Chen, W. Esophageal cancer cells convert the death signal from TRAIL into a stimulus for survival during acid/bile exposure. Dig. Liver Dis., 2020.
[58]
Oberst, A.; Pop, C.; Tremblay, A.G.; Blais, V.; Denault, J.B.; Salvesen, G.S.; Green, D.R. Inducible dimerization and inducible cleavage reveal a requirement for both processes in caspase-8 activation. J. Biol. Chem., 2010, 285(22), 16632-16642.
[http://dx.doi.org/10.1074/jbc.M109.095083] [PMID: 20308068]
[59]
Krueger, A.; Baumann, S.; Krammer, P.H.; Kirchhoff, S. FLICE-inhibitory proteins: regulators of death receptor-mediated apoptosis. Mol. Cell. Biol., 2001, 21(24), 8247-8254.
[http://dx.doi.org/10.1128/MCB.21.24.8247-8254.2001] [PMID: 11713262]
[60]
Oztürk, S.; Schleich, K.; Lavrik, I.N. Cellular FLICE-like inhibitory proteins (c-FLIPs): fine-tuners of life and death decisions. Exp. Cell Res., 2012, 318(11), 1324-1331.
[http://dx.doi.org/10.1016/j.yexcr.2012.01.019] [PMID: 22309778]
[61]
Safa, A.R. c-FLIP, a master anti-apoptotic regulator. Exp. Oncol., 2012, 34(3), 176-184.
[PMID: 23070002]
[62]
Kaunisto, A.; Kochin, V.; Asaoka, T.; Mikhailov, A.; Poukkula, M.; Meinander, A.; Eriksson, J.E. PKC-mediated phosphorylation regulates c-FLIP ubiquitylation and stability. Cell Death Differ., 2009, 16(9), 1215-1226.
[http://dx.doi.org/10.1038/cdd.2009.35] [PMID: 19343040]
[63]
Hsu, T.S.; Mo, S.T.; Hsu, P.N.; Lai, M.Z. c-FLIP is a target of the E3 ligase deltex1 in gastric cancer. Cell Death Dis., 2018, 9(2), 135.
[http://dx.doi.org/10.1038/s41419-017-0165-6] [PMID: 29374180]
[64]
Van Geelen, C.M.; de Vries, E.G.; de Jong, S. Lessons from TRAIL-resistance mechanisms in colorectal cancer cells: paving the road to patient-tailored therapy. Drug Resist. Updat., 2004, 7(6), 345-358.
[http://dx.doi.org/10.1016/j.drup.2004.11.002] [PMID: 15790545]
[65]
Haag, C.; Stadel, D.; Zhou, S.; Bachem, M.G.; Möller, P.; Debatin, K.M.; Fulda, S. Identification of c-FLIP(L) and c-FLIP(S) as critical regulators of death receptor-induced apoptosis in pancreatic cancer cells. Gut, 2011, 60(2), 225-237.
[http://dx.doi.org/10.1136/gut.2009.202325] [PMID: 20876774]
[66]
Zhang, L.; Dittmer, M.R.; Blackwell, K.; Workman, L.M.; Hostager, B.; Habelhah, H. TRAIL activates JNK and NF-κB through RIP1-dependent and -independent pathways. Cell. Signal., 2015, 27(2), 306-314.
[http://dx.doi.org/10.1016/j.cellsig.2014.11.014] [PMID: 25446254]
[67]
Oberst, A. Death in the fast lane: what’s next for necroptosis? FEBS J., 2016, 283(14), 2616-2625.
[http://dx.doi.org/10.1111/febs.13520] [PMID: 26395133]
[68]
Schimmer, A.D.; Welsh, K.; Pinilla, C.; Wang, Z.; Krajewska, M.; Bonneau, M.J.; Pedersen, I.M.; Kitada, S.; Scott, F.L.; Bailly-Maitre, B.; Glinsky, G.; Scudiero, D.; Sausville, E.; Salvesen, G.; Nefzi, A.; Ostresh, J.M.; Houghten, R.A.; Reed, J.C. Small-molecule antagonists of apoptosis suppressor XIAP exhibit broad antitumor activity. Cancer Cell, 2004, 5(1), 25-35.
[http://dx.doi.org/10.1016/S1535-6108(03)00332-5] [PMID: 14749124]
[69]
Dang, T.; Modak, C.; Meng, X.; Wu, J.; Narvaez, R.; Chai, J. CCN1 induces apoptosis in esophageal adenocarcinoma through p53-dependent downregulation of survivin. J. Cell. Biochem., 2018, 120, 2070-2077.
[http://dx.doi.org/10.1002/jcb.27515] [PMID: 30318638]
[70]
Pobezinskaya, Y.L.; Liu, Z. The role of TRADD in death receptor signaling. Cell Cycle, 2012, 11(5), 871-876.
[http://dx.doi.org/10.4161/cc.11.5.19300] [PMID: 22333735]
[71]
Hall, M.A.; Cleveland, J.L. Clearing the TRAIL for cancer therapy. Cancer Cell, 2007, 12(1), 4-6.
[http://dx.doi.org/10.1016/j.ccr.2007.06.011] [PMID: 17613431]
[72]
Kruyt, F.A. TRAIL and cancer therapy. Cancer Lett., 2008, 263(1), 14-25.
[http://dx.doi.org/10.1016/j.canlet.2008.02.003] [PMID: 18329793]
[73]
Grzeszkiewicz, T.M.; Kirschling, D.J.; Chen, N.; Lau, L.F. CYR61 stimulates human skin fibroblast migration through Integrin α vbeta 5 and enhances mitogenesis through integrin α vbeta 3, independent of its carboxyl-terminal domain. J. Biol. Chem., 2001, 276(24), 21943-21950.
[http://dx.doi.org/10.1074/jbc.M100978200] [PMID: 11287419]
[74]
Chen, C.C.; Lau, L.F. Deadly liaisons: fatal attraction between CCN matricellular proteins and the tumor necrosis factor family of cytokines. J. Cell Commun. Signal., 2010, 4(1), 63-69.
[http://dx.doi.org/10.1007/s12079-009-0080-4] [PMID: 19898959]
[75]
Chen, C.C.; Young, J.L.; Monzon, R.I.; Chen, N.; Todorović, V.; Lau, L.F. Cytotoxicity of TNFalpha is regulated by integrin-mediated matrix signaling. EMBO J., 2007, 26(5), 1257-1267.
[http://dx.doi.org/10.1038/sj.emboj.7601596] [PMID: 17318182]
[76]
Juric, V.; Chen, C.C.; Lau, L.F. Fas-mediated apoptosis is regulated by the extracellular matrix protein CCN1 (CYR61) in vitro and in vivo. Mol. Cell. Biol., 2009, 29(12), 3266-3279.
[http://dx.doi.org/10.1128/MCB.00064-09] [PMID: 19364818]
[77]
Franzen, C.A.; Chen, C.C.; Todorović, V.; Juric, V.; Monzon, R.I.; Lau, L.F. Matrix protein CCN1 is critical for prostate carcinoma cell proliferation and TRAIL-induced apoptosis. Mol. Cancer Res., 2009, 7(7), 1045-1055.
[http://dx.doi.org/10.1158/1541-7786.MCR-09-0017] [PMID: 19584265]
[78]
Chen, C.C.; Kim, K.H.; Lau, L.F. The matricellular protein CCN1 suppresses hepatocarcinogenesis by inhibiting compensatory proliferation. Oncogene, 2016, 35(10), 1314-1323.
[http://dx.doi.org/10.1038/onc.2015.190] [PMID: 26028023]
[79]
Chien, W.; Kumagai, T.; Miller, C.W.; Desmond, J.C.; Frank, J.M.; Said, J.W.; Koeffler, H.P. Cyr61 suppresses growth of human endometrial cancer cells. J. Biol. Chem., 2004, 279(51), 53087-53096.
[http://dx.doi.org/10.1074/jbc.M410254200] [PMID: 15471875]
[80]
Gery, S.; Xie, D.; Yin, D.; Gabra, H.; Miller, C.; Wang, H.; Scott, D.; Yi, W.S.; Popoviciu, M.L.; Said, J.W.; Koeffler, H.P. Ovarian carcinomas: CCN genes are aberrantly expressed and CCN1 promotes proliferation of these cells. Clin. Cancer Res., 2005, 11(20), 7243-7254.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-0231] [PMID: 16243794]
[81]
Chai, J.; Norng, M.; Modak, C.; Reavis, K.M.; Mouazzen, W.; Pham, J. CCN1 induces a reversible epithelial-mesenchymal transition in gastric epithelial cells. Lab. Invest., 2010, 90(8), 1140-1151.
[http://dx.doi.org/10.1038/labinvest.2010.101] [PMID: 20458273]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy