Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

The Influence of Different Disease States on Rituximab Pharmacokinetics

Author(s): Xiaoxing Wang, Wenwen Du, Xianglin Zhang* and Pengmei Li*

Volume 21, Issue 12, 2020

Page: [938 - 946] Pages: 9

DOI: 10.2174/1389200221666200719004035

Price: $65

Abstract

Background: The anti-CD20 antibody rituximab, which promotes the selective depletion of CD20 positive B cells, was the first targeted therapy that was approved for the treatment of B-cell malignancies, and it is now widely prescribed in both malignant and non-malignant, immune-related diseases. However, the cause of its various clinical responses in certain diseases, have not been clearly elucidated. The variabilities in inter-individual pharmacokinetic and the emerging evidence of the relationships between pharmacokinetic and pharmacodynamic may provide a better understanding of this drug.

Methods: We searched and summarized the latest published articles on rituximab pharmacokinetic profiles and the pharmacokinetic/pharmacodynamic models in different patient populations, including B-cell malignancies, rheumatoid arthritis, ANCA-associated vasculitis, and glomerular kidney diseases.

Results: Most pharmacokinetic data are drawn from clinical studies in oncology clinical practice. Body weight, gender, and antigen-related factors are proven to be the key factors affecting rituximab pharmacokinetics. In addition, the positive exposure-response relations were reported, which provide encouraging evidence for individualized therapies. While in immune disorders, especially in the off-labeled indications, pharmacokinetic studies are quite limited. Compared with that in B-cell malignancies, the differences in the pharmacokinetic parameters may be attributed to the different pathogeneses of diseases, mechanisms of action and dosing strategies. However, the correlation between drug exposure and clinical outcomes remains unclear.

Conclusion: Here, we provide an overview of the complexities associated with rituximab pharmacokinetics and pharmacodynamics in different diseases. Although many influencing factors need to be verified in future studies, a better understanding of the relationships between pharmacokinetic and pharmacodynamic may assist in optimizing rituximab clinical practice.

Keywords: Rituximab, pharmacokinetics, pharmacodynamics, B-cell malignancies, autoimmune diseases, monoclonal antibody.

Graphical Abstract
[1]
Feugier, P. A review of rituximab, the first anti-CD20 monoclonal antibody used in the treatment of B non-Hodgkin’s lymphomas. Future Oncol., 2015, 11(9), 1327-1342.
[http://dx.doi.org/10.2217/fon.15.57]
[2]
Paci, A.; Desnoyer, A.; Delahousse, J.; Blondel, L.; Maritaz, C.; Chaput, N.; Mir, O.; Broutin, S. Pharmacokinetic/pharmacodynamic relationship of therapeutic monoclonal antibodies used in oncology: part 1, monoclonal antibodies, antibody-drug conjugates and bispecific T-cell engagers. Eur. J. Cancer, 2020, 128, 107-118.
[http://dx.doi.org/10.1016/j.ejca.2020.01.005]
[3]
Merrill, J.T.; Neuwelt, C.M.; Wallace, D.J.; Shanahan, J.C.; Latinis, K.M.; Oates, J.C.; Utset, T.O.; Gordon, C.; Isenberg, D.A.; Hsieh, H.J.; Zhang, D.; Brunetta, P.G. Efficacy and safety of rituximab in moderately-to-severely active systemic lupus erythematosus: the randomized, double-blind, phase II/III systemic lupus erythematosus evaluation of rituximab trial. Arthritis Rheum., 2010, 62(1), 222-233.
[http://dx.doi.org/10.1002/art.27233]
[4]
Cornec, D.; Costa, S.; Devauchelle-Pensec, V.; Jousse-Joulin, S.; Marcorelles, P.; Berthelot, J.M.; Chiche, L.; Hachulla, E.; Hatron, P.Y.; Goeb, V.; Vittecoq, O.; Saraux, A.; Pers, J.O. Blood and salivary-gland BAFF-driven B-cell hyperactivity is associated to rituximab inefficacy in primary Sjogren’s syndrome. J. Autoimmun., 2016, 67, 102-110.
[http://dx.doi.org/10.1016/j.jaut.2015.11.002]
[5]
Bennett, D.D.; Ohanian, M.; Cable, C.T. Rituximab in severe skin diseases: target, disease, and dose. Clin. Pharmacol., 2010, 2, 135-141.
[6]
Petereit, H.F.; Rubbert-Roth, A. Rituximab levels in cerebrospinal fluid of patients with neurological autoimmune disorders. Mult. Scler., 2009, 15(2), 189-192.
[http://dx.doi.org/10.1177/1352458508098268]
[7]
Schoergenhofer, C.; Schwameis, M.; Firbas, C.; Bartko, J.; Derhaschnig, U.; Mader, R.M.; Plassmann, R.S.; Jilma-Stohlawetz, P.; Desai, K.; Misra, P.; Jager, U.; Jilma, B. Single, very low rituximab doses in healthy volunteers-a pilot and a randomized trial: implications for dosing and biosimilarity testing. Sci. Rep., 2018, 8(1), 124.
[http://dx.doi.org/10.1038/s41598-017-17934-6]
[8]
Pescovitz, M.D. Rituximab, an anti-cd20 monoclonal antibody: history and mechanism of action. Am. J. Transplant., 2006, 6(5 Pt 1), 859-866.
[http://dx.doi.org/10.1111/j.1600-6143.2006.01288.x]
[9]
Weiner, G.J. Rituximab: mechanism of action. Semin. Hematol., 2010, 47(2), 115-123.
[http://dx.doi.org/10.1053/j.seminhematol.2010.01.011]
[10]
Bagacean, C.; Zdrenghea, M.; Tempescul, A.; Cristea, V.; Renaudineau, Y. Anti-CD20 monoclonal antibodies in chronic lymphocytic leukemia: from uncertainties to promises. Immunotherapy, 2016, 8(5), 569-581.
[http://dx.doi.org/10.2217/imt-2015-0015]
[11]
Arpon, D.R.; Gandhi, M.K.; Martin, J.H. A new frontier in haematology-combining pharmacokinetic with pharmacodynamic factors to improve choice and dose of drug. Br. J. Clin. Pharmacol., 2014, 78(2), 274-281.
[http://dx.doi.org/10.1111/bcp.12318]
[12]
Fleischmann, R.M. Safety of biologic therapy in rheumatoid arthritis and other autoimmune diseases: focus on rituximab. Semin. Arthritis Rheum., 2009, 38(4), 265-280.
[http://dx.doi.org/10.1016/j.semarthrit.2008.01.001]
[13]
Driver, C.B.; Weisman, M.H. Is rituximab a safe and effective treatment for patients with active RA, irrespective of methotrexate treatment? Nat. Clin. Pract. Rheumatol., 2006, 2(8), 408-409.
[http://dx.doi.org/10.1038/ncprheum0255]
[14]
Ternant, D.; Bejan-Angoulvant, T.; Passot, C.; Mulleman, D.; Paintaud, G. Clinical pharmacokinetics and pharmacodynamics of monoclonal antibodies approved to treat rheumatoid arthritis. Clin. Pharmacokinet., 2015, 54(11), 1107-1123.
[http://dx.doi.org/10.1007/s40262-015-0296-9]
[15]
Assouline, S.; Buccheri, V.; Delmer, A.; Gaidano, G.; Trneny, M.; Berthillon, N.; Brewster, M.; Catalani, O.; Li, S.; McIntyre, C.; Sayyed, P.; Badoux, X. Pharmacokinetics, safety, and efficacy of subcutaneous versus intravenous rituximab plus chemotherapy as treatment for chronic lymphocytic leukaemia (SAWYER): a phase 1b, open-label, randomised controlled non-inferiority trial. Lancet Haematol., 2016, 3(3), e128-e138.
[http://dx.doi.org/10.1016/S2352-3026(16)00004-1]
[16]
Golay, J.; Semenzato, G.; Rambaldi, A.; Foa, R.; Gaidano, G.; Gamba, E.; Pane, F.; Pinto, A.; Specchia, G.; Zaja, F.; Regazzi, M. Lessons for the clinic from rituximab pharmacokinetics and pharmacodynamics. MAbs, 2013, 5(6), 826-837.
[http://dx.doi.org/10.4161/mabs.26008]
[17]
Shpilberg, O.; Jackisch, C. Subcutaneous administration of rituximab (MabThera) and trastuzumab (Herceptin) using hyaluronidase. Br. J. Cancer, 2013, 109(6), 1556-1561.
[http://dx.doi.org/10.1038/bjc.2013.371]
[18]
Salar, A.; Avivi, I.; Bittner, B.; Bouabdallah, R.; Brewster, M.; Catalani, O.; Follows, G.; Haynes, A.; Hourcade-Potelleret, F.; Janikova, A.; Larouche, J.F.; McIntyre, C.; Pedersen, M.; Pereira, J.; Sayyed, P.; Shpilberg, O.; Tumyan, G. Comparison of subcutaneous versus intravenous administration of rituximab as maintenance treatment for follicular lymphoma: results from a two-stage, phase IB study. J. Clin. Oncol., 2014, 32(17), 1782-1791.
[http://dx.doi.org/10.1200/JCO.2013.52.2631]
[19]
Davies, A.; Merli, F.; Mihaljevic, B.; Siritanaratkul, N.; Solal-Celigny, P.; Barrett, M.; Berge, C.; Bittner, B.; Boehnke, A.; McIntyre, C.; Macdonald, D. Pharmacokinetics and safety of subcutaneous rituximab in follicular lymphoma (SABRINA): stage 1 analysis of a randomised phase 3 study. Lancet Oncol., 2014, 15(3), 343-352.
[http://dx.doi.org/10.1016/S1470-2045(14)70005-1]
[20]
Yelvington, B.J. Subcutaneous rituximab in follicular lymphoma, chronic lymphocytic leukemia, and diffuse large B-cell lymphoma. J. Adv. Pract. Oncol., 2018, 9(5), 530-534.
[21]
Li, J.; Zhi, J.; Wenger, M.; Valente, N.; Dmoszynska, A.; Robak, T.; Mangat, R.; Joshi, A.; Visich, J. Population pharmacokinetics of rituximab in patients with chronic lymphocytic leukemia. J. Clin. Pharmacol., 2012, 52(12), 1918-1926.
[http://dx.doi.org/10.1177/0091270011430506]
[22]
Rozman, S.; Grabnar, I.; Novakovic, S.; Mrhar, A.; Jezersek Novakovic, B. Population pharmacokinetics of rituximab in patients with diffuse large B-cell lymphoma and association with clinical outcome. Br. J. Clin. Pharmacol., 2017, 83(8), 1782-1790.
[http://dx.doi.org/10.1111/bcp.13271]
[23]
Ternant, D.; Monjanel, H.; Venel, Y.; Prunier-Aesch, C.; Arbion, F.; Colombat, P.; Paintaud, G.; Gyan, E. Nonlinear pharmacokinetics of rituximab in non-Hodgkin lymphomas: a pilot study. Br. J. Clin. Pharmacol., 2019, 85(9), 2002-2010.
[http://dx.doi.org/10.1111/bcp.13991]
[24]
Wang, W.; Wang, E.Q.; Balthasar, J.P. Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin. Pharmacol. Ther., 2008, 84(5), 548-558.
[http://dx.doi.org/10.1038/clpt.2008.170]
[25]
Hill, S.L.; Davies, A. Subcutaneous rituximab with recombinant human hyaluronidase in the treatment of non-Hodgkin lymphoma and chronic lymphocytic leukemia. Future Oncol., 2018, 14(17), 1691-1699.
[http://dx.doi.org/10.2217/fon-2017-0574]
[26]
Davies, A.; Berge, C.; Boehnke, A.; Dadabhoy, A.; Lugtenburg, P.; Rule, S.; Rummel, M.; McIntyre, C.; Smith, R.; Badoux, X. Subcutaneous rituximab for the treatment of B-cell hematologic malignancies: a review of the scientific rationale and clinical development. Adv. Ther., 2017, 34(10), 2210-2231.
[http://dx.doi.org/10.1007/s12325-017-0610-z]
[27]
Bittner, B.; Richter, W.F.; Hourcade-Potelleret, F.; Herting, F.; Schmidt, J. Non-clinical pharmacokinetic/pharmacodynamic and early clinical studies supporting development of a novel subcutaneous formulation for the monoclonal antibody rituximab. Drug Res. (Stuttg.), 2014, 64(11), 569-575.
[http://dx.doi.org/10.1055/s-0033-1363993]
[28]
Kamath, A.V. Translational pharmacokinetics and pharmacodynamics of monoclonal antibodies. Drug Discov. Today. Technol., 2016, 21-22, 75-83.
[http://dx.doi.org/10.1016/j.ddtec.2016.09.004]
[29]
Lobo, E.D.; Hansen, R.J.; Balthasar, J.P. Antibody pharmacokinetics and pharmacodynamics. J. Pharm. Sci., 2004, 93(11), 2645-2668.
[http://dx.doi.org/10.1002/jps.20178]
[30]
Gota, V.; Karanam, A.; Rath, S.; Yadav, A.; Tembhare, P.; Subramanian, P.; Sengar, M.; Nair, R.; Menon, H. Population pharmacokinetics of Reditux, a biosimilar Rituximab, in diffuse large B-cell lymphoma. Cancer Chemother. Pharmacol., 2016, 78(2), 353-359.
[http://dx.doi.org/10.1007/s00280-016-3083-x]
[31]
Tout, M.; Casasnovas, O.; Meignan, M.; Lamy, T.; Morschhauser, F.; Salles, G.; Gyan, E.; Haioun, C.; Mercier, M.; Feugier, P.; Boussetta, S.; Paintaud, G.; Ternant, D.; Cartron, G. Rituximab exposure is influenced by baseline metabolic tumor volume and predicts outcome of DLBCL patients: a Lymphoma Study Association report. Blood, 2017, 129(19), 2616-2623.
[http://dx.doi.org/10.1182/blood-2016-10-744292]
[32]
Tout, M.; Gagez, A.L.; Lepretre, S.; Gouilleux-Gruart, V.; Azzopardi, N.; Delmer, A.; Mercier, M.; Ysebaert, L.; Laribi, K.; Gonzalez, H.; Paintaud, G.; Cartron, G.; Ternant, D. Influence of FCGR3A-158V/F genotype and baseline CD20 antigen count on target-mediated elimination of rituximab in patients with chronic lymphocytic leukemia: a study of FILO group. Clin. Pharmacokinet., 2017, 56(6), 635-647.
[http://dx.doi.org/10.1007/s40262-016-0470-8]
[33]
Jager, U.; Fridrik, M.; Zeitlinger, M.; Heintel, D.; Hopfinger, G.; Burgstaller, S.; Mannhalter, C.; Oberaigner, W.; Porpaczy, E.; Skrabs, C.; Einberger, C.; Drach, J.; Raderer, M.; Gaiger, A.; Putman, M.; Greil, R.; Arbeitsgemeinschaft Medikamentose Tumortherapie, I. Rituximab serum concentrations during immuno-chemotherapy of follicular lymphoma correlate with patient gender, bone marrow infiltration and clinical response. Haematologica, 2012, 97(9), 1431-1438.
[http://dx.doi.org/10.3324/haematol.2011.059246]
[34]
Mager, D.E. Target-mediated drug disposition and dynamics. Biochem. Pharmacol., 2006, 72(1), 1-10.
[http://dx.doi.org/10.1016/j.bcp.2005.12.041]
[35]
Haymann, J-P.; Levraud, J-P.; Bouet, S.; Kappes, V.; Hagège, J. Nguyen. G.; Xu, Y.; Rondeau, E.; Sraer, J-D. Characterization and localization of the neonatal fc receptor in adult human kidney. J. Am. Soc. Nephrol., 2000, 11(4), 632-639.
[36]
Dithmer, M.; Hattermann, K.; Pomarius, P.; Aboul Naga, S.H.; Meyer, T.; Mentlein, R.; Roider, J.; Klettner, A. The role of Fc-receptors in the uptake and transport of therapeutic antibodies in the retinal pigment epithelium. Exp. Eye Res., 2016, 145, 187-205.
[http://dx.doi.org/10.1016/j.exer.2015.12.013]
[37]
Yu, T.; Enioutina, E.Y.; Brunner, H.I.; Vinks, A.A.; Sherwin, C.M. Clinical pharmacokinetics and pharmacodynamics of biologic therapeutics for treatment of systemic lupus erythematosus. Clin. Pharmacokinet., 2017, 56(2), 107-125.
[http://dx.doi.org/10.1007/s40262-016-0426-z]
[38]
Stein, A.M.; Peletier, L.A. Predicting the onset of nonlinear pharmacokinetics. CPT Pharmacometrics Syst. Pharmacol., 2018, 7(10), 670-677.
[http://dx.doi.org/10.1002/psp4.12316]
[39]
Berinstein, N.L.; Grillo-Lopez, A.J.; White, C.A.; Bence-Bruckler, I.; Maloney, D.; Czuczman, M.; Green, D.; Rosenberg, J.; McLaughlin, P.; Shen, D. Association of serum Rituximab (IDEC-C2B8) concentration and anti-tumor response in the treatment of recurrent low-grade or follicular non-Hodgkin’s lymphoma. Ann. Oncol., 1998, 9(9), 995-1001.
[http://dx.doi.org/10.1023/A:1008416911099]
[40]
Bajaj, G.; Suryawanshi, S.; Roy, A.; Gupta, M. Evaluation of covariate effects on pharmacokinetics of monoclonal antibodies in oncology. Br. J. Clin. Pharmacol., 2019, 85(9), 2045-2058.
[http://dx.doi.org/10.1111/bcp.13996]
[41]
Muller, C.; Murawski, N.; Wiesen, M.H.; Held, G.; Poeschel, V.; Zeynalova, S.; Wenger, M.; Nickenig, C.; Peter, N.; Lengfelder, E.; Metzner, B.; Rixecker, T.; Zwick, C.; Pfreundschuh, M.; Reiser, M. The role of sex and weight on rituximab clearance and serum elimination half-life in elderly patients with DLBCL. Blood, 2012, 119(14), 3276-3284.
[http://dx.doi.org/10.1182/blood-2011-09-380949]
[42]
Gandhi, M.; Aweeka, F.; Greenblatt, R.M.; Blaschke, T.F. Sex differences in pharmacokinetics and pharmacodynamics. Annu. Rev. Pharmacol. Toxicol., 2004, 44, 499-523.
[http://dx.doi.org/10.1146/annurev.pharmtox.44.101802.121453]
[43]
Pfreundschuh, M.; Murawski, N.; Zeynalova, S.; Ziepert, M.; Loeffler, M.; Hanel, M.; Dierlamm, J.; Keller, U.; Dreyling, M.; Truemper, L.; Frickhofen, N.; Hunerliturkoglu, A.N.; Schmitz, N.; Poschel, V.; Rixecker, T.; Berdel, C.; Rube, C.; Held, G.; Zwick, C. Optimization of rituximab for the treatment of DLBCL: increasing the dose for elderly male patients. Br. J. Haematol., 2017, 179(3), 410-420.
[http://dx.doi.org/10.1111/bjh.14860]
[44]
Tobinai, K.; Igarashi, T.; Itoh, K.; Kobayashi, Y.; Taniwaki, M.; Ogura, M.; Kinoshita, T.; Hotta, T.; Aikawa, K.; Tsushita, K.; Hiraoka, A.; Matsuno, Y.; Nakamura, S.; Mori, S.; Ohashi, Y. Group, I.-C. B. J. S. Japanese multicenter phase II and pharmacokinetic study of rituximab in relapsed or refractory patients with aggressive B-cell lymphoma. Ann. Oncol., 2004, 15(5), 821-830.
[http://dx.doi.org/10.1093/annonc/mdh176]
[45]
Pfreundschuh, M.; Poeschel, V.; Zeynalova, S.; Hanel, M.; Held, G.; Schmitz, N.; Viardot, A.; Dreyling, M.H.; Hallek, M.; Mueller, C.; Wiesen, M.H.; Witzens-Harig, M.; Truemper, L.; Keller, U.; Rixecker, T.; Zwick, C.; Murawski, N. Optimization of rituximab for the treatment of diffuse large B-cell lymphoma (II): extended rituximab exposure time in the SMARTE-R-CHOP-14 trial of the german high-grade non-Hodgkin lymphoma study group. J. Clin. Oncol., 2014, 32(36), 4127-4133.
[http://dx.doi.org/10.1200/JCO.2013.54.6861]
[46]
Widmer, N.; Bardin, C.; Chatelut, E.; Paci, A.; Beijnen, J.; Leveque, D.; Veal, G.; Astier, A. Review of therapeutic drug monitoring of anticancer drugs part two--targeted therapies. Eur. J. Cancer, 2014, 50(12), 2020-2036.
[http://dx.doi.org/10.1016/j.ejca.2014.04.015]
[47]
Bardin, C.; Veal, G.; Paci, A.; Chatelut, E.; Astier, A.; Leveque, D.; Widmer, N.; Beijnen, J. Therapeutic drug monitoring in cancer-are we missing a trick? Eur. J. Cancer, 2014, 50(12), 2005-2009.
[http://dx.doi.org/10.1016/j.ejca.2014.04.013]
[48]
Smolen, J.S.; Landewe, R.B.M.; Bijlsma, J.W.J.; Burmester, G.R.; Dougados, M.; Kerschbaumer, A.; McInnes, I.B.; Sepriano, A.; van Vollenhoven, R.F.; de Wit, M.; Aletaha, D.; Aringer, M.; Askling, J.; Balsa, A.; Boers, M.; den Broeder, A.A.; Buch, M.H.; Buttgereit, F.; Caporali, R.; Cardiel, M.H.; De Cock, D.; Codreanu, C.; Cutolo, M.; Edwards, C.J.; van Eijk-Hustings, Y.; Emery, P.; Finckh, A.; Gossec, L.; Gottenberg, J.E.; Hetland, M.L.; Huizinga, T.W.J.; Koloumas, M.; Li, Z.; Mariette, X.; Muller-Ladner, U.; Mysler, E.F.; da Silva, J.A.P.; Poor, G.; Pope, J.E.; Rubbert-Roth, A.; Ruyssen-Witrand, A.; Saag, K.G.; Strangfeld, A.; Takeuchi, T.; Voshaar, M.; Westhovens, R.; van der Heijde, D. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update. Ann. Rheum. Dis., 2020, 79(6), 685-699.
[http://dx.doi.org/10.1136/annrheumdis-2019-216655]
[49]
Breedveld, F.; Agarwal, S.; Yin, M.; Ren, S.; Li, N.F.; Shaw, T.M.; Davies, B.E. Rituximab pharmacokinetics in patients with rheumatoid arthritis: B-cell levels do not correlate with clinical response. J. Clin. Pharmacol., 2007, 47(9), 1119-1128.
[http://dx.doi.org/10.1177/0091270007305297]
[50]
Thurlings, R.M.; Teng, O.; Vos, K.; Gerlag, D.M.; Aarden, L.; Stapel, S.O.; van Laar, J.M.; Tak, P.P.; Wolbink, G.J. Clinical response, pharmacokinetics, development of human anti-chimaeric antibodies, and synovial tissue response to rituximab treatment in patients with rheumatoid arthritis. Ann. Rheum. Dis., 2010, 69(2), 409-412.
[http://dx.doi.org/10.1136/ard.2009.109041]
[51]
Ng, C.M.; Bruno, R.; Combs, D.; Davies, B. Population pharmacokinetics of rituximab (anti-CD20 monoclonal antibody) in rheumatoid arthritis patients during a phase II clinical trial. J. Clin. Pharmacol., 2005, 45(7), 792-801.
[http://dx.doi.org/10.1177/0091270005277075]
[52]
Tavakolpour, S.; Alesaeidi, S.; Darvishi, M. GhasemiAdl, M.; Darabi-Monadi, S.; Akhlaghdoust, M.; Elikaei Behjati, S.; Jafarieh, A. A comprehensive review of rituximab therapy in rheumatoid arthritis patients. Clin. Rheumatol., 2019, 38(11), 2977-2994.
[http://dx.doi.org/10.1007/s10067-019-04699-8]
[53]
Bredemeier, M.; Campos, G.G.; de Oliveira, F.K. Updated systematic review and meta-analysis of randomized controlled trials comparing low-versus high-dose rituximab for rheumatoid arthritis. Clin. Rheumatol., 2015, 34(10), 1801-1805.
[http://dx.doi.org/10.1007/s10067-015-2977-z]
[54]
Lioger, B.; Edupuganti, S.R.; Mulleman, D.; Passot, C.; Desvignes, C.; Bejan-Angoulvant, T.; Thibault, G.; Gouilleux-Gruart, V.; Melet, J.; Paintaud, G.; Ternant, D. Antigenic burden and serum IgG concentrations influence rituximab pharmacokinetics in rheumatoid arthritis patients. Br. J. Clin. Pharmacol., 2017, 83(8), 1773-1781.
[http://dx.doi.org/10.1111/bcp.13270]
[55]
Blasco, H.; Chatelut, E.; de Bretagne, I.B.; Congy-Jolivet, N.; Le Guellec, C. Pharmacokinetics of rituximab associated with CHOP chemotherapy in B-cell non-Hodgkin lymphoma. Fundam. Clin. Pharmacol., 2009, 23(5), 601-608.
[http://dx.doi.org/10.1111/j.1472-8206.2009.00714.x]
[56]
Candelaria, M.; Gonzalez, D.; Fernandez Gomez, F.J.; Paravisini, A.; Del Campo Garcia, A.; Perez, L.; Miguel-Lillo, B.; Millan, S. Comparative assessment of pharmacokinetics, and pharmacodynamics between RTXM83, a rituximab biosimilar, and rituximab in diffuse large B-cell lymphoma patients: a population PK model approach. Cancer Chemother. Pharmacol., 2018, 81(3), 515-527.
[http://dx.doi.org/10.1007/s00280-018-3524-9]
[57]
Bensalem, A.; Mulleman, D.; Paintaud, G.; Azzopardi, N.; Gouilleux-Gruart, V.; Cornec, D.; Specks, U.; Ternant, D. Non-linear rituximab pharmacokinetics and complex relationship between rituximab concentrations and Anti-Neutrophil Cytoplasmic Antibodies (ANCA) in ANCA-associated vasculitis: the RAVE Trial Revisited. Clin. Pharmacokinet., 2020, 59(4), 519-530.
[http://dx.doi.org/10.1007/s40262-019-00826-5]
[58]
Bensalem, A.; Mulleman, D.; Thibault, G.; Azzopardi, N.; Goupille, P.; Paintaud, G.; Ternant, D. CD4+ count-dependent concentration-effect relationship of rituximab in rheumatoid arthritis. Br. J. Clin. Pharmacol., 2019, 85(12), 2747-2758.
[http://dx.doi.org/10.1111/bcp.14102]
[59]
Fogueri, U.; Cheungapasitporn, W.; Bourne, D.; Fervenza, F.C.; Joy, M.S. Rituximab exhibits altered pharmacokinetics in patients with membranous nephropathy. Ann. Pharmacother., 2019, 53(4), 357-363.
[http://dx.doi.org/10.1177/1060028018803587]
[60]
Medina, F.; Plasencia, C.; Goupille, P.; Ternant, D.; Balsa, A.; Mulleman, D. Current practice for therapeutic drug monitoring of biopharmaceuticals in rheumatoid arthritis. Ther. Drug Monit., 2017, 39(4), 364-369.
[http://dx.doi.org/10.1097/FTD.0000000000000421]
[61]
Mazilu, D.; Opris, D.; Gainaru, C.; Iliuta, M.; Apetrei, N.; Luca, G.; Borangiu, A.; Gudu, T.; Peltea, A.; Groseanu, L.; Constantinescu, C.; Saulescu, I.; Bojinca, V.; Balanescu, A.; Predeteanu, D.; Ionescu, R. Monitoring drug and antidrug levels: a rational approach in rheumatoid arthritis patients treated with biologic agents who experience inadequate response while being on a stable biologic treatment. BioMed Res. Int., 2014, 2014702701
[http://dx.doi.org/10.1155/2014/702701]
[62]
Cohen, S.; Emery, P.; Greenwald, M.; Yin, D.; Becker, J.C.; Melia, L.A.; Li, R.; Gumbiner, B.; Thomas, D.; Spencer-Green, G.; Meng, X. A phase I pharmacokinetics trial comparing PF-05280586 (a potential biosimilar) and rituximab in patients with active rheumatoid arthritis. Br. J. Clin. Pharmacol., 2016, 82(1), 129-138.
[http://dx.doi.org/10.1111/bcp.12916]
[63]
Einarsson, J.T.; Evert, M.; Geborek, P.; Saxne, T.; Lundgren, M.; Kapetanovic, M.C. Rituximab in clinical practice: dosage, drug adherence, Ig levels, infections, and drug antibodies. Clin. Rheumatol., 2017, 36(12), 2743-2750.
[http://dx.doi.org/10.1007/s10067-017-3848-6]
[64]
Combier, A.; Nocturne, G.; Henry, J.; Belkhir, R.; Pavy, S.; Le Tiec, C.; Descamps, E.; Seror, R.; Mariette, X. Immunization to rituximab is more frequent in systemic autoimmune diseases than in rheumatoid arthritis: ofatumumab as alternative therapy. Rheumatology (Oxford), 2019, 59(6), 1347-1354.
[http://dx.doi.org/10.1093/rheumatology/kez430]
[65]
Diaz-Torne, C.; Ortiz, M.A.; Sarmiento, M.; Diaz-Lopez, C.; Corominas, H.; Casademont, J.; Vidal, S. Rituximab levels are associated with the B-cell homeostasis but not with the clinical response in patients with rheumatoid arthritis. Eur. J. Rheumatol., 2019, 6(2), 81-84.
[http://dx.doi.org/10.5152/eurjrheum.2019.18109]
[66]
Hassan, R.I.; Gaffo, A.L. Rituximab in ANCA-associated vasculitis. Curr. Rheumatol. Rep., 2017, 19(2), 6.
[http://dx.doi.org/10.1007/s11926-017-0632-1]
[67]
Tieu, J.; Smith, R.; Basu, N.; Brogan, P.; D’Cruz, D.; Dhaun, N.; Flossmann, O.; Harper, L.; Jones, R.B.; Lanyon, P.C.; Luqmani, R.A.; McAdoo, S.P.; Mukhtyar, C.; Pearce, F.A.; Pusey, C.D.; Robson, J.C.; Salama, A.D.; Smyth, L.; Watts, R.A.; Willcocks, L.C.; Jayne, D.R.W. Rituximab for maintenance of remission in ANCA-associated vasculitis: expert consensus guidelines-Executive summary. Rheumatology (Oxford), 2020, 59(4), e24-e32.
[68]
Takakuwa, Y.; Hanaoka, H.; Kiyokawa, T.; Iida, H.; Fujimoto, H.; Yamasaki, Y.; Yamada, H.; Kawahata, K. Low-dose rituximab as induction therapy for ANCA-associated vasculitis. Clin. Rheumatol., 2019, 38(4), 1217-1223.
[http://dx.doi.org/10.1007/s10067-019-04443-2]
[69]
Emejuaiwe, N. Treatment Strategies in ANCA-Associated Vasculitis. Curr. Rheumatol. Rep., 2019, 21(7), 33.
[http://dx.doi.org/10.1007/s11926-019-0835-8]
[70]
Cornec, D.; Kabat, B.F.; Mills, J.R.; Cheu, M.; Hummel, A.M.; Schroeder, D.R.; Cascino, M.D.; Brunetta, P.; Murray, D.L.; Snyder, M.R.; Fervenza, F.; Hoffman, G.S.; Kallenberg, C.G.M.; Langford, C.A.; Merkel, P.A.; Monach, P.A.; Seo, P.; Spiera, R.F.; St Clair, E.W.; Stone, J.H.; Barnidge, D.R.; Specks, U. Pharmacokinetics of rituximab and clinical outcomes in patients with anti-neutrophil cytoplasmic antibody associated vasculitis. Rheumatology (Oxford), 2018, 57(4), 639-650.
[http://dx.doi.org/10.1093/rheumatology/kex484]
[71]
Barnas, J.L.; Looney, R.J.; Anolik, J.H. B cell targeted therapies in autoimmune disease. Curr. Opin. Immunol., 2019, 61, 92-99.
[http://dx.doi.org/10.1016/j.coi.2019.09.004]
[72]
Santos, J.E.; Fiel, D.; Santos, R.; Vicente, R.; Aguiar, R.; Santos, I.; Amoedo, M.; Pires, C. Rituximab use in adult glomerulopathies and its rationale. J. Bras. Nefrol., 2020, 42(1), 77-93.
[http://dx.doi.org/10.1590/2175-8239-jbn-2018-0254]
[73]
Kamei, K.; Ishikura, K. Rituximab treatment for refractory steroid-resistant nephrotic syndrome. Pediatr. Nephrol., 2016, 31(2), 337-338.
[http://dx.doi.org/10.1007/s00467-015-3205-4]
[74]
Murphy, G.; Isenberg, D.A. New therapies for systemic lupus erythematosus - past imperfect, future tense. Nat. Rev. Rheumatol., 2019, 15(7), 403-412.
[http://dx.doi.org/10.1038/s41584-019-0235-5]
[75]
Sood, P.; Hariharan, S. Anti-CD20 Blocker Rituximab in Kidney Transplantation. Transplantation, 2018, 102(1), 44-58.
[http://dx.doi.org/10.1097/TP.0000000000001849]
[76]
Chauhan, K.; Mehta, A.A. Rituximab in kidney disease and transplant. Animal Model Exp. Med., 2019, 2(2), 76-82.
[77]
Rojas-Rivera, J.E.; Carriazo, S.; Ortiz, A. Treatment of idiopathic membranous nephropathy in adults: KDIGO 2012, cyclophosphamide and cyclosporine A are out, rituximab is the new normal. Clin. Kidney J., 2019, 12(5), 629-638.
[http://dx.doi.org/10.1093/ckj/sfz127]
[78]
Roberts, B.V.; Susano, I.; Gipson, D.S.; Trachtman, H.; Joy, M.S. Contribution of renal and non-renal clearance on increased total clearance of adalimumab in glomerular disease. J. Clin. Pharmacol., 2013, 53(9), 919-924.
[http://dx.doi.org/10.1002/jcph.121]
[79]
Koutsokeras, T.; Healy, T. Systemic lupus erythematosus and lupus nephritis. Nat. Rev. Drug Discov., 2014, 13(3), 173-174.
[http://dx.doi.org/10.1038/nrd4227]
[80]
Looney, R.J.; Anolik, J.H.; Campbell, D.; Felgar, R.E.; Young, F.; Arend, L.J.; Sloand, J.A.; Rosenblatt, J.; Sanz, I. B cell depletion as a novel treatment for systemic lupus erythematosus: a phase I/II dose-escalation trial of rituximab. Arthritis Rheum., 2004, 50(8), 2580-2589.
[http://dx.doi.org/10.1002/art.20430]
[81]
Genberg, H.; Hansson, A.; Wernerson, A.; Wennberg, L.; Tyden, G. Pharmacodynamics of rituximab in kidney allotransplantation. Am. J. Transplant., 2006, 6(10), 2418-2428.
[http://dx.doi.org/10.1111/j.1600-6143.2006.01497.x]
[82]
Vieira, C.A.; Agarwal, A.; Book, B.K.; Sidner, R.A.; Bearden, C.M.; Gebel, H.M.; Roggero, A.L.; Fineberg, N.S.; Taber, T.; Kraus, M.A.; Pescovitz, M.D. Rituximab for reduction of anti-HLA antibodies in patients awaiting renal transplantation: 1. Safety, pharmacodynamics, and pharmacokinetics. Transplantation, 2004, 77(4), 542-548.
[http://dx.doi.org/10.1097/01.TP.0000112934.12622.2B]
[83]
Kamar, N.; Milioto, O.; Puissant-Lubrano, B.; Esposito, L.; Pierre, M.C.; Mohamed, A.O.; Lavayssiere, L.; Cointault, O.; Ribes, D.; Cardeau, I.; Nogier, M.B.; Durand, D.; Abbal, M.; Blancher, A.; Rostaing, L. Incidence and predictive factors for infectious disease after rituximab therapy in kidney-transplant patients. Am. J. Transplant., 2010, 10(1), 89-98.
[http://dx.doi.org/10.1111/j.1600-6143.2009.02785.x]
[84]
Redfield, R.R.; Jordan, S.C.; Busque, S.; Vincenti, F.; Woodle, E.S.; Desai, N.; Reed, E.F.; Tremblay, S.; Zachary, A.A.; Vo, A.A.; Formica, R.; Schindler, T.; Tran, H.; Looney, C.; Jamois, C.; Green, C.; Morimoto, A.; Rajwanshi, R.; Schroeder, A.; Cascino, M.D.; Brunetta, P.; Borie, D. Safety, pharmacokinetics, and pharmacodynamic activity of obinutuzumab, a type 2 anti-CD20 monoclonal antibody for the desensitization of candidates for renal transplant. Am. J. Transplant., 2019, 19(11), 3035-3045.
[http://dx.doi.org/10.1111/ajt.15514]
[85]
Cheng, C.W.; Hendrickson, J.E.; Tormey, C.A.; Sidhu, D. Therapeutic Plasma Exchange and Its Impact on Drug Levels: An ACLPS Critical Review. Am. J. Clin. Pathol., 2017, 148(3), 190-198.
[http://dx.doi.org/10.1093/ajcp/aqx056]
[86]
Boctor, F.N.; Smith, J.A. Timing of plasma exchange and rituximab for the treatment of thrombotic thrombocytopenic purpura. Am. J. Clin. Pathol., 2006, 126(6), 965.
[87]
Azzopardi, N.; Francois, M.; Laurent, E.; Paintaud, G.; Birmele, B. Influence of plasma exchange on rituximab pharmacokinetics. Br. J. Clin. Pharmacol., 2013, 76(3), 486-488.
[http://dx.doi.org/10.1111/bcp.12167]
[88]
Puisset, F.; White-Koning, M.; Kamar, N.; Huart, A.; Haberer, F.; Blasco, H.; Le Guellec, C.; Lafont, T.; Grand, A.; Rostaing, L.; Chatelut, E.; Pourrat, J. Population pharmacokinetics of rituximab with or without plasmapheresis in kidney patients with antibody-mediated disease. Br. J. Clin. Pharmacol., 2013, 76(5), 734-740.
[http://dx.doi.org/10.1111/bcp.12098]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy