Generic placeholder image

Coronaviruses

Editor-in-Chief

ISSN (Print): 2666-7967
ISSN (Online): 2666-7975

Review Article

An Overview of Novel Coronavirus Disease 2019: A Global Havoc

Author(s): Zahid Dar, Lucky Chauhan, Monika Chauhan, Navpreet Kaur , Tanzeer Kaur and Neelima Dhingra*

Volume 2, Issue 5, 2021

Published on: 09 July, 2020

Article ID: e260521183604 Pages: 11

DOI: 10.2174/2666796701999200709173251

Abstract

The world has been pushed to the edge of a precipice commonly been addressed to as Coronavirus S (SARS-CoV2), one of the world’s most widespread viral pandemic in recent times. Many studies are underway and investigating the new role of existing drugs, exploring the safety and efficacy of recently developed vaccines, after getting detailed insights into the behavioural characteristics of SARS-CoV2. Presently supportive and symptomatic treatment, along with practices like disease surveillance, contact tracing, and early diagnosis may help control the future of COVID-19 outbreaks. An effort has been made to compile the information about coronavirus; its clinical manifestations, differential diagnosis, preventive aspects, and therapeutic options as a review.

Keywords: Coronavirus, Wuhan outbreak, COVID-19, SARS-CoV-2, therapeutic options, MERS-CoV.

[1]
Woolhouse M, Scott F, Hudson Z, Howey R, Chase-Topping M. Wool house M. Human viruses: discovery and emergence. Philos Trans R Soc Lond B Biol Sci 2012; 367(1604): 2864-71.
[http://dx.doi.org/10.1098/rstb.2011.0354] [PMID: 22966141]
[2]
Goldsmith CS, Miller SE. Modern uses of electron microscopy for detection of viruses. Clin Microbiol Rev 2009; 22(4): 552-63.
[http://dx.doi.org/10.1128/CMR.00027-09] [PMID: 19822888]
[3]
Wang H, Wang Z, Dong Y, et al. Phase-adjusted estimation of the number of Coronavirus Disease 2019 cases in Wuhan, China. Cell Discov 2020; 6(1): 10.
[http://dx.doi.org/10.1038/s41421-020-0148-0] [PMID: 32133152]
[4]
World Health Organization. Coronavirus disease 2019. (COVID-19): situation report, 67. Available from: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200211sitrep-22ncov.pdf?sfvrsn=fb6d49b1_2.,2020
[5]
Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis Coronaviruses. New York, NY: Humana Press 2015; pp. 1-23.
[http://dx.doi.org/10.1007/978-1-4939-2438-7_1]
[6]
McIntosh K, Becker WB, Chanock RM. Growth in suckling-mouse brain of “IBV-like” viruses from patients with upper respiratory tract disease. Proc Natl Acad Sci USA 1967; 58(6): 2268-73.
[http://dx.doi.org/10.1073/pnas.58.6.2268] [PMID: 4298953]
[7]
Lim YX, Ng YL, Tam JP, Liu DX. Human coronaviruses: a review of virus-host interactions. Diseases 2016; 4(3): 26.
[http://dx.doi.org/10.3390/diseases4030026] [PMID: 28933406]
[8]
Kazi L, Lissenberg A, Watson R, de Groot RJ, Weiss SR. Expression of hemagglutinin esterase protein from recombinant mouse hepatitis virus enhances neurovirulence. J Virol 2005; 79(24): 15064-73.
[http://dx.doi.org/10.1128/JVI.79.24.15064-15073.2005] [PMID: 16306577]
[9]
Lissenberg A, Vrolijk MM, van Vliet AL, et al. Luxury at a cost? Recombinant mouse hepatitis viruses expressing the accessory hemagglutinin esterase protein display reduced fitness in vitro. J Virol 2005; 79(24): 15054-63.
[http://dx.doi.org/10.1128/JVI.79.24.15054-15063.2005] [PMID: 16306576]
[10]
Kubo H, Yamada YK, Taguchi F. Localization of neutralizing epitopes and the receptor-binding site within the amino-terminal 330 amino acids of the murine coronavirus spike protein. J Virol 1994; 68(9): 5403-10.
[http://dx.doi.org/10.1128/JVI.68.9.5403-5410.1994] [PMID: 7520090]
[11]
Cheng PK, Wong DA, Tong LK, et al. Viral shedding patterns of coronavirus in patients with probable severe acute respiratory syndrome. Lancet 2004; 363(9422): 1699-700.
[http://dx.doi.org/10.1016/S0140-6736(04)16255-7] [PMID: 15158632]
[12]
Belouzard S, Chu VC, Whittaker GR. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc Natl Acad Sci USA 2009; 106(14): 5871-6.
[http://dx.doi.org/10.1073/pnas.0809524106] [PMID: 19321428]
[13]
Baranov PV, Henderson CM, Anderson CB, Gesteland RF, Atkins JF, Howard MT. Programmed ribosomal frameshifting in decoding the SARS-CoV genome. Virology 2005; 332(2): 498-510.
[http://dx.doi.org/10.1016/j.virol.2004.11.038] [PMID: 15680415]
[14]
Trombetta H, Faggion HZ, Leotte J, Nogueira MB, Vidal LR, Raboni SM. Human coronavirus and severe acute respiratory infection in Southern Brazil. Pathog Glob Health 2016; 110(3): 113-8.
[http://dx.doi.org/10.1080/20477724.2016.1181294] [PMID: 27195607]
[15]
Vijgen L, Keyaerts E, Moës E, et al. Complete genomic sequence of human coronavirus OC43: molecular clock analysis suggests a relatively recent zoonotic coronavirus transmission event. J Virol 2005; 79(3): 1595-604.
[http://dx.doi.org/10.1128/JVI.79.3.1595-1604.2005] [PMID: 15650185]
[16]
van Boheemen S, de Graaf M, Lauber C, et al. Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. MBio 2012; 3(6): e00473-12.
[http://dx.doi.org/10.1128/mBio.00473-12] [PMID: 23170002]
[17]
Neuman BW, Joseph JS, Saikatendu KS, et al. Proteomics analysis unravels the functional repertoire of coronavirus nonstructural protein 3. J Virol 2008; 82(11): 5279-94.
[http://dx.doi.org/10.1128/JVI.02631-07] [PMID: 18367524]
[18]
Abraham S, Kienzle TE, Lapps W, Brian DA. Deduced sequence of the bovine coronavirus spike protein and identification of the internal proteolytic cleavage site. Virology 1990; 176(1): 296-301.
[http://dx.doi.org/10.1016/0042-6822(90)90257-R] [PMID: 2184576]
[19]
Luytjes W, Sturman LS, Bredenbeek PJ, et al. Primary structure of the glycoprotein E2 of coronavirus MHV-A59 and identification of the trypsin cleavage site. Virology 1987; 161(2): 479-87.
[http://dx.doi.org/10.1016/0042-6822(87)90142-5] [PMID: 2825419]
[20]
de Groot RJ, Luytjes W, Horzinek MC, van der Zeijst BA, Spaan WJ, Lenstra JA. Evidence for a coiled-coil structure in the spike proteins of coronaviruses. J Mol Biol 1987; 196(4): 963-6.
[http://dx.doi.org/10.1016/0022-2836(87)90422-0] [PMID: 3681988]
[21]
Armstrong J, Niemann H, Smeekens S, Rottier P, Warren G. Sequence and topology of a model intracellular membrane protein, E1 glycoprotein, from a coronavirus. Nature 1984; 308(5961): 751-2.
[http://dx.doi.org/10.1038/308751a0] [PMID: 6325918]
[22]
Dosch SF, Mahajan SD, Collins AR. SARS coronavirus spike protein-induced innate immune response occurs via activation of the NF-kappaB pathway in human monocyte macrophages in vitro. Virus Res 2009; 142(1-2): 19-27.
[http://dx.doi.org/10.1016/j.virusres.2009.01.005] [PMID: 19185596]
[23]
Kirchdoerfer RN, Cottrell CA, Wang N, et al. Pre-fusion structure of a human coronavirus spike protein. Nature 2016; 531(7592): 118-21.
[http://dx.doi.org/10.1038/nature17200] [PMID: 26935699]
[24]
Millet JK, Whittaker GR. Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis. Virus Res 2015; 202: 120-34.
[http://dx.doi.org/10.1016/j.virusres.2014.11.021] [PMID: 25445340]
[25]
Brierley I, Digard P, Inglis SC. Characterization of an efficient coronavirus ribosomal frameshifting signal: requirement for an RNA pseudoknot. Cell 1989; 57(4): 537-47.
[http://dx.doi.org/10.1016/0092-8674(89)90124-4] [PMID: 2720781]
[26]
Araki K, Gangappa S, Dillehay DL, Rouse BT, Larsen CP, Ahmed R. Pathogenic virus-specific T cells cause disease during treatment with the calcineurin inhibitor FK506: implications for transplantation. J Exp Med 2010; 207(11): 2355-67.
[http://dx.doi.org/10.1084/jem.20100124] [PMID: 20921283]
[27]
Ziebuhr J, Snijder EJ, Gorbalenya AE. Virus-encoded proteinases and proteolytic processing in the Nidovirales. J Gen Virol 2000; 81(Pt 4): 853-79.
[http://dx.doi.org/10.1099/0022-1317-81-4-853] [PMID: 10725411]
[28]
Collins AR, Knobler RL, Powell H, Buchmeier MJ. Monoclonal antibodies to murine hepatitis virus-4 (strain JHM) define the viral glycoprotein responsible for attachment and cell--cell fusion. Virology 1982; 119(2): 358-71.
[http://dx.doi.org/10.1016/0042-6822(82)90095-2] [PMID: 6281979]
[29]
Neuman BW, Adair BD, Yoshioka C, et al. Supramolecular architecture of severe acute respiratory syndrome coronavirus revealed by electron cryomicroscopy. J Virol 2006; 80(16): 7918-28.
[http://dx.doi.org/10.1128/JVI.00645-06] [PMID: 16873249]
[30]
Bárcena M, Oostergetel GT, Bartelink W, et al. Cryo-electron tomography of mouse hepatitis virus: Insights into the structure of the coronavirion. Proc Natl Acad Sci USA 2009; 106(2): 582-7.
[http://dx.doi.org/10.1073/pnas.0805270106] [PMID: 19124777]
[31]
Weiss SR, Navas-Martin S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev 2005; 69(4): 635-64.
[http://dx.doi.org/10.1128/MMBR.69.4.635-664.2005] [PMID: 16339739]
[32]
Hurst KR, Koetzner CA, Masters PS. Identification of in vivo-interacting domains of the murine coronavirus nucleocapsid protein. J Virol 2009; 83(14): 7221-34.
[http://dx.doi.org/10.1128/JVI.00440-09] [PMID: 19420077]
[33]
Stohlman SA, Lai MM. Phosphoproteins of murine hepatitis viruses. J Virol 1979; 32(2): 672-5.
[http://dx.doi.org/10.1128/JVI.32.2.672-675.1979] [PMID: 228084]
[34]
Wang M, Yan M, Xu H, et al. SARS-CoV infection in a restaurant from palm civet. Emerg Infect Dis 2005; 11(12): 1860-5.
[http://dx.doi.org/10.3201/eid1112.041293] [PMID: 16485471]
[35]
Belouzard S, Millet JK, Licitra BN, Whittaker GR. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses 2012; 4(6): 1011-33.
[http://dx.doi.org/10.3390/v4061011] [PMID: 22816037]
[36]
Frieman M, Baric R. Mechanisms of severe acute respiratory syndrome pathogenesis and innate immunomodulation. Microbiol Mol Biol Rev 2008; 72(4): 672-85.
[http://dx.doi.org/10.1128/MMBR.00015-08] [PMID: 19052324]
[37]
Bosch BJ, van der Zee R, de Haan CA, Rottier PJ. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J Virol 2003; 77(16): 8801-11.
[http://dx.doi.org/10.1128/JVI.77.16.8801-8811.2003] [PMID: 12885899]
[38]
Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol 2017; 39(5): 529-39.
[http://dx.doi.org/10.1007/s00281-017-0629-x] [PMID: 28466096]
[39]
Gretebeck LM, Subbarao K. Animal models for SARS and MERS coronaviruses. Curr Opin Virol 2015; 13: 123-9.
[http://dx.doi.org/10.1016/j.coviro.2015.06.009] [PMID: 26184451]
[40]
Cinatl J Jr, Michaelis M, Hoever G, Preiser W, Doerr HW. Development of antiviral therapy for severe acute respiratory syndrome. Antiviral Res 2005; 66(2-3): 81-97.
[http://dx.doi.org/10.1016/j.antiviral.2005.03.002] [PMID: 15878786]
[41]
Kim UJ, Won EJ, Kee SJ, Jung SI, Jang HC. Combination therapy with lopinavir/ritonavir, ribavirin and interferon-α for Middle East respiratory syndrome. Antivir Ther (Lond) 2016; 21(5): 455-9.
[http://dx.doi.org/10.3851/IMP3002] [PMID: 26492219]
[42]
Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 2012; 367(19): 1814-20.
[http://dx.doi.org/10.1056/NEJMoa1211721] [PMID: 23075143]
[43]
Al-Osail AM, Al-Wazzah MJ. The history and epidemiology of Middle East respiratory syndrome corona virus. Multidiscip Respir Med 2017; 12(1): 20.
[http://dx.doi.org/10.1186/s40248-017-0101-8] [PMID: 28794876]
[44]
Banerjee A, Kulcsar K, Misra V, Frieman M, Mossman K. Bats and Coronaviruses. Viruses 2019; 11(1): 41.
[http://dx.doi.org/10.3390/v11010041] [PMID: 30634396]
[45]
Meyer B, Müller MA, Corman VM, et al. Antibodies against MERS coronavirus in dromedary camels, United Arab Emirates, 2003 and 2013. Emerg Infect Dis 2014; 20(4): 552-9.
[http://dx.doi.org/10.3201/eid2004.131746] [PMID: 24655412]
[46]
Eckerle I, Corman VM, Müller MA, Lenk M, Ulrich RG, Drosten C. Replicative capacity of MERS coronavirus in livestock cell lines. Emerg Infect Dis 2014; 20(2): 276-9.
[http://dx.doi.org/10.3201/eid2002.131182] [PMID: 24457147]
[47]
Memish ZA, Cotten M, Meyer B, et al. Human infection with MERS coronavirus after exposure to infected camels, Saudi Arabia, 2013. Emerg Infect Dis 2014; 20(6): 1012-5.
[http://dx.doi.org/10.3201/eid2006.140402] [PMID: 24857749]
[48]
Azhar EI, El-Kafrawy SA, Farraj SA, et al. Evidence for camel-to-human transmission of MERS coronavirus. N Engl J Med 2014; 370(26): 2499-505.
[http://dx.doi.org/10.1056/NEJMoa1401505] [PMID: 24896817]
[49]
Drosten C, Meyer B, Müller MA, et al. Transmission of MERS-coronavirus in household contacts. N Engl J Med 2014; 371(9): 828-35.
[http://dx.doi.org/10.1056/NEJMoa1405858] [PMID: 25162889]
[50]
Kim Y, Cheon S, Min CK, et al. Spread of mutant Middle East respiratory syndrome coronavirus with reduced affinity to human CD26 during the South Korean outbreak. MBio 2016; 7(2): e00019-16.
[http://dx.doi.org/10.1128/mBio.00019-16] [PMID: 26933050]
[51]
Park JE, Jung S, Kim A, Park JE. MERS transmission and risk factors: a systematic review. BMC Public Health 2018; 18(1): 574.
[http://dx.doi.org/10.1186/s12889-018-5484-8] [PMID: 29716568]
[52]
Skariyachan S, Challapilli SB, Packirisamy S, Kumargowda ST, Sridhar VS. Recent aspects on the pathogenesis mechanism, animal models and novel therapeutic interventions for Middle East respiratory syndrome coronavirus infections. Front Microbiol 2019; 10: 569.
[http://dx.doi.org/10.3389/fmicb.2019.00569]
[53]
Cho SY, Kang JM, Ha YE, et al. MERS-CoV outbreak following a single patient exposure in an emergency room in South Korea: an epidemiological outbreak study. Lancet 2016; 388(10048): 994-1001.
[http://dx.doi.org/10.1016/S0140-6736(16)30623-7] [PMID: 27402381]
[54]
Goo J, Jeong Y, Park YS, et al. Characterization of novel monoclonal antibodies against MERS-coronavirus spike protein. Virus Res 2020; 278197863
[http://dx.doi.org/10.1016/j.virusres.2020.197863] [PMID: 31945421]
[55]
Ding X, Peng F, Zhou J, et al. Defect engineered bioactive transition metals dichalcogenides quantum dots. Nat Commun 2019; 10(1): 41.
[http://dx.doi.org/10.1038/s41467-018-07835-1] [PMID: 30604777]
[56]
Zhao J, Li K, Wohlford-Lenane C, et al. Rapid generation of a mouse model for Middle East respiratory syndrome. Proc Natl Acad Sci USA 2014; 111(13): 4970-5.
[http://dx.doi.org/10.1073/pnas.1323279111] [PMID: 24599590]
[57]
Bloomberg News. China will rack up three billion trips during world’s biggest human migration Available from: https://www.bloombergquint.com/global-economics/china-readies-for-world-s-biggest-human-migration-quicktake-2
[58]
World Health Organization. Summary table of SARS cases by country 1 November 2002-7 August 2003 Weekly Epidemiological Record 2003; 78(35): 310-1.
[59]
World Health Organization. Pneumonia of unknown cause-China Available from: https://www.who.int/csr/don/05-january-2020-pneumonia-of-unkown-cause-china/en/
[60]
Hui DSI, Azhar E, Madani TA, et al. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health - The latest 2019 novel coronavirus outbreak in Wuhan, China. Int J Infect Dis 2020; 91: 264-6.
[http://dx.doi.org/10.1016/j.ijid.2020.01.009] [PMID: 31953166]
[61]
Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020; 395(10223): 507-13.
[http://dx.doi.org/10.1016/S0140-6736(20)30211-7] [PMID: 32007143]
[62]
Yang Y, Peng F, Wang R, et al. The deadly coronaviruses: The 2003 SARS pandemic and the 2020 novel coronavirus epidemic in China. J Autoimmun 2020; 109102434
[http://dx.doi.org/10.1016/j.jaut.2020.102434] [PMID: 32143990]
[63]
National Health Commission of the People’s Republic of China News. Available from: http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml
[64]
Schweickert WD, Pohlman MC, Pohlman AS, et al. Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial. Lancet 2009; 373(9678): 1874-82.
[http://dx.doi.org/10.1016/S0140-6736(09)60658-9] [PMID: 19446324]
[65]
Li Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med 2020; 382(13): 1199-207.
[http://dx.doi.org/10.1056/NEJMoa2001316] [PMID: 31995857]
[66]
CDC. Novel Coronavirus (2019-nCoV) , Wuhan, China Available from: https://www.cdc. gov/coronavirus/2019-nCoV/summary. html2020.
[67]
National Health Commission. Protocol on prevention and control of novel coronavirus pneumonia Available from: https://www.chinadaily.com.cn/pdf/2020/2.COVID-19.Prevention.and.Control.Protocol.V6.pdf
[68]
Gov.cn. Notice on Wuhan novel coronavirus infection of pneumonia epidemic prevention and control Available from: http://www.gov.cn/xinwen/202001/23/content_5471751.htm
[69]
Song HD, Tu CC, Zhang GW, et al. Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human. Proc Natl Acad Sci USA 2005; 102(7): 2430-5.
[http://dx.doi.org/10.1073/pnas.0409608102] [PMID: 15695582]
[70]
Lau SK, Woo PC, Li KS, et al. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc Natl Acad Sci USA 2005; 102(39): 14040-5.
[http://dx.doi.org/10.1073/pnas.0506735102] [PMID: 16169905]
[71]
Li W, Shi Z, Yu M, et al. Bats are natural reservoirs of SARS-like coronaviruses. Science 2005; 310(5748): 676-9.
[http://dx.doi.org/10.1126/science.1118391] [PMID: 16195424]
[72]
Montecino-Latorre D, Goldstein T, Gilardi K, et al. Reproduction of East-African bats may guide risk mitigation for coronavirus spillover. One Health Outlook 2020; 2(1): 1-3.
[http://dx.doi.org/10.1186/s42522-019-0008-8]
[73]
Ren W, Qu X, Li W, et al. Difference in receptor usage between severe acute respiratory syndrome (SARS) coronavirus and SARS-like coronavirus of bat origin. J Virol 2008; 82(4): 1899-907.
[http://dx.doi.org/10.1128/JVI.01085-07] [PMID: 18077725]
[74]
Menachery VD, Yount BL Jr, Debbink K, et al. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nat Med 2015; 21(12): 1508-13.
[http://dx.doi.org/10.1038/nm.3985] [PMID: 26552008]
[75]
Chen L, Liu B, Yang J, Jin Q. DBatVir: the database of bat-associated viruses. Database (Oxford) 2014; 2014bau021
[http://dx.doi.org/10.1093/database/bau021] [PMID: 24647629]
[76]
Bolles M, Donaldson E, Baric R. SARS-CoV and emergent coronaviruses: viral determinants of interspecies transmission. Curr Opin Virol 2011; 1(6): 624-34.
[http://dx.doi.org/10.1016/j.coviro.2011.10.012] [PMID: 22180768]
[77]
Rabi FA, Al Zoubi MS, Kasasbeh GA, Salameh DM, Al-Nasser AD. SARS-CoV-2 and Coronavirus disease 2019: What we know so far. Pathogens 2020; 9(3): 231.
[http://dx.doi.org/10.3390/pathogens9030231] [PMID: 32245083]
[78]
Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579: 270-3.
[79]
Klausegger A, Strobl B, Regl G, Kaser A, Luytjes W, Vlasak R. Identification of a coronavirus hemagglutinin-esterase with a substrate specificity different from those of influenza C virus and bovine coronavirus. J Virol 1999; 73(5): 3737-43.
[http://dx.doi.org/10.1128/JVI.73.5.3737-3743.1999] [PMID: 10196267]
[80]
Cornelissen LA, Wierda CM, van der Meer FJ, et al. Hemagglutinin-esterase, a novel structural protein of torovirus. J Virol 1997; 71(7): 5277-86.
[http://dx.doi.org/10.1128/JVI.71.7.5277-5286.1997] [PMID: 9188596]
[81]
Zhu N, Zhang D, Wang W, et al. China novel coronavirus investigating and research team. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020; 382(8): 727-33.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[82]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[83]
Jin YH, Cai L, Cheng ZS, et al. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Mil Med Res 2020; 7(1): 4.
[http://dx.doi.org/10.1186/s40779-020-0233-6] [PMID: 32029004]
[84]
Chan KS, Lai ST, Chu CM, et al. Treatment of severe acute respiratory syndrome with lopinavir/ritonavir: a multicentre retrospective matched cohort study. Hong Kong Med J 2003; 9(6): 399-406.
[PMID: 14660806]
[85]
Chu CM, Cheng VC, Hung IF, et al. HKU/UCH SARS study group. role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax 2004; 59(3): 252-6.
[http://dx.doi.org/10.1136/thorax.2003.012658] [PMID: 14985565]
[86]
Lai ST. Treatment of severe acute respiratory syndrome. Eur J Clin Microbiol Infect Dis 2005; 24(9): 583-91.
[http://dx.doi.org/10.1007/s10096-005-0004-z] [PMID: 16172857]
[87]
Meyer B, Basra A, Aberle S, et al. 1225: Mers-cov disease associated ards− a case report. Crit Care Med 2015; 43(12): 308.
[http://dx.doi.org/10.1097/01.ccm.0000475056.21112.47]
[88]
Khan PA, Nousheen BB, Maryam N, Sultana K. Middle East Respiratory Syndrome (MERS): a systematic review international journal of pharmaceutical sciences and research 2018; 9(7): 2616-5.
[89]
Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 2020; 30(3): 269-71.
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[90]
Sheahan TP, Sims AC, Leist SR, et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun 2020; 11(1): 222.
[http://dx.doi.org/10.1038/s41467-019-13940-6] [PMID: 31924756]
[91]
Sheahan TP, Sims AC, Graham RL, et al. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci Transl Med 2017; 9(396): 396.
[http://dx.doi.org/10.1126/scitranslmed.aal3653] [PMID: 28659436]
[92]
Meng QH, Dong PL, Guo YB, et al. Use of glucocorticoid in treatment of severe acute respiratory syndrome cases. Zhonghua Yu Fang Yi Xue Za Zhi 2003; 37(4): 233-5.
[PMID: 12930669]
[93]
Nie QH, Luo XD, Zhang JZ, Su Q. Current status of severe acute respiratory syndrome in China. World J Gastroenterol 2003; 9(8): 1635-45.
[http://dx.doi.org/10.3748/wjg.v9.i8.1635] [PMID: 12918094]
[94]
Zhou W, Liu Y, Tian D, et al. Potential benefits of precise corticosteroids therapy for severe 2019-nCoV pneumonia. Signal Transduct Target Ther 2020; 5(1): 18.
[http://dx.doi.org/10.1038/s41392-020-0127-9] [PMID: 32296012]
[95]
Yuan X, Mu JS, Mo GX, Hu XS, Yan P, Xie LX. Respiratory support for severe 2019-nCoV pneumonia suffering from acute respiratory failure: time and strategy. Zhonghua Jie He He Hu Xi Za Zhi 2020; 43(3): 177-80.
[PMID: 32164082]
[96]
Xiao JZ, Ma L, Gao J, et al. Glucocorticoid-induced diabetes in severe acute respiratory syndrome: the impact of high dosage and duration of methylprednisolone therapy. Zhonghua Nei Ke Za Zhi 2004; 43(3): 179-82.
[PMID: 15059370]
[97]
Saif LJ. Animal coronavirus vaccines: lessons for SARS. Dev Biol (Basel) 2004; 119: 129-40.
[PMID: 15742624]
[98]
Züst R, Cervantes-Barragán L, Kuri T, et al. Coronavirus non-structural protein 1 is a major pathogenicity factor: implications for the rational design of coronavirus vaccines. PLoS Pathog 2007; 3(8)e109
[http://dx.doi.org/10.1371/journal.ppat.0030109] [PMID: 17696607]
[99]
Yount B, Roberts RS, Lindesmith L, Baric RS. Rewiring the severe acute respiratory syndrome coronavirus (SARS-CoV) transcription circuit: engineering a recombination-resistant genome. Proc Natl Acad Sci USA 2006; 103(33): 12546-51.
[http://dx.doi.org/10.1073/pnas.0605438103] [PMID: 16891412]
[100]
Graham RL, Becker MM, Eckerle LD, Bolles M, Denison MR, Baric RS. A live, impaired-fidelity coronavirus vaccine protects in an aged, immunocompromised mouse model of lethal disease. Nat Med 2012; 18(12): 1820-6.
[http://dx.doi.org/10.1038/nm.2972] [PMID: 23142821]
[101]
Colson P, Rolain JM, Lagier JC, Brouqui P, Raoult D. Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. Int J Antimicrob Agents 2020; 55(4)105932
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105932] [PMID: 32145363]
[102]
Yao X, Ye F, Zhang M, et al. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis 2020; 71: 4-16.
[http://dx.doi.org/10.1093/cid/ciaa237] [PMID: 32150618]
[103]
Gao J, Tian Z, Yang X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends 2020; 14(1): 72-3.
[http://dx.doi.org/10.5582/bst.2020.01047] [PMID: 32074550]

© 2024 Bentham Science Publishers | Privacy Policy