Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Unveiling Role of MicroRNAs as Treatment Strategy and Prognostic Markers in Triple Negative Breast Cancer

Author(s): Acharya Balkrishna, Rashmi Mittal and Vedpriya Arya*

Volume 21, Issue 15, 2020

Page: [1569 - 1575] Pages: 7

DOI: 10.2174/1389201021666200627201535

Price: $65

Abstract

Triple negative breast cancer is the highly aggressive form of breast cancer with high reoccurrence rate and is short of effective treatment strategy. The prognostic markers of it are also not well understood. miRNAs are the global regulators of various cancers on the virtue of its ability to post transcriptional regulation of genes involved in various pathways involved in complicating TNBC. In this review we studied the expression of miRNAs at different stages of TNBC and the role of miRNAs as a tumor suppressor to inhibit cell proliferation, angiogenesis, invasion and metastasis and to induce apoptosis and thereby proposing these miRNAs as an effective treatment strategy against TNBC. miRNA also acts as chemosenstizer in enhancing chemosensitivity of conventional drugs against resistant TNBC cells. The present review emphasizes the importance of miRNAs as prognostic markers to determine the overall survival, disease free survival and distant metastasis free survival rate in TNBC patients. We speculate that miRNA can present themselves as an effective treatment strategy and prognostic marker against TNBC.

Keywords: Biomarker, chemosensitizer, miRNAs, prognosis, TNBC, treatment.

Graphical Abstract
[1]
Nama, S.; Muhuri, M.; Di Pascale, F.; Quah, S.; Aswad, L.; Fullwood, M.; Sampath, P. MicroRNA-138 is a prognostic biomarker for triple-negative breast cancer and promotes tumorigenesis via TUSC2 repression. Sci. Rep., 2019, 9(1), 12718.
[http://dx.doi.org/10.1038/s41598-019-49155-4] [PMID: 31481748]
[2]
Nielsen, J.S.; Jakobsen, E.; Hølund, B.; Bertelsen, K.; Jakobsen, A. Prognostic significance of p53, Her-2, and EGFR overexpression in borderline and epithelial ovarian cancer. Int. J. Gynecol. Cancer, 2004, 14(6), 1086-1096.
[http://dx.doi.org/10.1111/j.1048-891X.2004.14606.x] [PMID: 15571614]
[3]
Dvinge, H.; Git, A.; Gräf, S.; Salmon-Divon, M.; Curtis, C.; Sottoriva, A.; Zhao, Y.; Hirst, M.; Armisen, J.; Miska, E.A.; Chin, S.F.; Provenzano, E.; Turashvili, G.; Green, A.; Ellis, I.; Aparicio, S.; Caldas, C. The shaping and functional consequences of the microRNA landscape in breast cancer. Nature, 2013, 497(7449), 378-382.
[http://dx.doi.org/10.1038/nature12108] [PMID: 23644459]
[4]
Bayraktar, R.; Pichler, M.; Kanlikilicer, P.; Ivan, C.; Bayraktar, E.; Kahraman, N.; Aslan, B.; Oguztuzun, S.; Ulasli, M.; Arslan, A.; Calin, G.; Lopez-Berestein, G.; Ozpolat, B. MicroRNA 603 acts as a tumor suppressor and inhibits triple-negative breast cancer tumorigenesis by targeting elongation factor 2 kinase. Oncotarget, 2017, 8(7), 11641-11658.
[http://dx.doi.org/10.18632/oncotarget.14264] [PMID: 28036267]
[5]
Lowery, A.J.; Miller, N.; Devaney, A.; McNeill, R.E.; Davoren, P.A.; Lemetre, C.; Benes, V.; Schmidt, S.; Blake, J.; Ball, G.; Kerin, M.J. MicroRNA signatures predict oestrogen receptor, progesterone receptor and HER2/neu receptor status in breast cancer. Breast Cancer Res., 2009, 11(3), R27.
[http://dx.doi.org/10.1186/bcr2257] [PMID: 19432961]
[6]
Ding, L.; Gu, H.; Xiong, X.; Ao, H.; Cao, J.; Lin, W.; Yu, M.; Lin, J.; Cui, Q. micrornas involved in carcinogenesis, prognosis, therapeutic resistance and applications in human triple-negative breast cancer. Cells, 2019, 8(12), 1492.
[http://dx.doi.org/10.3390/cells8121492] [PMID: 31766744]
[7]
Oliveira, C.R.; Spindola, D.G.; Garcia, D.M.; Erustes, A.; Bechara, A.; Palmeira-Dos-Santos, C.; Smaili, S.S.; Pereira, G.J.S.; Hinsberger, A.; Viriato, E.P.; Cristina Marcucci, M.; Sawaya, A.C.H.F.; Tomaz, S.L.; Rodrigues, E.G.; Bincoletto, C. Medicinal properties of Angelica archangelica root extract: Cytotoxicity in breast cancer cells and its protective effects against in vivo tumor development. J. Integr. Med., 2019, 17(2), 132-140.
[http://dx.doi.org/10.1016/j.joim.2019.02.001] [PMID: 30799248]
[8]
Pal, S.K.; Childs, B.H.; Pegram, M. Triple negative breast cancer: Unmet medical needs. Breast Cancer Res. Treat., 2011, 125(3), 627-636.
[http://dx.doi.org/10.1007/s10549-010-1293-1] [PMID: 21161370]
[9]
Piasecka, D.; Braun, M.; Kordek, R.; Sadej, R.; Romanska, H. MicroRNAs in regulation of triple-negative breast cancer progression. J. Cancer Res. Clin. Oncol., 2018, 144(8), 1401-1411.
[http://dx.doi.org/10.1007/s00432-018-2689-2] [PMID: 29923083]
[10]
Pedroza-Torres, A.; Romero-Córdoba, S.L.; Justo-Garrido, M.; Salido-Guadarrama, I.; Rodríguez-Bautista, R.; Montaño, S.; Muñiz-Mendoza, R.; Arriaga-Canon, C.; Fragoso-Ontiveros, V.; Álvarez-Gómez, R.M.; Hernández, G.; Herrera, L.A. microRNAs in tumor cell metabolism: Roles and therapeutic opportunities. Front. Oncol., 2019, 9, 1404.
[http://dx.doi.org/10.3389/fonc.2019.01404] [PMID: 31921661]
[11]
Ritter, A.; Hirschfeld, M.; Berner, K.; Rücker, G.; Jäger, M.; Weiss, D.; Medl, M.; Nöthling, C.; Gassner, S.; Asberger, J.; Erbes, T. Circulating non-coding RNA-biomarker potential in neoadjuvant chemotherapy of triple negative breast cancer? Int. J. Oncol., 2020, 56(1), 47-68.
[PMID: 31789396]
[12]
Graveel, C.R.; Calderone, H.M.; Westerhuis, J.J.; Winn, M.E.; Sempere, L.F. Critical analysis of the potential for microRNA biomarkers in breast cancer management. Breast Cancer, 2015, 7, 59-79.
[13]
Wu, X.; Ding, M.; Lin, J. Three-microRNA expression signature predicts survival in triple-negative breast cancer. Oncol. Lett., 2020, 19(1), 301-308.
[PMID: 31897142]
[14]
Li, H.; Bian, C.; Liao, L.; Li, J.; Zhao, R.C. miR-17-5p promotes human breast cancer cell migration and invasion through suppression of HBP1. Breast Cancer Res. Treat., 2011, 126(3), 565-575.
[http://dx.doi.org/10.1007/s10549-010-0954-4] [PMID: 20505989]
[15]
Malla, R.R.; Kumari, S.; Gavara, M.M.; Badana, A.K.; Gugalavath, S.; Kumar, D.K.G.; Rokkam, P. A perspective on the diagnostics, prognostics, and therapeutics of microRNAs of triple-negative breast cancer. Biophys. Rev., 2019, 11(2), 227-234.
[http://dx.doi.org/10.1007/s12551-019-00503-8] [PMID: 30796734]
[16]
Zou, Q.; Tang, Q.; Pan, Y.; Wang, X.; Dong, X.; Liang, Z.; Huang, D. MicroRNA-22 inhibits cell growth and metastasis in breast cancer via targeting of SIRT1. Exp. Ther. Med., 2017, 14(2), 1009-1016.
[http://dx.doi.org/10.3892/etm.2017.4590] [PMID: 28781618]
[17]
Cuk, K.; Zucknick, M.; Madhavan, D.; Schott, S.; Golatta, M.; Heil, J.; Marmé, F.; Turchinovich, A.; Sinn, P.; Sohn, C.; Junkermann, H.; Schneeweiss, A.; Burwinkel, B. Plasma microRNA panel for minimally invasive detection of breast cancer. PLoS One, 2013, 8(10)e76729
[http://dx.doi.org/10.1371/journal.pone.0076729] [PMID: 24194846]
[18]
Kayani, M.; Kayani, M.A.; Malik, F.A.; Faryal, R. Role of miRNAs in breast cancer. Asian Pac. J. Cancer Prev., 2011, 12(12), 3175-3180.
[PMID: 22471449]
[19]
Fkih M’hamed, I.; Privat, M.; Trimeche, M.; Penault-Llorca, F.; Bignon, Y.J.; Kenani, A. miR-10b, miR-26a, miR-146a and miR-153 expression in triple negative vs. non triple negative breast cancer: Potential biomarkers. Pathol. Oncol. Res., 2017, 23(4), 815-827.
[http://dx.doi.org/10.1007/s12253-017-0188-4] [PMID: 28101798]
[20]
Drago-Ferrante, R.; Pentimalli, F.; Carlisi, D.; De Blasio, A.; Saliba, C.; Baldacchino, S.; Degaetano, J.; Debono, J.; Caruana-Dingli, G.; Grech, G.; Scerri, C.; Tesoriere, G.; Giordano, A.; Vento, R.; Di Fiore, R. Suppressive role exerted by microRNA-29b-1-5p in triple negative breast cancer through SPIN1 regulation. Oncotarget, 2017, 8(17), 28939-28958.
[http://dx.doi.org/10.18632/oncotarget.15960] [PMID: 28423652]
[21]
Jang, M.H.; Kim, H.J.; Gwak, J.M. Prognostic value of microRNA-9 and microRNA-155 expression in triple-negative breast cancer. Hum. Pathol., 2017, 68, 69-78.
[http://dx.doi.org/10.1016/j.humpath.2017.08.026]
[22]
Liu, L.; Petrich, S.; McLaren, B.; Kelly, L.; Baxter, G.D. An integrative Tai Chi program for patients with breast cancer undergoing cancer therapy: Study protocol for a randomized controlled feasibility study. J. Integr. Med., 2018, 16(2), 99-105.
[http://dx.doi.org/10.1016/j.joim.2017.12.011] [PMID: 29526243]
[23]
Mekala, J.R.; Naushad, S.M.; Ponnusamy, L.; Arivazhagan, G.; Sakthiprasad, V.; Pal-Bhadra, M. Epigenetic regulation of miR-200 as the potential strategy for the therapy against triple-negative breast cancer. Gene, 2018, 641, 248-258.
[http://dx.doi.org/10.1016/j.gene.2017.10.018] [PMID: 29038000]
[24]
Bao, C.; Lu, Y.; Chen, J.; Chen, D.; Lou, W.; Ding, B.; Xu, L.; Fan, W. Exploring specific prognostic biomarkers in triple-negative breast cancer. Cell Death Dis., 2019, 10(11), 807.
[http://dx.doi.org/10.1038/s41419-019-2043-x] [PMID: 31649243]
[25]
Liu, F.; Zhuang, L.; Wu, R.; Li, D. miR-365 inhibits cell invasion and migration of triple negative breast cancer through ADAM10. J. BUON, 2019, 24(5), 1905-1912.
[PMID: 31786854]
[26]
Chen, X.; Zhao, M.; Huang, J.; Li, Y.; Wang, S.; Harrington, C.A.; Qian, D.Z.; Sun, X.X.; Dai, M.S. microRNA-130a suppresses breast cancer cell migration and invasion by targeting FOSL1 and upregulating ZO-1. J. Cell. Biochem., 2018, 119(6), 4945-4956.
[http://dx.doi.org/10.1002/jcb.26739] [PMID: 29384218]
[27]
Shen, X.; Lei, J.; Du, L. miR-31-5p may enhance the efficacy of chemotherapy with Taxol and cisplatin in TNBC. Exp. Ther. Med., 2020, 19(1), 375-383.
[PMID: 31853314]
[28]
Körner, C.; Keklikoglou, I.; Bender, C.; Wörner, A.; Münstermann, E.; Wiemann, S. MicroRNA-31 sensitizes human breast cells to apoptosis by direct targeting of protein kinase C ϵ (PKCepsilon). J. Biol. Chem., 2013, 288(12), 8750-8761.
[http://dx.doi.org/10.1074/jbc.M112.414128] [PMID: 23364795]
[29]
Liang, Z.; Bian, X.; Shim, H. Downregulation of microRNA-206 promotes invasion and angiogenesis of triple negative breast cancer. Biochem. Biophys. Res. Commun., 2016, 477(3), 461-466.
[http://dx.doi.org/10.1016/j.bbrc.2016.06.076] [PMID: 27318091]
[30]
Liu, M.; Gong, C.; Xu, R.; Chen, Y.; Wang, X. MicroRNA-5195-3p enhances the chemosensitivity of triple-negative breast cancer to paclitaxel by downregulating EIF4A2. Cell. Mol. Biol. Lett., 2019, 24(47), 47.
[http://dx.doi.org/10.1186/s11658-019-0168-7] [PMID: 31308851]
[31]
Andrade, F.; Nakata, A.; Gotoh, N.; Fujita, A. Large miRNA survival analysis reveals a prognostic four-biomarker signature for triple negative breast cancer. Genet. Mol. Biol., 2020, 43(1)e20180269
[http://dx.doi.org/10.1590/1678-4685-gmb-2018-0269] [PMID: 31487369]
[32]
Uva, P.; Cossu-Rocca, P.; Loi, F.; Pira, G.; Murgia, L.; Orrù, S.; Floris, M.; Muroni, M.R.; Sanges, F.; Carru, C.; Angius, A.; De Miglio, M.R. miRNA-135b contributes to triple negative breast cancer molecular heterogeneity: Different expression profile in Basal-like versus non-Basal-like phenotypes. Int. J. Med. Sci., 2018, 15(6), 536-548.
[http://dx.doi.org/10.7150/ijms.23402] [PMID: 29725243]
[33]
Liu, Y.; Zhang, Y.; Li, Q.; Li, J.; Ma, X.; Xing, J.; Rong, S.; Wu, Z.; Tian, Y.; Li, J.; Jia, L. MiRNAs predict the prognosis of patients with triple negative breast cancer: A meta-analysis. PLoS One, 2017, 12(1)e0170088
[http://dx.doi.org/10.1371/journal.pone.0170088] [PMID: 28085956]
[34]
D’Ippolito, E.; Iorio, M.V. MicroRNAs and triple negative breast cancer. Int. J. Mol. Sci., 2013, 14(11), 22202-22220.
[http://dx.doi.org/10.3390/ijms141122202] [PMID: 24284394]
[35]
Song, X.; Zhang, C.; Liu, Z.; Liu, Q.; He, K.; Yu, Z. Characterization of ceRNA network to reveal potential prognostic biomarkers in triple-negative breast cancer. PeerJ, 2019, 7e7522
[http://dx.doi.org/10.7717/peerj.7522] [PMID: 31565554]
[36]
Jang, M.H.; Kim, H.J.; Gwak, J.M.; Chung, Y.R.; Park, S.Y. Prognostic value of microRNA-9 and microRNA-155 expression in triple-negative breast cancer. Hum. Pathol., 2017, 68, 69-78.
[http://dx.doi.org/10.1016/j.humpath.2017.08.026] [PMID: 28882698]
[37]
Cascione, L.; Gasparini, P.; Lovat, F.; Carasi, S.; Pulvirenti, A.; Ferro, A.; Alder, H.; He, G.; Vecchione, A.; Croce, C.M.; Shapiro, C.L.; Huebner, K. Integrated microRNA and mRNA signatures associated with survival in triple negative breast cancer. PLoS One, 2013, 8(2)e55910
[http://dx.doi.org/10.1371/journal.pone.0055910] [PMID: 23405235]
[38]
de Rinaldis, E.; Gazinska, P.; Mera, A.; Modrusan, Z.; Fedorowicz, G.M.; Burford, B.; Gillett, C.; Marra, P.; Grigoriadis, A.; Dornan, D.; Holmberg, L.; Pinder, S.; Tutt, A. Integrated genomic analysis of triple-negative breast cancers reveals novel microRNAs associated with clinical and molecular phenotypes and sheds light on the pathways they control. BMC Genomics, 2013, 14(643), 643.
[http://dx.doi.org/10.1186/1471-2164-14-643] [PMID: 24059244]
[39]
Boukerroucha, M.; Josse, C.; ElGuendi, S.; Boujemla, B.; Frères, P.; Marée, R.; Wenric, S.; Segers, K.; Collignon, J.; Jerusalem, G.; Bours, V. Evaluation of BRCA1-related molecular features and microRNAs as prognostic factors for triple negative breast cancers. BMC Cancer, 2015, 15(755), 755.
[http://dx.doi.org/10.1186/s12885-015-1740-9] [PMID: 26490435]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy