Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Review Article

Xanthone: A Promising Antimycobacterial Scaffold

Author(s): Tilal Elsaman, Malik Suliman Mohamed, Eyman Mohamed Eltayib, Abualgasim Elgaili Abdalla and Magdi Awadalla Mohamed*

Volume 17, Issue 4, 2021

Published on: 19 June, 2020

Page: [310 - 331] Pages: 22

DOI: 10.2174/1573406416666200619114124

Price: $65

Abstract

Background: Tuberculosis (TB) is one of the infectious diseases associated with high rate of morbidity and mortality and still remains one of the top-ten leading causes of human death in the world. The development of new anti-TB drugs is mandatory due to the existence of latent infection as well as the expansion of the resistant Mycobacterium tuberculosis (MBT) strains. Xanthones encompass a wide range of structurally diverse bioactive compounds, obtained either naturally or through chemical synthesis. There is a growing body of literature that recognizes the antitubercular activity of xanthone derivatives.

Objective: The objective of this review is to highlight the main natural sources along with the critical design elements, structure-activity relationships (SARs), modes of action and pharmacokinetic profiles of xanthone-based anti-TB compounds.

Methods: In the present review, the anti-TB activity of xanthones reported in the literature from 1972 to date is presented and discussed.

Results: Exploration of xanthone scaffold led to the identification of several members of this class having superior activity against both sensitive and resistant MBT strains with distinctive mycobacterial membrane disrupting properties. However, studies regarding their modes of action, pharmacokinetic properties and safety are limited.

Conclusion: Comprehendible data and information are afforded by this review and it would certainly provide scientists with new thoughts and means which will be conducive to design and develop new drugs with excellent anti-TB activity through exploration of xanthone scaffold.

Keywords: Xanthones, Mycobacterium tuberculosis, drug-resistant tuberculosis, structure-activity relationships (SARs), membrane- targeting properties, pharmacokinetic profiles.

Graphical Abstract
[1]
Kelly, A Tuberculosis. The Lancet, 2019, 54, 193-205.
[2]
WHO WHO | Global tuberculosis report. 2018.
[3]
Perdigão, J.; Portugal, I. Genetics and roadblocks of drug resistant tuberculosis. Infect. Genet. Evol., 2019, 72, 113-130.
[http://dx.doi.org/10.1016/j.meegid.2018.09.023] [PMID: 30261266]
[4]
Caminero, J.A.; Cayla, J.A.; García-García, J.M.; García-Pérez, F.J.; Palacios, J.J.; Ruiz-Manzano, J. Diagnosis and Treatment of Drug-Resistant Tuberculosis. Arch. Bronconeumol., 2017, 53(9), 501-509.
[PMID: 28359606]
[5]
Klopper, M.; Warren, R.M.; Hayes, C.; Gey van Pittius, N.C.; Streicher, E.M.; Müller, B.; Sirgel, F.A.; Chabula-Nxiweni, M.; Hoosain, E.; Coetzee, G.; David van Helden, P.; Victor, T.C.; Trollip, A.P. Emergence and spread of extensively and totally drug-resistant tuberculosis, South Africa. Emerg. Infect. Dis., 2013, 19(3), 449-455.
[http://dx.doi.org/10.3201/eid1903.120246] [PMID: 23622714]
[6]
Vasava, M.S.; Nair, S.G.; Rathwa, S.K.; Patel, D.B.; Patel, H.D. Development of new drug-regimens against multidrug-resistant tuberculosis. Indian J. Tuberc., 2019, 66(1), 12-19.
[http://dx.doi.org/10.1016/j.ijtb.2018.07.004] [PMID: 30797268]
[7]
Xu, Z.; Zhangb, S.; Chuanc, G.; Jingd, F.; Fengc, Z.; Lva, Z. 4 Feng, L. Isatin hybrids and their anti-tuberculosis activity. Chin. Chem. Lett., 2017, 28, 159-167.
[http://dx.doi.org/10.1016/j.cclet.2016.07.032]
[8]
Elsaman, T.; Mohamed, M.S.; Mohamed, M.A. Current development of 5-nitrofuran-2-yl derivatives as antitubercular agents. Bioorg. Chem., 2019, 88(102969)102969
[http://dx.doi.org/10.1016/j.bioorg.2019.102969] [PMID: 31077910]
[9]
Reis, W.J.; Bozzi, Í.A.O.; Ribeiro, M.F.; Halicki, P.C.B.; Ferreira, L.A.; Almeida da Silva, P.E.; Ramos, D.F.; de Simone, C.A.; da Silva Júnior, E.N. Design of hybrid molecules as antimycobacterial compounds: Synthesis of isoniazid-naphthoquinone derivatives and their activity against susceptible and resistant strains of Mycobacterium tuberculosis. Bioorg. Med. Chem., 2019, 27(18), 4143-4150.
[http://dx.doi.org/10.1016/j.bmc.2019.07.045] [PMID: 31378595]
[10]
Nguta, J.M.; Appiah-Opong, R.; Nyarko, A.K.; Yeboah-Manu, D.; Addo, P.G.A. Current perspectives in drug discovery against tuberculosis from natural products. Int. J. Mycobacteriol., 2015, 4(3), 165-183.
[http://dx.doi.org/10.1016/j.ijmyco.2015.05.004] [PMID: 27649863]
[11]
Quan, D.; Nagalingam, G.; Payne, R.; Triccas, J.A. New tuberculosis drug leads from naturally occurring compounds. Int. J. Infect. Dis., 2017, 56, 212-220.
[http://dx.doi.org/10.1016/j.ijid.2016.12.024] [PMID: 28062229]
[12]
Harvey, A.L.; Edrada-Ebel, R.; Quinn, R.J. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov., 2015, 14(2), 111-129.
[http://dx.doi.org/10.1038/nrd4510] [PMID: 25614221]
[13]
Hert, J.; Irwin, J.J.; Laggner, C.; Keiser, M.J.; Shoichet, B.K. Quantifying biogenic bias in screening libraries. Nat. Chem. Biol., 2009, 5(7), 479-483.
[http://dx.doi.org/10.1038/nchembio.180] [PMID: 19483698]
[14]
Nneka, N.I.; Sunday, J.A. Plant natural products research in tuberculosis drug discovery and development: A situation report with focus on Nigerian biodiversity. Afr. J. Biotechnol., 2014, 13, 2307-2320.
[http://dx.doi.org/10.5897/AJB2013.13491]
[15]
Chukaew, A.; Saithong, S.; Chusri, S.; Limsuwan, S.; Watanapokasin, R.; Voravuthikunchai, S.P.; Chakthong, S. Cytotoxic xanthones from the roots of Mesua ferrea L. Phytochemistry, 2019, 157, 64-70.
[http://dx.doi.org/10.1016/j.phytochem.2018.10.008] [PMID: 30368220]
[16]
Tchamo Diderot, N.; Silvere, N.; Etienne, T. Xanthones as therapeutic agents: chemistry and pharmacology. Adv. Phytomedicine., 2006, 2, 273-298.
[http://dx.doi.org/10.1016/S1572-557X(05)02016-7]
[17]
Jindarat, S. Xanthones from mangosteen (Garcinia mangostana): multi-targeting pharmacological properties. J. Med. Assoc. Thai., 2014, 97(Suppl. 2), S196-S201.
[PMID: 25518194]
[18]
Pinto, M.M.; Sousa, M.E.; Nascimento, M.S. Xanthone derivatives: new insights in biological activities. Curr. Med. Chem., 2005, 12(21), 2517-2538.
[http://dx.doi.org/10.2174/092986705774370691] [PMID: 16250875]
[19]
Zamakshshari, N.H.; Ee, G.C.L.; Ismail, I.S.; Ibrahim, Z.; Mah, S.H. Cytotoxic xanthones isolated from Calophyllum depressinervosum and Calophyllum buxifolium with antioxidant and cytotoxic activities. Food Chem. Toxicol., 2019, 133110800
[http://dx.doi.org/10.1016/j.fct.2019.110800] [PMID: 31479710]
[20]
Na, Y. Recent cancer drug development with xanthone structures. J. Pharm. Pharmacol., 2009, 61(6), 707-712.
[http://dx.doi.org/10.1211/jpp.61.06.0002] [PMID: 19505360]
[21]
Panda, S.S.; Chand, M.; Sakhuja, R.; Jain, S.C. Xanthones as potential antioxidants. Curr. Med. Chem., 2013, 20(36), 4481-4507.
[http://dx.doi.org/10.2174/09298673113209990144] [PMID: 23834190]
[22]
Wu, Z.H.; Liu, D.; Xu, Y.; Chen, J.L.; Lin, W.H. Antioxidant xanthones and anthraquinones isolated from a marine-derived fungus Aspergillus versicolor. Chin. J. Nat. Med., 2018, 16(3), 219-224.
[http://dx.doi.org/10.1016/S1875-5364(18)30050-5] [PMID: 29576058]
[23]
Ye, G.J.; Lan, T.; Huang, Z.X.; Cheng, X.N.; Cai, C.Y.; Ding, S.M.; Xie, M.L.; Wang, B. Design and synthesis of novel xanthone-triazole derivatives as potential antidiabetic agents: α-Glucosidase inhibition and glucose uptake promotion. Eur. J. Med. Chem., 2019, 177, 362-373.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.045] [PMID: 31158750]
[24]
Kelly, J.X.; Winter, R.; Peyton, D.H.; Hinrichs, D.J.; Riscoe, M. Optimization of xanthones for antimalarial activity: the 3,6-bis-omega-diethylaminoalkoxyxanthone series. Antimicrob. Agents Chemother., 2002, 46(1), 144-150.
[http://dx.doi.org/10.1128/AAC.46.1.144-150.2002] [PMID: 11751125]
[25]
Portela, C.; Afonso, C.M.M.; Pinto, M.M.M.; Lopes, D.; Nogueira, F.; do Rosário, V. Synthesis and antimalarial properties of new chloro-9H-xanthones with an aminoalkyl side chain. Chem. Biodivers., 2007, 4(7), 1508-1519.
[http://dx.doi.org/10.1002/cbdv.200790130] [PMID: 17638332]
[26]
Marona, H.; Pekala, E.; Antkiewicz-Michaluk, L.; Walczak, M.; Szneler, E. Anticonvulsant activity of some xanthone derivatives. Bioorg. Med. Chem., 2008, 16(15), 7234-7244.
[http://dx.doi.org/10.1016/j.bmc.2008.06.039] [PMID: 18640843]
[27]
Sato, H.; Dan, T.; Onuma, E.; Tanaka, H.; Koga, H. Studies on uricosuric diuretics. I. Syntheses and activities of xanthonyloxyacetic acids and dihydrofuroxanthone-2-carboxylic acids. Chem. Pharm. Bull. (Tokyo), 1990, 38(5), 1266-1277.
[http://dx.doi.org/10.1248/cpb.38.1266] [PMID: 2393951]
[28]
Ryu, H.W.; Curtis-Long, M.J.; Jung, S.; Jin, Y.M.; Cho, J.K.; Ryu, Y.B.; Lee, W.S.; Park, K.H. Xanthones with neuraminidase inhibitory activity from the seedcases of Garcinia mangostana. Bioorg. Med. Chem., 2010, 18(17), 6258-6264.
[http://dx.doi.org/10.1016/j.bmc.2010.07.033] [PMID: 20696581]
[29]
Saraiva, L.; Fresco, P.; Pinto, E.; Sousa, E.; Pinto, M.; Gonçalves, J. Inhibition of protein kinase C by synthetic xanthone derivatives. Bioorg. Med. Chem., 2003, 11(7), 1215-1225.
[http://dx.doi.org/10.1016/S0968-0896(02)00641-7] [PMID: 12628649]
[30]
Lin, C.N.; Hsieh, H.K.; Liou, S.J.; Ko, H.H.; Lin, H.C.; Chung, M.I.; Ko, F.N.; Liu, H.W.; Teng, C.M. Synthesis and antithrombotic effect of xanthone derivatives. J. Pharm. Pharmacol., 1996, 48(9), 887-890.
[http://dx.doi.org/10.1111/j.2042-7158.1996.tb05994.x] [PMID: 8910846]
[31]
Boonyaketgoson, S.; Trisuwan, K.; Bussaban, B.; Rukachaisirikul, V.; Phongpaichit, S. Isoflavanone and xanthone derivatives from Dothideomycetes fungus CMU-99. Tetrahedron Lett., 2015, 56, 1057-1059.
[http://dx.doi.org/10.1016/j.tetlet.2015.01.088]
[32]
Shagufta.; Ahmad, I. Recent insight into the biological activities of synthetic xanthone derivatives. Eur. J. Med. Chem., 2016, 116, 267-280.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.058] [PMID: 27111599]
[33]
Gales, L.; Damas, A.M. Xanthones--a structural perspective. Curr. Med. Chem., 2005, 12(21), 2499-2515.
[http://dx.doi.org/10.2174/092986705774370727] [PMID: 16250874]
[34]
Peres, V.; Nagem, T.J. Naturally occurring pentaoxygenated, hexaoxygenated and dimeric xanthones: A literature survey. Quim. Nova, 1997, 20, 388-397.
[http://dx.doi.org/10.1590/S0100-40421997000400009]
[35]
Negi, J.S.; Bisht, V.K.; Singh, P.; Rawat, M.S.M.; Joshi, G.P. Naturally Occurring Xanthones: Chemistry and Biology. J. Appl. Chem., 2013, 2013, 1-9.
[http://dx.doi.org/10.1155/2013/621459]
[36]
Komatsu, M.; Tomimori, T. Japanese pat 7,216,676, through chem. Abstr., 1972, 77, 8578.
[37]
Ghosal, S.; Chaudhuri, R.K. Chemical constituents of Gentianaceae XVI: antitubercular activity of xanthones of Canscora decussata Schult. J. Pharm. Sci., 1975, 64(5), 888-889.
[http://dx.doi.org/10.1002/jps.2600640543] [PMID: 807707]
[38]
Ghosal, S.; Sharma, P.V.; Chaudhuri, R.K.; Bhattacharya, S.K. Chemical constituents of gentianaceae XIV: tetraoxygenated and pentaoxygenated xanthones of Swertia purpurascens Wall. J. Pharm. Sci., 1975, 64(1), 80-83.
[http://dx.doi.org/10.1002/jps.2600640115] [PMID: 1133711]
[39]
Ghosal, S.; Biswas, K.; Chaudhuri, R.K. Chemical constituents of Gentianaceae XXIV: Anti-Mycobacterium tuberculosis activity of naturally occurring xanthones and synthetic analogs. J. Pharm. Sci., 1978, 67(5), 721-722.
[http://dx.doi.org/10.1002/jps.2600670546] [PMID: 565403]
[40]
Chopra, N.; Nayar, R.S.; Chopra, C. Glossary of Indian Medicinal Plants; Council of Scientific and Industrial Research: New Delhi, 1956.
[41]
Hambloch, H.; Frahm, A.W.; Wiedemann, B. QSAR with the tuberculostatic activity of polyhydroxy xanthones and their CNMR chemical shifts. Eur. J. Med. Chem., 1985, 20, 71-77.
[42]
Mahfouz, N.M.A.; Hambloch, H.; Omar, M.N.; Frahm, W.A. Quantitative Structure‐Activity Relations of Polyhydroxyxanthones, II1): Synthesis of Polyoxygenated 2‐Hydroxyxanthones. Arch. Pharm. (Weinheim), 1990, 323, 163-169.
[http://dx.doi.org/10.1002/ardp.19903230307]
[43]
Ibrom, W.G.; Frahm, W.A. Quantitative structure-activity relationships (QSAR) for nitroxanthones and their antituberculotic activity. Eur. J. Pharm. Sci., 1994, 2, 117-194.
[http://dx.doi.org/10.1016/0928-0987(94)90264-X]
[44]
Ibrom, W.G.; Frahm, A.W. Synthesis and antimycobacterial activity of nitroxanthones. 1st communication: synthesis and differential scanning calorimetry analysis. Arzneimittelforschung, 1997, 47(5), 662-667.
[PMID: 9205783]
[45]
Ibrom, W.G.; Schaper, K.J.; Frahm, A.W. Synthesis and antimycobacterial activity of nitroxanthones. 2nd communication: antimycobacterial activity. Arzneimittelforschung, 1997, 47(6), 767-773.
[PMID: 9239457]
[46]
Pickert, M.; Frahm, A.W. Substituted Xanthones as Antimycobacterial Agents 6 Part 1 : Synthesis and Assignment of 1H / 13C NMR Chemical Shifts, 1998.
[47]
Pickert, M.; Jürgen, K.; Wilhelm, A. Substituted Xanthones as Antimycobacterial Agents 6 Part 2. Antimycobacterial Activity., 1998, 331, 193-197.
[48]
Isaka, M.; Jaturapat, A.; Rukseree, K.; Danwisetkanjana, K.; Tanticharoen, M.; Thebtaranonth, Y. Phomoxanthones A and B; Novel Xanthone Dimers from the Endophytic Fungus Phomopsis Species. J. Nat. Prod., 2001, 64(8), 1015-1018.
[49]
Suksamrarn, S.; Suwannapoch, N.; Ratananukul, P.; Aroonlerk, N.; Suksamrarn, A. Xanthones from the green fruit hulls of garcinia mangostana. J. Nat. Prod., 2002, 65(5), 761-763.
[50]
Suksamrarn, S.; Suwannapoch, N.; Phakhodee, W.; Thanuhiranlert, J.; Ratananukul, P.; Chimnoi, N.; Suksamrarn, A. Antimycobacterial Activity of Prenylated Xanthones from the Fruits of Garcinia mangostana. Chem. Pharm. Bull. (Tokyo), 2003, 51, 857-859.
[http://dx.doi.org/10.1248/cpb.51.857]
[51]
Chen, S.X.; Wan, M.; Loh, B.N. Active constituents against HIV-1 protease from Garcinia mangostana. Planta Med., 1996, 62(4), 381-382.
[http://dx.doi.org/10.1055/s-2006-957916] [PMID: 8792678]
[52]
Sen, K.; Sarkar, A.K.; Majumder, P.; Banerji, N. Garcinone D, a new xanthone from Garcinia mangostana. Phytochemistry, 1986, 20, 183-185.
[http://dx.doi.org/10.1016/0031-9422(81)85250-8]
[53]
Bennett, G.J.; Harrison, L.J.; Sia, G.L.; Sim, K.Y. Triterpenoids, tocotrienols and xanthones from the bark of Cratoxylum Cochinchinense. Phytochemistry, 1993, 32, 1245-1251.
[http://dx.doi.org/10.1016/S0031-9422(00)95100-8]
[54]
Nilar, Harrison. L.J. Xanthones from the heartwood of Garcinia mangostana. Phytochemistry, 2002, 60(5), 541-548.
[http://dx.doi.org/10.1016/S0031-9422(02)00142-5] [PMID: 12052521]
[55]
Sen, A.K.; Sarkar, K.K.; Mazumder, P.C.; Banerji, N.; Uusvuori, R.; Haset, T.A. A xanthone from Garcinia mangostana. Phytochemistry, 1980, 19, 2223-2225.
[http://dx.doi.org/10.1016/S0031-9422(00)82235-9]
[56]
Mahabusarakam, W.; Wiriyachitra, P.; Taylor, W.C. Chemical constituents of Garcinia mangostana. J. Nat. Prod., 1987, 50, 474-478.
[http://dx.doi.org/10.1021/np50051a021]
[57]
Chen, J.J.; Chen, I.S.; Duh, C.Y. Cytotoxic xanthones and biphenyls from the root of Garcinia linii. Planta Med., 2004, 70(12), 1195-1200.
[http://dx.doi.org/10.1055/s-2004-835851] [PMID: 15643557]
[58]
Chen, J.J.; Peng, C.F.; Huang, H.Y.; Chen, I.S. Benzopyrans, biphenyls and xanthones from the root of Garcinia linii and their activity against Mycobacterium tuberculosis. Planta Med., 2006, 72(5), 473-477.
[http://dx.doi.org/10.1055/s-2005-916253] [PMID: 16557464]
[59]
Minami, H.; Takahashi, E.; Kodama, M.; Fukuyama, Y. Three xanthones from Garcinia Subelliptica. Phytochemistry, 1996, 41, 629-633.
[http://dx.doi.org/10.1016/0031-9422(95)00567-6]
[60]
Kuete, V.; Meli, A.L.; Komguem, J.; Louh, G.N.; Tangmouo, J.G.; Lontsi, D.; Meyer, J.J.M.; Lall, N. Antimycobacterial, Antibacterial and Antifungal Activities of the Methanolic Extract and Compounds from Garcinia Polyantha. Pharmacologyonline, 2007, 95, 87-95.
[61]
Szkaradek, N.; Stachura, K.; Waszkielewicz, A.M.; Cegła, M.; Szneler, E.; Marona, H. Synthesis and antimycobacterial assay of some xanthone derivatives. Acta Pol. Pharm., 2008, 65(1), 21-28.
[PMID: 18536169]
[62]
Yeung, M.F.; Lau, C.B.S.; Chan, R.C.Y.; Zong, Y.; Che, C.T. Search for antimycobacterial constituents from a Tibetan medicinal plant, Gentianopsis paludosa. Phytother. Res., 2009, 23(1), 123-125.
[http://dx.doi.org/10.1002/ptr.2506] [PMID: 19107824]
[63]
Hale, E.M. The Biology of Lichens, 3rd ed; Edward Arnold Ltd.: London, 1983.
[64]
Vartia, O.K. Antibiotics in lichens. The lichens; Academic Press: New York, 1973, pp. 547-561.
[http://dx.doi.org/10.1016/B978-0-12-044950-7.50022-2]
[65]
Honda, N.K.; Pavan, F.R.; Coelho, R.G.; de Andrade Leite, S.R.; Micheletti, A.C.; Lopes, T.I.; Misutsu, M.Y.; Beatriz, A.; Brum, R.L.; Leite, C.Q. Antimycobacterial activity of lichen substances. Phytomedicine, 2010, 17(5), 328-332.
[http://dx.doi.org/10.1016/j.phymed.2009.07.018] [PMID: 19683421]
[66]
Micheletti, A.C.; Honda, N.K.; de Lima, D.P.; Beatriz, A.; Sant’ana, M.R.; Carvalho, N.C.P.; Matos, M.; Queiróz, L.M.M.; Bogo, D.; Zorzatto, J.R. Chemical Modifications of a Natural Xanthone and Antimicrobial Activity Against Multidrug Resistant Staphylococcus Aureus and Cytotoxicity Against Human Tumor Cell Lines. Quim. Nova, 2011, 34, 12-20.
[http://dx.doi.org/10.1590/S0100-40422011000600019]
[67]
Sudta, P.; Jiarawapi, P.; Suksamrarn, A.; Hongmanee, P.; Suksamrarn, S. Potent activity against multidrug-resistant Mycobacterium tuberculosis of α-mangostin analogs. Chem. Pharm. Bull. (Tokyo), 2013, 61(2), 194-203.
[http://dx.doi.org/10.1248/cpb.c12-00874] [PMID: 23150066]
[68]
Vooturi, S.K.; Firestine, S.M. Synthetic membrane-targeted antibiotics. Curr. Med. Chem., 2010, 17(21), 2292-2300.
[http://dx.doi.org/10.2174/092986710791331059] [PMID: 20459377]
[69]
Koh, J.J.; Zou, H.; Mukherjee, D.; Lin, S.; Lim, F.; Tan, J.K.; Tan, D.Z.; Stocker, B.L.; Timmer, M.S.M.; Corkran, H.M.; Lakshminarayanan, R.; Tan, D.T.H.; Cao, D.; Beuerman, R.W.; Dick, T.; Liu, S. Amphiphilic xanthones as a potent chemical entity of anti-mycobacterial agents with membrane-targeting properties. Eur. J. Med. Chem., 2016, 123, 684-703.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.068] [PMID: 27517813]
[70]
Koh, J.J.; Lin, S.; Aung, T.T.; Lim, F.; Zou, H.; Bai, Y.; Li, J.; Lin, H.; Pang, L.M.; Koh, W.L.; Salleh, S.M.; Lakshminarayanan, R.; Zhou, L.; Qiu, S.; Pervushin, K.; Verma, C.; Tan, D.T.; Cao, D.; Liu, S.; Beuerman, R.W. Amino acid modified xanthone derivatives: novel, highly promising membrane-active antimicrobials for multidrug-resistant Gram-positive bacterial infections. J. Med. Chem., 2015, 58(2), 739-752.
[http://dx.doi.org/10.1021/jm501285x] [PMID: 25474410]
[71]
Zou, H.; Koh, J.J.; Li, J.; Qiu, S.; Aung, T.T.; Lin, H.; Lakshminarayanan, R.; Dai, X.; Tang, C.; Lim, F.H.; Zhou, L.; Tan, A.L.; Verma, C.; Tan, D.T.; Chan, H.S.; Saraswathi, P.; Cao, D.; Liu, S.; Beuerman, R.W. Design and synthesis of amphiphilic xanthone-based, membrane-targeting antimicrobials with improved membrane selectivity. J. Med. Chem., 2013, 56(6), 2359-2373.
[http://dx.doi.org/10.1021/jm301683j] [PMID: 23441632]
[72]
Koh, J.J.; Qiu, S.; Zou, H.; Lakshminarayanan, R.; Li, J.; Zhou, X.; Tang, C.; Saraswathi, P.; Verma, C.; Tan, D.T.; Tan, A.L.; Liu, S.; Beuerman, R.W. Rapid bactericidal action of alpha-mangostin against MRSA as an outcome of membrane targeting. Biochim. Biophys. Acta, 2013, 1828(2), 834-844.
[http://dx.doi.org/10.1016/j.bbamem.2012.09.004] [PMID: 22982495]
[73]
Namdaung, U.; Aroonrerk, N.; Suksamrarn, S.; Danwisetkanjana, K.; Saenboonrueng, J.; Arjchomphu, W.; Suksamrarn, A. Bioactive constituents of the root bark of Artocarpus rigidus subsp. rigidus. Chem. Pharm. Bull. (Tokyo), 2006, 54(10), 1433-1436.
[http://dx.doi.org/10.1248/cpb.54.1433] [PMID: 17015984]
[74]
Abadi, A.H.; el-Subbagh, H.I.; al-Khamees, H.A. Synthesis, antitumor and antitubercular evaluation of certain new xanthenone and acridinone analogs. Arzneimittelforschung, 1999, 49(3), 259-266.
[PMID: 10219471]
[75]
Vidyasagar, N.; Nanda, R.; Mangal, R.; Kathiravan, M.K. Perchloric Acid-Catalyzed Synthesis of 9-Aryl Xanthenes-9H-3,6-diol and 1,3,6,8-Tetraol in Water. Synth. Commun., 2012, 42, 3157-3165.
[http://dx.doi.org/10.1080/00397911.2011.578326]
[76]
Chitre, T.S.; Khedkar, V.M.; Asgaonkar, K.D.; Dube, A.S.; Shurpali, K.; Sarkar, D.; Kathiravan, M.; Jha, P.C. Exploring the potential of xanthene derivatives for antitubercular activity. Glob. Drugs Ther., 2017, 2, 1-5.
[77]
Kar, S.S.; Bhat, G.V.; Rao, P.P.; Shenoy, V.P.; Bairy, I.; Shenoy, G.G. Rational design and synthesis of novel diphenyl ether derivatives as antitubercular agents. Drug Des. Devel. Ther., 2016, 10, 2299-2310.
[http://dx.doi.org/10.2147/DDDT.S104037] [PMID: 27486307]
[78]
Loureiro, D.R.P.; Soares, J.X.; Costa, J.C.; Magalhães, A.F.; Azevedo, C.M.G.; Pinto, M.M.M.; Afonso, C.M.M. Structures, activities and drug-likeness of anti-infective xanthone derivatives isolated from the marine environment: a review. Molecules, 2019, 24(2), 1-23.
[http://dx.doi.org/10.3390/molecules24020243] [PMID: 30634698]
[79]
Gobbi, S.; Hu, Q.; Foschi, G.; Catanzaro, E.; Belluti, F.; Rampa, A.; Fimognari, C.; Hartmann, R.W.; Bisi, A. Benzophenones as xanthone-open model CYP11B1 inhibitors potentially useful for promoting wound healing. Bioorg. Chem., 2019, 86, 401-409.
[http://dx.doi.org/10.1016/j.bioorg.2019.01.066] [PMID: 30769265]
[80]
Demina, G.R.; Nikitushkin, V.D.; Shleeva, M.O.; Riabova, O.B.; Lepioshkin, A.Y.; Makarov, V.A.; Kaprelyants, A.S. Benzoylphenyl thiocyanates are new, effective inhibitors of the mycobacterial resuscitation promoting factor B protein. Ann. Clin. Microbiol. Antimicrob., 2017, 16(1), 69.
[http://dx.doi.org/10.1186/s12941-017-0244-7] [PMID: 29096645]
[81]
Zuniga, E.S.; Early, J.; Parish, T. The future for early-stage tuberculosis drug discovery. Future Microbiol., 2015, 10(2), 217-229.
[http://dx.doi.org/10.2217/fmb.14.125] [PMID: 25689534]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy