Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Review Article

Circular RNAs and Glioma: Small Molecule with Big Actions

Author(s): Abbas Abi, Kamran Ghaedi, Alireza Khosravi* and Seyed Mohammad Gheibi Hayat*

Volume 21, Issue 1, 2021

Published on: 10 June, 2020

Page: [25 - 44] Pages: 20

DOI: 10.2174/1566524020666200610171139

Price: $65

Abstract

Glioma is known as one of very important tumors that is associated with high rate of mortality worldwide. The mean rate of survival of these patients has not changed (approximately 14 months) even with improvements in comprehensive therapeutic approaches, such as chemotherapy, radiation, and surgery. Therefore, it seems that new therapeutic or developed platforms are needed. In this regard, more understanding about genetic and epigenetic modifications in the glioma, could contribute to finding and developing these platforms. Among epigenetic mechanisms, circular RNAs have crucial roles in the glioma pathogenesis. Reported by several studies, some of the abilities of circRNAs include the exhibition of tissue specificity in humans and regulation of genes. Research has also confirmed the participation of circRNAs in different pathological or biological procedures, including migration, invasion, and apoptosis of glioma. Herein, we summarized circular RNAs involved in glioma.

Keywords: Circular RNAs, MicroRNA, glioma, pathogenesis, astrocytomas, ependymomas.

[1]
Fitzmaurice C, Abate D, Abbasi N, et al. Global Burden of Disease Cancer Collaboration. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2017: A Systematic Analysis for the Global Burden of Disease Study. JAMA Oncol 2019.
[PMID: 31560378]
[2]
Bhatt AN, Mathur R, Farooque A, Verma A, Dwarakanath BS. Cancer biomarkers - current perspectives. Indian J Med Res 2010; 132: 129-49.
[PMID: 20716813]
[3]
Cho WC. Contribution of oncoproteomics to cancer biomarker discovery. Mol Cancer 2007; 6: 25.
[http://dx.doi.org/10.1186/1476-4598-6-25] [PMID: 17407558]
[4]
Tamtaji OR, Mirzaei H, Shamshirian A, Shamshirian D, Behnam M, Asemi Z. New trends in glioma cancer therapy: Targeting Na+/H + exchangers. J Cell Physiol 2020; 235(2): 658-65.
[http://dx.doi.org/10.1002/jcp.29014] [PMID: 31250444]
[5]
Khani P, Nasri F, Khani Chamani F, et al. Genetic and epigenetic contribution to astrocytic gliomas pathogenesis. J Neurochem 2019; 148(2): 188-203.
[http://dx.doi.org/10.1111/jnc.14616] [PMID: 30347482]
[6]
Masoudi MS, Mehrabian E, Mirzaei H. MiR-21: A key player in glioblastoma pathogenesis. J Cell Biochem 2018; 119(2): 1285-90.
[http://dx.doi.org/10.1002/jcb.26300] [PMID: 28727188]
[7]
Saadatpour L, Fadaee E, Fadaei S, et al. Glioblastoma: exosome and microRNA as novel diagnosis biomarkers. Cancer Gene Ther 2016; 23(12): 415-8.
[http://dx.doi.org/10.1038/cgt.2016.48] [PMID: 27834360]
[8]
Louis DN, Ohgaki H, Wiestler OD, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 2007; 114(2): 97-109.
[http://dx.doi.org/10.1007/s00401-007-0243-4] [PMID: 17618441]
[9]
Wen PY, Kesari S. Malignant gliomas in adults. N Engl J Med 2008; 359(5): 492-507.
[http://dx.doi.org/10.1056/NEJMra0708126] [PMID: 18669428]
[10]
Bailey P, Cushing H. A classification of the tumors of the glioma group on a histogenic basis with a correlated study of prognosis. Can Med Assoc J 1926; 16(7): 872.
[11]
Zhu J, Ye J, Zhang L, et al. Differential Expression of Circular RNAs in Glioblastoma Multiforme and Its Correlation with Prognosis. Transl Oncol 2017; 10(2): 271-9.
[http://dx.doi.org/10.1016/j.tranon.2016.12.006] [PMID: 28236760]
[12]
Wang Z, Yang J, Xu G, et al. Targeting miR-381-NEFL axis sensitizes glioblastoma cells to temozolomide by regulating stemness factors and multidrug resistance factors. Oncotarget 2015; 6(5): 3147-64.
[http://dx.doi.org/10.18632/oncotarget.3061] [PMID: 25605243]
[13]
Keshavarzi M, Darijani M, Momeni F, et al. Molecular Imaging and Oral Cancer Diagnosis and Therapy. J Cell Biochem 2017; 118(10): 3055-60.
[http://dx.doi.org/10.1002/jcb.26042] [PMID: 28390191]
[14]
Saadatpour Z, Bjorklund G, Chirumbolo S, et al. Molecular imaging and cancer gene therapy. Cancer Gene Ther 2016.
[http://dx.doi.org/10.1038/cgt.2016.62] [PMID: 27857058]
[15]
Saadatpour Z, Rezaei A, Ebrahimnejad H, et al. Imaging techniques: new avenues in cancer gene and cell therapy. Cancer Gene Ther 2017; 24(1): 1-5.
[http://dx.doi.org/10.1038/cgt.2016.61] [PMID: 27834357]
[16]
Omuro A, DeAngelis LM. Glioblastoma and other malignant gliomas: a clinical review. JAMA 2013; 310(17): 1842-50.
[http://dx.doi.org/10.1001/jama.2013.280319] [PMID: 24193082]
[17]
Maachani UB, Tandle A, Shankavaram U, Kramp T, Camphausen K. Modulation of miR-21 signaling by MPS1 in human glioblastoma. Oncotarget 2016; 7(33): 52912-27.
[http://dx.doi.org/10.18632/oncotarget.4143] [PMID: 25991676]
[18]
Gudkov SV, Shilyagina NY, Vodeneev VA, Zvyagin AV. Targeted Radionuclide Therapy of Human Tumors. Int J Mol Sci 2015; 17(1)E33
[http://dx.doi.org/10.3390/ijms17010033] [PMID: 26729091]
[19]
Vakili-Ghartavol R, Mombeiny R, Salmaninejad A, et al. Tumor-associated macrophages and epithelial-mesenchymal transition in cancer: Nanotechnology comes into view. J Cell Physiol 2018; 233(12): 9223-36.
[http://dx.doi.org/10.1002/jcp.27027] [PMID: 30078227]
[20]
Keshavarz M, Dianat-Moghadam H, Sofiani VH, et al. miRNA-based strategy for modulation of influenza A virus infection. Epigenomics 2018; 10(6): 829-44.
[http://dx.doi.org/10.2217/epi-2017-0170] [PMID: 29888954 ]
[21]
Moradian Tehrani R, Verdi J, Noureddini M, et al. Mesenchymal stem cells: A new platform for targeting suicide genes in cancer. J Cell Physiol 2018; 233(5): 3831-45.
[http://dx.doi.org/10.1002/jcp.26094] [PMID: 28703313]
[22]
Saeedi Borujeni MJ, Esfandiary E, Taheripak G, Codoñer-Franch P, Alonso-Iglesias E, Mirzaei H. Molecular aspects of diabetes mellitus: Resistin, microRNA, and exosome. J Cell Biochem 2018; 119(2): 1257-72.
[http://dx.doi.org/10.1002/jcb.26271] [PMID: 28688216]
[23]
Gholamin S, Mirzaei H, Razavi SM, et al. GD2-targeted immunotherapy and potential value of circulating microRNAs in neuroblastoma. J Cell Physiol 2018; 233(2): 866-79.
[http://dx.doi.org/10.1002/jcp.25793] [PMID: 28145567]
[24]
Mohammadi M, Jaafari MR, Mirzaei HR, Mirzaei H. Mesenchymal stem cell: a new horizon in cancer gene therapy. Cancer Gene Ther 2016; 23(9): 285-6.
[http://dx.doi.org/10.1038/cgt.2016.35] [PMID: 27650780]
[25]
Shafabakhsh R, Pourhanifeh MH, Mirzaei HR, Sahebkar A, Asemi Z, Mirzaei H. Targeting regulatory T cells by curcumin: A potential for cancer immunotherapy. Pharmacol Res 2019.147104353
[http://dx.doi.org/10.1016/j.phrs.2019.104353] [PMID: 31306775]
[26]
Mirzaei HR, Pourghadamyari H, Rahmati M, et al. Gene-knocked out chimeric antigen receptor (CAR) T cells: Tuning up for the next generation cancer immunotherapy. Cancer Lett 2018; 423: 95-104.
[http://dx.doi.org/10.1016/j.canlet.2018.03.010] [PMID: 29544719]
[27]
Mirzaei HR, Mirzaei H, Lee SY, Hadjati J, Till BG. Prospects for chimeric antigen receptor (CAR) γδ T cells: A potential game changer for adoptive T cell cancer immunotherapy. Cancer Lett 2016; 380(2): 413-23.
[http://dx.doi.org/10.1016/j.canlet.2016.07.001] [PMID: 27392648]
[28]
Mirzaei H, Sahebkar A, Jaafari MR, et al. PiggyBac as a novel vector in cancer gene therapy: current perspective. Cancer Gene Ther 2016; 23(2-3): 45-7.
[http://dx.doi.org/10.1038/cgt.2015.68] [PMID: 26742580]
[29]
Khan H, Mirzaei HR, Amiri A, Kupeli Akkol E, Ashhad HSM, Mirzaei H. Glyco-nanoparticles: New drug delivery systems in cancer therapy. Semin Cancer Biol 2019.
[30]
Hashemi GN, Ghiyami-Hour F, Jahangiri S, et al. Nanoparticles as new tools for inhibition of cancer angiogenesis. J Cell Physiol 2018; 233(4): 2902-10.
[http://dx.doi.org/10.1002/jcp.26029] [PMID: 28543172]
[31]
Mashreghi M, Azarpara H, Bazaz MR, et al. Angiogenesis biomarkers and their targeting ligands as potential targets for tumor angiogenesis. J Cell Physiol 2018; 233(4): 2949-65.
[http://dx.doi.org/10.1002/jcp.26049] [PMID: 28608549]
[32]
Salehi M, Movahedpour A, Tayarani A, et al. Therapeutic potentials of curcumin in the treatment of non-small-cell lung carcinoma. Phytother Res 2020. Epub ahead of print
[http://dx.doi.org/10.1002/ptr.6704] [PMID: 32307773]
[33]
Shabaninejad Z, Pourhanifeh MH, Movahedpour A, et al. Therapeutic potentials of curcumin in the treatment of glioblstoma. Eur J Med Chem 2020.188112040
[http://dx.doi.org/10.1016/j.ejmech.2020.112040] [PMID: 31927312]
[34]
Ghasemi F, Shafiee M, Banikazemi Z, et al. Curcumin inhibits NF-kB and Wnt/β-catenin pathways in cervical cancer cells. Pathol Res Pract 2019; 215(10)152556
[http://dx.doi.org/10.1016/j.prp.2019.152556] [PMID: 31358480]
[35]
Hesari A, Azizian M, Sheikhi A, et al. Chemopreventive and therapeutic potential of curcumin in esophageal cancer: Current and future status. Int J Cancer 2019; 144(6): 1215-26.
[http://dx.doi.org/10.1002/ijc.31947] [PMID: 30362511]
[36]
Mirzaei H, Khoi MJ, Azizi M, Goodarzi M. Can curcumin and its analogs be a new treatment option in cancer therapy? Cancer Gene Ther 2016; 23(11): 410.
[http://dx.doi.org/10.1038/cgt.2016.47] [PMID: 27853147]
[37]
Mirzaei H, Yazdi F, Salehi R, Mirzaei HR. SiRNA and epigenetic aberrations in ovarian cancer. J Cancer Res Ther 2016; 12(2): 498-508.
[http://dx.doi.org/10.4103/0973-1482.153661] [PMID: 27461600]
[38]
Jamali Z, Taheri-Anganeh M, Shabaninejad Z, et al. Autophagy regulation by microRNAs: Novel insights into osteosarcoma therapy. IUBMB Life 2020. Epub ahead of print
[http://dx.doi.org/10.1002/iub.2277] [PMID: 32233112]
[39]
Taghavipour M, Sadoughi F, Mirzaei H, et al. Apoptotic functions of microRNAs in pathogenesis, diagnosis, and treatment of endometriosis. Cell Biosci 2020; 10: 12.
[http://dx.doi.org/10.1186/s13578-020-0381-0] [PMID: 32082539]
[40]
Sadri NJ, Bokharaei-Salim F, Karimzadeh M, et al. MicroRNAs and exosomes: key players in HIV pathogenesis. HIV Med 2020; 21(4): 246-78.
[http://dx.doi.org/10.1111/hiv.12822] [PMID: 31756034]
[41]
Jafari NAMH, Shafabakhsh R, Asemi Z, et al. CFIm25 and alternative polyadenylation: Conflicting roles in cancer. Cancer Lett 2019; 459: 112-21.
[http://dx.doi.org/10.1016/j.canlet.2019.114430] [PMID: 31181319]
[42]
Banikazemi Z, Haji HA, Mohammadi M, et al. Diet and cancer prevention: Dietary compounds, dietary MicroRNAs, and dietary exosomes. J Cell Biochem 2018; 119(1): 185-96.
[http://dx.doi.org/10.1002/jcb.26244] [PMID: 28657651]
[43]
Mirzaei H, Masoudifar A, Sahebkar A, et al. MicroRNA: A novel target of curcumin in cancer therapy. J Cell Physiol 2018; 233(4): 3004-15.
[http://dx.doi.org/10.1002/jcp.26055] [PMID: 28617957]
[44]
Salarinia R, Sahebkar A, Peyvandi M, et al. Epi-Drugs and Epi-miRs: Moving Beyond Current Cancer Therapies. Curr Cancer Drug Targets 2016; 16(9): 773-88.
[http://dx.doi.org/10.2174/1568009616666151207110143] [PMID: 26638884]
[45]
Gholamin S, Pasdar A, Khorrami MS, et al. The potential for circulating microRNAs in the diagnosis of myocardial infarction: a novel approach to disease diagnosis and treatment. Curr Pharm Des 2016; 22(3): 397-403.
[http://dx.doi.org/10.2174/1381612822666151112151924] [PMID: 26561061]
[46]
Nahand JS, Karimzadeh MR, Nezamnia M, et al. The role of miR-146a in viral infection. IUBMB Life 2020; 72(3): 343-60.
[http://dx.doi.org/10.1002/iub.2222] [PMID: 31889417]
[47]
Naeli P, Pourhanifeh MH, Karimzadeh MR, et al. Circular RNAs and gastrointestinal cancers: Epigenetic regulators with a prognostic and therapeutic role. Crit Rev Oncol Hematol 2020.145102854
[http://dx.doi.org/10.1016/j.critrevonc.2019.102854] [PMID: 31877535]
[48]
Amiri A, Tehran MM, Asemi Z, et al. Role of resveratrol in modulating microRNAs in human diseases: From cancer to inflammatory disorder. Curr Med Chem 2019. Epub ahead of print
[http://dx.doi.org/10.2174/0929867326666191212102407] [PMID: 31830882]
[49]
Pourhanifeh MH, Mahjoubin-Tehran M, Shafiee A, et al. MicroRNAs and exosomes: Small molecules with big actions in multiple myeloma pathogenesis. IUBMB Life 2020; 72(3): 314-33.
[http://dx.doi.org/10.1002/iub.2211] [PMID: 31828868]
[50]
Mohammadi S, Yousefi F, Shabaninejad Z, et al. Exosomes and cancer: From oncogenic roles to therapeutic applications. IUBMB Life 2020; 72(4): 724-48.
[http://dx.doi.org/10.1002/iub.2182] [PMID: 31618516]
[51]
Pakshir K, Badali H, Nami S, Mirzaei H, Ebrahimzadeh V, Morovati H. Interactions between immune response to fungal infection and microRNAs: The pioneer tuners. Mycoses 2020; 63(1): 4-20.
[http://dx.doi.org/10.1111/myc.13017] [PMID: 31597205]
[52]
Naeli P, Yousefi F, Ghasemi Y, Savardashtaki A, Mirzaei H. The Role of MicroRNAs in Lung Cancer: Implications for Diagnosis and Therapy. Curr Mol Med 2020; 20(2): 90-101.
[http://dx.doi.org/10.2174/1566524019666191001113511] [PMID: 31573883]
[53]
Sadri NJ, Moghoofei M, Salmaninejad A, et al. Pathogenic role of exosomes and microRNAs in HPV-mediated inflammation and cervical cancer: A review. Int J Cancer 2020; 146(2): 305-20.
[http://dx.doi.org/10.1002/ijc.32688] [PMID: 31566705]
[54]
Javandoost E, Firoozi-Majd E, Rostamian H, Khakpoor-Koosheh M, Mirzaei HR. Role of microRNAs in Chronic Lymphocytic Leukemia Pathogenesis. Curr Med Chem 2020; 27(2): 282-97.
[http://dx.doi.org/10.2174/0929867326666190911114842] [PMID: 31544709]
[55]
Saeedi Borujeni MJ, Esfandiary E, Baradaran A, et al. Molecular aspects of pancreatic β-cell dysfunction: Oxidative stress, microRNA, and long noncoding RNA. J Cell Physiol 2019; 234(6): 8411-25.
[http://dx.doi.org/10.1002/jcp.27755] [PMID: 30565679]
[56]
Mirzaei H, Ferns GA, Avan A, Mobarhan MG. Cytokines and MicroRNA in coronary artery disease. Adv Clin Chem 2017; 82: 47-70.
[http://dx.doi.org/10.1016/bs.acc.2017.06.004] [PMID: 28939213]
[57]
Keshavarzi M, Sorayayi S, Jafar RM, et al. MicroRNAs-based imaging techniques in cancer diagnosis and therapy. J Cell Biochem 2017; 118(12): 4121-8.
[http://dx.doi.org/10.1002/jcb.26012] [PMID: 28370207]
[58]
Abbaszadeh-Goudarzi K, Radbakhsh S, Pourhanifeh MH, et al. Circular RNA and Diabetes: Epigenetic Regulator with Diagnostic role. Curr Mol Med 2020. Epub ahead of print
[http://dx.doi.org/10.2174/1566524020666200129142106] [PMID: 31995005]
[59]
Shabaninejad Z, Vafadar A, Movahedpour A, et al. Circular RNAs in cancer: new insights into functions and implications in ovarian cancer. J Ovarian Res 2019; 12(1): 84.
[http://dx.doi.org/10.1186/s13048-019-0558-5] [PMID: 31481095]
[60]
Vafadar A, Shabaninejad Z, Movahedpour A, et al. Long Non-Coding RNAs As Epigenetic Regulators in Cancer. Curr Pharm Des 2019; 25(33): 3563-77.
[http://dx.doi.org/10.2174/1381612825666190830161528] [PMID: 31470781]
[61]
Aghdam AM, Amiri A, Salarinia R, Masoudifar A, Ghasemi F, Mirzaei H. MicroRNAs as Diagnostic, Prognostic, and Therapeutic Biomarkers in Prostate Cancer. Crit Rev Eukaryot Gene Expr 2019; 29(2): 127-39.
[http://dx.doi.org/10.1615/CritRevEukaryotGeneExpr.2019025273] [PMID: 31679268]
[62]
Shabaninejad Z, Yousefi F, Movahedpour A, et al. Electrochemical-based biosensors for microRNA detection: Nanotechnology comes into view. Anal Biochem 2019.581113349
[http://dx.doi.org/10.1016/j.ab.2019.113349] [PMID: 31254490]
[63]
Nahand JS, Taghizadeh-Boroujeni S, Karimzadeh M, et al. microRNAs: New prognostic, diagnostic, and therapeutic biomarkers in cervical cancer. J Cell Physiol 2019; 234(10): 17064-99.
[http://dx.doi.org/10.1002/jcp.28457] [PMID: 30891784]
[64]
Jamali L, Tofigh R, Tutunchi S, et al. Circulating microRNAs as diagnostic and therapeutic biomarkers in gastric and esophageal cancers. J Cell Physiol 2018; 233(11): 8538-50.
[http://dx.doi.org/10.1002/jcp.26850] [PMID: 29923196]
[65]
Simonian M, Mosallayi M, Mirzaei H. Circulating miR-21 as novel biomarker in gastric cancer: Diagnostic and prognostic biomarker. J Cancer Res Ther 2018; 14(2): 475.
[PMID: 29516946]
[66]
Tavakolizadeh J, Roshanaei K, Salmaninejad A, et al. MicroRNAs and exosomes in depression: Potential diagnostic biomarkers. J Cell Biochem 2018; 119(5): 3783-97.
[http://dx.doi.org/10.1002/jcb.26599] [PMID: 29236313]
[67]
Jafari SH, Saadatpour Z, Salmaninejad A, et al. Breast cancer diagnosis: Imaging techniques and biochemical markers. J Cell Physiol 2018; 233(7): 5200-13.
[http://dx.doi.org/10.1002/jcp.26379] [PMID: 29219189]
[68]
Golabchi K, Soleimani-Jelodar R, Aghadoost N, et al. MicroRNAs in retinoblastoma: Potential diagnostic and therapeutic biomarkers. J Cell Physiol 2018; 233(4): 3016-23.
[http://dx.doi.org/10.1002/jcp.26070] [PMID: 28657205]
[69]
Mirzaei H. Stroke in Women: Risk Factors and Clinical Biomarkers. J Cell Biochem 2017; 118(12): 4191-202.
[http://dx.doi.org/10.1002/jcb.26130] [PMID: 28498508]
[70]
Moridikia A, Mirzaei H, Sahebkar A, Salimian J. MicroRNAs: Potential candidates for diagnosis and treatment of colorectal cancer. J Cell Physiol 2018; 233(2): 901-13.
[http://dx.doi.org/10.1002/jcp.25801] [PMID: 28092102]
[71]
Mirzaei H, Fathullahzadeh S, Khanmohammadi R, et al. State of the art in microRNA as diagnostic and therapeutic biomarkers in chronic lymphocytic leukemia. J Cell Physiol 2018; 233(2): 888-900.
[http://dx.doi.org/10.1002/jcp.25799] [PMID: 28084621]
[72]
Mirzaei H, Momeni F, Saadatpour L, et al. MicroRNA: Relevance to stroke diagnosis, prognosis, and therapy. J Cell Physiol 2018; 233(2): 856-65.
[http://dx.doi.org/10.1002/jcp.25787] [PMID: 28067403]
[73]
Rashidi B, Hoseini Z, Sahebkar A, Mirzaei H. Anti-atherosclerotic effects of vitamins d and e in suppression of atherogenesis. J Cell Physiol 2017; 232(11): 2968-76.
[http://dx.doi.org/10.1002/jcp.25738] [PMID: 27966778]
[74]
Fathullahzadeh S, Mirzaei H, Honardoost MA, Sahebkar A, Salehi M. Circulating microRNA-192 as a diagnostic biomarker in human chronic lymphocytic leukemia. Cancer Gene Ther 2016; 23(10): 327-32.
[http://dx.doi.org/10.1038/cgt.2016.34] [PMID: 27659777]
[75]
Mohammadi M, Goodarzi M, Jaafari MR, Mirzaei HR, Mirzaei H. Circulating microRNA: a new candidate for diagnostic biomarker in neuroblastoma. Cancer Gene Ther 2016; 23(11): 371-2.
[http://dx.doi.org/10.1038/cgt.2016.45] [PMID: 27740613]
[76]
Mirzaei H, Khataminfar S, Mohammadparast S, et al. Circulating microRNAs as potential diagnostic biomarkers and therapeutic targets in gastric cancer: current status and future perspectives. Curr Med Chem 2016; 23(36): 4135-50.
[http://dx.doi.org/10.2174/0929867323666160818093854] [PMID: 27538692]
[77]
Mirzaei H, Gholamin S, Shahidsales S, et al. MicroRNAs as potential diagnostic and prognostic biomarkers in melanoma European journal of cancer (Oxford, England : 1990) 2016; 53: 25-32..
[http://dx.doi.org/10.1016/j.ejca.2015.10.009]
[78]
Jeck WR, Sharpless NE. Detecting and characterizing circular RNAs. Nat Biotechnol 2014; 32(5): 453-61.
[http://dx.doi.org/10.1038/nbt.2890] [PMID: 24811520]
[79]
Lasda E, Parker R. Circular RNAs: diversity of form and function. RNA 2014; 20(12): 1829-42.
[http://dx.doi.org/10.1261/rna.047126.114] [PMID: 25404635]
[80]
Yang Y, Gao X, Zhang M, et al. Novel Role of FBXW7 circular RNA in repressing glioma tumorigenesis. J Natl Cancer Inst 2018; 110(3)
[http://dx.doi.org/10.1093/jnci/djx166] [PMID: 28903484]
[81]
Li GF, Li L, Yao ZQ, Zhuang SJ. Hsa_circ_0007534/miR-761/ZIC5 regulatory loop modulates the proliferation and migration of glioma cells. Biochem Biophys Res Commun 2018; 499(4): 765-71.
[http://dx.doi.org/10.1016/j.bbrc.2018.03.219] [PMID: 29605301]
[82]
Li G, Yang H, Han K, Zhu D, Lun P, Zhao Y. A novel circular RNA, hsa_circ_0046701, promotes carcinogenesis by increasing the expression of miR-142-3p target ITGB8 in glioma. Biochem Biophys Res Commun 2018; 498(1): 254-61.
[http://dx.doi.org/10.1016/j.bbrc.2018.01.076] [PMID: 29337055]
[83]
Xie G. Circular RNA hsa-circ-0012129 Promotes Cell Proliferation and Invasion in 30 Cases of Human Glioma and Human Glioma Cell Lines U373, A172, and SHG44, by Targeting MicroRNA-661 (miR-661). Med Sci Monit 2018; 24: 2497-507.
[http://dx.doi.org/10.12659/MSM.909229] [PMID: 29686222]
[84]
Zhou J, Wang H, Chu J, et al. Circular RNA hsa_circ_0008344 regulates glioblastoma cell proliferation, migration, invasion, and apoptosis. J Clin Lab Anal 2018; 32(7)e22454
[http://dx.doi.org/10.1002/jcla.22454] [PMID: 29687495]
[85]
Bian A, Wang Y, Liu J, et al. Circular RNA Complement Factor H (CFH) Promotes Glioma Progression by Sponging miR-149 and Regulating AKT1. Med Sci Monit 2018; 24: 5704-12.
[http://dx.doi.org/10.12659/MSM.910180] [PMID: 30111766]
[86]
Jin P, Huang Y, Zhu P, Zou Y, Shao T, Wang O. CircRNA circHIPK3 serves as a prognostic marker to promote glioma progression by regulating miR-654/IGF2BP3 signaling. Biochem Biophys Res Commun 2018; 503(3): 1570-4.
[http://dx.doi.org/10.1016/j.bbrc.2018.07.081] [PMID: 30057315]
[87]
Zhou Y, Huang T, Siu HL, et al. IGF2BP3 functions as a potential oncogene and is a crucial target of miR-34a in gastric carcinogenesis. Mol Cancer 2017; 16(1): 77.
[http://dx.doi.org/10.1186/s12943-017-0647-2] [PMID: 28399871]
[88]
Chen G, Shi Y, Liu M, Sun J. circHIPK3 regulates cell proliferation and migration by sponging miR-124 and regulating AQP3 expression in hepatocellular carcinoma. Cell Death Dis 2018; 9(2): 175.
[http://dx.doi.org/10.1038/s41419-017-0204-3] [PMID: 29415990]
[89]
Zeng K, Chen X, Xu M, et al. CircHIPK3 promotes colorectal cancer growth and metastasis by sponging miR-7. Cell Death Dis 2018; 9(4): 417.
[http://dx.doi.org/10.1038/s41419-018-0454-8] [PMID: 29549306]
[90]
Chen I, Chen CY, Chuang TJ. Biogenesis, identification, and function of exonic circular RNAs. Wiley Interdiscip Rev RNA 2015; 6(5): 563-79.
[http://dx.doi.org/10.1002/wrna.1294] [PMID: 26230526]
[91]
Jeck WR, Sorrentino JA, Wang K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 2013; 19(2): 141-57.
[http://dx.doi.org/10.1261/rna.035667.112] [PMID: 23249747]
[92]
Wang Y, Wang Z. Efficient backsplicing produces translatable circular mRNAs. RNA 2015; 21(2): 172-9.
[http://dx.doi.org/10.1261/rna.048272.114] [PMID: 25449546]
[93]
Kulcheski FR, Christoff AP, Margis R. Circular RNAs are miRNA sponges and can be used as a new class of biomarker. J Biotechnol 2016; 238: 42-51.
[http://dx.doi.org/10.1016/j.jbiotec.2016.09.011] [PMID: 27671698]
[94]
Cocquerelle C, Mascrez B, Hétuin D, Bailleul B. Mis-splicing yields circular RNA molecules. FASEB J 1993; 7(1): 155-60.
[http://dx.doi.org/10.1096/fasebj.7.1.7678559] [PMID: 7678559]
[95]
Kelly S, Greenman C, Cook PR, Papantonis A. Exon Skipping Is Correlated with Exon Circularization. J Mol Biol 2015; 427(15): 2414-7.
[http://dx.doi.org/10.1016/j.jmb.2015.02.018] [PMID: 25728652]
[96]
Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One 2012; 7(2)e30733
[http://dx.doi.org/10.1371/journal.pone.0030733] [PMID: 22319583]
[97]
Qian Y, Lu Y, Rui C, Qian Y, Cai M, Jia R. Potential significance of Circular RNA in human placental tissue for patients with preeclampsia cellular physiology and biochemistry: international journal of experimental cellular physiology, biochemistry, and pharmacology 2016; 39(4): 1380-90
[http://dx.doi.org/10.1159/000447842 ]
[98]
Salzman J, Chen RE, Olsen MN, Wang PL, Brown PO. Cell-type specific features of circular RNA expression. PLoS Genet 2013; 9(9)e1003777
[http://dx.doi.org/10.1371/journal.pgen.1003777] [PMID: 24039610]
[99]
Suzuki H, Zuo Y, Wang J, Zhang MQ, Malhotra A, Mayeda A. Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucleic Acids Res 2006; 34(8)e63
[http://dx.doi.org/10.1093/nar/gkl151] [PMID: 16682442]
[100]
Zaphiropoulos PG. Circular RNAs from transcripts of the rat cytochrome P450 2C24 gene: correlation with exon skipping. Proc Natl Acad Sci USA 1996; 93(13): 6536-41.
[http://dx.doi.org/10.1073/pnas.93.13.6536] [PMID: 8692851]
[101]
Chen L, Shan G. Circular RNAs remain peculiarly unclear in biogenesis and function. Sci China Life Sci 2015; 58(6): 616-8.
[http://dx.doi.org/10.1007/s11427-015-4855-y] [PMID: 25903379]
[102]
Lasda E, Parker R. Circular RNAs Co-Precipitate with Extracellular Vesicles: A Possible Mechanism for circRNA Clearance. PLoS One 2016; 11(2)e0148407
[http://dx.doi.org/10.1371/journal.pone.0148407] [PMID: 26848835]
[103]
Shah SH, Miller P, Garcia-Contreras M, et al. Hierarchical paracrine interaction of breast cancer associated fibroblasts with cancer cells via hMAPK-microRNAs to drive ER-negative breast cancer phenotype. Cancer Biol Ther 2015; 16(11): 1671-81.
[http://dx.doi.org/10.1080/15384047.2015.1071742] [PMID: 26186233]
[104]
Zhang Y, Zhang XO, Chen T, et al. Circular intronic long noncoding RNAs. Mol Cell 2013; 51(6): 792-806.
[http://dx.doi.org/10.1016/j.molcel.2013.08.017] [PMID: 24035497]
[105]
Meng X, Li X, Zhang P, Wang J, Zhou Y, Chen M. Circular RNA: an emerging key player in RNA world. Brief Bioinform 2017; 18(4): 547-57.
[PMID: 27255916]
[106]
Shen T, Han M, Wei G, Ni T. An intriguing RNA species--perspectives of circularized RNA. Protein Cell 2015; 6(12): 871-80.
[http://dx.doi.org/10.1007/s13238-015-0202-0] [PMID: 26349458]
[107]
Li J, Yang J, Zhou P, et al. Circular RNAs in cancer: novel insights into origins, properties, functions and implications. Am J Cancer Res 2015; 5(2): 472-80.
[PMID: 25973291]
[108]
Vinay DS, Ryan EP, Pawelec G, et al. Immune evasion in cancer: Mechanistic basis and therapeutic strategies.Seminars in cancer biology: 2015. Elsevier 2015; pp. S185-98..
[http://dx.doi.org/10.1016/j.semcancer.2015.03.004]
[109]
Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges. Nature 2013; 495(7441): 384-8.
[http://dx.doi.org/10.1038/nature11993] [PMID: 23446346]
[110]
Hentze MW, Preiss T. Circular RNAs: splicing’s enigma variations. EMBO J 2013; 32(7): 923-5.
[http://dx.doi.org/10.1038/emboj.2013.53] [PMID: 23463100]
[111]
Granados-Riveron JT, Aquino-Jarquin G. The complexity of the translation ability of circRNAs. Biochim Biophys Acta 2016; 1859(10): 1245-51.
[http://dx.doi.org/10.1016/j.bbagrm.2016.07.009] [PMID: 27449861]
[112]
Pamudurti NR, Bartok O, Jens M, et al. Translation of CircRNAs. Mol Cell 2017; 66(1): 9-21.e7.
[http://dx.doi.org/10.1016/j.molcel.2017.02.021] [PMID: 28344080]
[113]
Legnini I, Di Timoteo G, Rossi F, et al. Circ-ZNF609 Is a Circular RNA that Can Be Translated and Functions in Myogenesis. Mol Cell 2017; 66(1): 22-37.e9.
[http://dx.doi.org/10.1016/j.molcel.2017.02.017] [PMID: 28344082]
[114]
Wang Y, Mo Y, Gong Z, et al. Circular RNAs in human cancer. Mol Cancer 2017; 16(1): 25.
[http://dx.doi.org/10.1186/s12943-017-0598-7] [PMID: 28143578]
[115]
Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009; 136(2): 215-33.
[http://dx.doi.org/10.1016/j.cell.2009.01.002] [PMID: 19167326]
[116]
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116(2): 281-97.
[http://dx.doi.org/10.1016/S0092-8674(04)00045-5] [PMID: 14744438]
[117]
Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 2013; 495(7441): 333-8.
[http://dx.doi.org/10.1038/nature11928] [PMID: 23446348]
[118]
Rybak-Wolf A, Stottmeister C, Glažar P, et al. Circular RNAs in the Mammalian Brain Are Highly Abundant, Conserved, and Dynamically Expressed. Mol Cell 2015; 58(5): 870-85.
[http://dx.doi.org/10.1016/j.molcel.2015.03.027] [PMID: 25921068]
[119]
Hansen TB, Wiklund ED, Bramsen JB, et al. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J 2011; 30(21): 4414-22.
[http://dx.doi.org/10.1038/emboj.2011.359] [PMID: 21964070]
[120]
Capel B, Swain A, Nicolis S, et al. Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell 1993; 73(5): 1019-30.
[http://dx.doi.org/10.1016/0092-8674(93)90279-Y] [PMID: 7684656]
[121]
Dubin RA, Kazmi MA, Ostrer H. Inverted repeats are necessary for circularization of the mouse testis Sry transcript. Gene 1995; 167(1-2): 245-8.
[http://dx.doi.org/10.1016/0378-1119(95)00639-7] [PMID: 8566785]
[122]
Peng L, Chen G, Zhu Z, et al. Circular RNA ZNF609 functions as a competitive endogenous RNA to regulate AKT3 expression by sponging miR-150-5p in Hirschsprung’s disease. Oncotarget 2017; 8(1): 808-18.
[http://dx.doi.org/10.18632/oncotarget.13656] [PMID: 27903978]
[123]
Wang K, Long B, Liu F, et al. A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223. Eur Heart J 2016; 37(33): 2602-11.
[http://dx.doi.org/10.1093/eurheartj/ehv713] [PMID: 26802132]
[124]
Guo JU, Agarwal V, Guo H, Bartel DP. Expanded identification and characterization of mammalian circular RNAs. Genome Biol 2014; 15(7): 409.
[http://dx.doi.org/10.1186/s13059-014-0409-z] [PMID: 25070500]
[125]
Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 2007; 4(9): 721-6.
[http://dx.doi.org/10.1038/nmeth1079] [PMID: 17694064]
[126]
Tay FC, Lim JK, Zhu H, Hin LC, Wang S. Using artificial microRNA sponges to achieve microRNA loss-of-function in cancer cells. Adv Drug Deliv Rev 2015; 81: 117-27.
[http://dx.doi.org/10.1016/j.addr.2014.05.010] [PMID: 24859534]
[127]
You X, Vlatkovic I, Babic A, et al. Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat Neurosci 2015; 18(4): 603-10.
[http://dx.doi.org/10.1038/nn.3975] [PMID: 25714049]
[128]
Conn SJ, Pillman KA, Toubia J, et al. The RNA binding protein quaking regulates formation of circRNAs. Cell 2015; 160(6): 1125-34.
[http://dx.doi.org/10.1016/j.cell.2015.02.014] [PMID: 25768908]
[129]
Dudekula DB, Panda AC, Grammatikakis I, De S, Abdelmohsen K, Gorospe M. CircInteractome: A web tool for exploring circular RNAs and their interacting proteins and microRNAs. RNA Biol 2016; 13(1): 34-42.
[http://dx.doi.org/10.1080/15476286.2015.1128065] [PMID: 26669964]
[130]
Ashwal-Fluss R, Meyer M, Pamudurti NR, et al. circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 2014; 56(1): 55-66.
[http://dx.doi.org/10.1016/j.molcel.2014.08.019] [PMID: 25242144]
[131]
Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annu Rev Biochem 2012; 81: 145-66.
[http://dx.doi.org/10.1146/annurev-biochem-051410-092902] [PMID: 22663078]
[132]
Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet 2009; 10(3): 155-9.
[http://dx.doi.org/10.1038/nrg2521] [PMID: 19188922]
[133]
Perriman R, Ares M Jr. Circular mRNA can direct translation of extremely long repeating-sequence proteins in vivo. RNA 1998; 4(9): 1047-54.
[http://dx.doi.org/10.1017/S135583829898061X] [PMID: 9740124]
[134]
Chen CY, Sarnow P. Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science 1995; 268(5209): 415-7.
[http://dx.doi.org/10.1126/science.7536344] [PMID: 7536344]
[135]
Yang Y, Fan X, Mao M, et al. Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res 2017; 27(5): 626-41.
[http://dx.doi.org/10.1038/cr.2017.31] [PMID: 28281539]
[136]
Qu S, Yang X, Li X, et al. Circular RNA: A new star of noncoding RNAs. Cancer Lett 2015; 365(2): 141-8.
[http://dx.doi.org/10.1016/j.canlet.2015.06.003] [PMID: 26052092]
[137]
Hansen TB, Kjems J, Damgaard CK. Circular RNA and miR-7 in cancer. Cancer Res 2013; 73(18): 5609-12.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-1568] [PMID: 24014594]
[138]
Zheng Q, Bao C, Guo W, et al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun 2016; 7: 11215.
[http://dx.doi.org/10.1038/ncomms11215] [PMID: 27050392]
[139]
Yang W, Du WW, Li X, Yee AJ, Yang BB. Foxo3 activity promoted by non-coding effects of circular RNA and Foxo3 pseudogene in the inhibition of tumor growth and angiogenesis. Oncogene 2016; 35(30): 3919-31.
[http://dx.doi.org/10.1038/onc.2015.460] [PMID: 26657152]
[140]
Wilusz JE, Sharp PA. Molecular biology. A circuitous route to noncoding RNA. Science 2013; 340(6131): 440-1.
[http://dx.doi.org/10.1126/science.1238522] [PMID: 23620042]
[141]
Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 2010; 465(7301): 1033-8.
[http://dx.doi.org/10.1038/nature09144] [PMID: 20577206]
[142]
Taft RJ, Pang KC, Mercer TR, Dinger M, Mattick JS. Non-coding RNAs: regulators of disease. J Pathol 2010; 220(2): 126-39.
[http://dx.doi.org/10.1002/path.2638] [PMID: 19882673]
[143]
Zhao J, Tao Y, Zhou Y, et al. MicroRNA-7: a promising new target in cancer therapy. Cancer Cell Int 2015; 15: 103.
[http://dx.doi.org/10.1186/s12935-015-0259-0] [PMID: 26516313]
[144]
Yu L, Gong X, Sun L, Zhou Q, Lu B, Zhu L. The Circular RNA Cdr1as act as an oncogene in hepatocellular carcinoma through targeting miR-7 expression. PLoS One 2016; 11(7)e0158347
[http://dx.doi.org/10.1371/journal.pone.0158347] [PMID: 27391479]
[145]
Tang W, Ji M, He G, et al. Silencing CDR1as inhibits colorectal cancer progression through regulating microRNA-7. OncoTargets Ther 2017; 10: 2045-56.
[http://dx.doi.org/10.2147/OTT.S131597] [PMID: 28435295]
[146]
Nakagawa Y, Akao Y, Taniguchi K, et al. Relationship between expression of onco-related miRNAs and the endoscopic appearance of colorectal tumors. Int J Mol Sci 2015; 16(1): 1526-43.
[http://dx.doi.org/10.3390/ijms16011526] [PMID: 25584614]
[147]
Du WW, Yang W, Liu E, Yang Z, Dhaliwal P, Yang BB. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res 2016; 44(6): 2846-58.
[http://dx.doi.org/10.1093/nar/gkw027] [PMID: 26861625]
[148]
Du WW, Fang L, Yang W, et al. Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity. Cell Death Differ 2017; 24(2): 357-70.
[http://dx.doi.org/10.1038/cdd.2016.133] [PMID: 27886165]
[149]
Liang HF, Zhang XZ, Liu BG, Jia GT, Li WL. Circular RNA circ-ABCB10 promotes breast cancer proliferation and progression through sponging miR-1271. Am J Cancer Res 2017; 7(7): 1566-76.
[PMID: 28744405]
[150]
Xie H, Ren X, Xin S, et al. Emerging roles of circRNA_001569 targeting miR-145 in the proliferation and invasion of colorectal cancer. Oncotarget 2016; 7(18): 26680-91.
[http://dx.doi.org/10.18632/oncotarget.8589] [PMID: 27058418]
[151]
Jin H, Fang M, Man Z, Wang Y, Liu H. Circular RNA 001569 acts as an oncogene and correlates with aggressive characteristics in hepatocellular carcinoma. Int J Clin Exp Pathol 2017; 10(3): 2997-3005.
[152]
Chen J, Xiao H, Huang Z, et al. MicroRNA124 regulate cell growth of prostate cancer cells by targeting iASPP. Int J Clin Exp Pathol 2014; 7(5): 2283-90.
[PMID: 24966937]
[153]
Fu L, Chen Q, Yao T, et al. Hsa_circ_0005986 inhibits carcinogenesis by acting as a miR-129-5p sponge and is used as a novel biomarker for hepatocellular carcinoma. Oncotarget 2017; 8(27): 43878-88.
[http://dx.doi.org/10.18632/oncotarget.16709] [PMID: 28410211]
[154]
Liu YC, Li JR, Sun CH, et al. CircNet: a database of circular RNAs derived from transcriptome sequencing data. Nucleic Acids Res 2016; 44(D1): D209-15.
[http://dx.doi.org/10.1093/nar/gkv940] [PMID: 26450965]
[155]
Hsu SD, Tseng YT, Shrestha S, et al. miRTarBase update 2014: an information resource for experimentally validated miRNA-target interactions. Nucleic Acids Res 2014; 42(Database issue): D78-85.
[http://dx.doi.org/10.1093/nar/gkt1266] [PMID: 24304892]
[156]
Huang M, Zhong Z, Lv M, Shu J, Tian Q, Chen J. Comprehensive analysis of differentially expressed profiles of lncRNAs and circRNAs with associated co-expression and ceRNA networks in bladder carcinoma. Oncotarget 2016; 7(30): 47186-200.
[http://dx.doi.org/10.18632/oncotarget.9706] [PMID: 27363013]
[157]
Chen L, Zhang S, Wu J, et al. circRNA_100290 plays a role in oral cancer by functioning as a sponge of the miR-29 family. Oncogene 2017; 36(32): 4551-61.
[http://dx.doi.org/10.1038/onc.2017.89] [PMID: 28368401]
[158]
Zhang Y, Li J, Yu J, et al. Circular RNAs signature predicts the early recurrence of stage III gastric cancer after radical surgery. Oncotarget 2017; 8(14): 22936-43.
[http://dx.doi.org/10.18632/oncotarget.15288] [PMID: 28206972]
[159]
Zhang Y, Liu H, Li W, et al. CircRNA_100269 is downregulated in gastric cancer and suppresses tumor cell growth by targeting miR-630. Aging (Albany NY) 2017; 9(6): 1585-94.
[http://dx.doi.org/10.18632/aging.101254] [PMID: 28657541]
[160]
Guarnerio J, Bezzi M, Jeong JC, et al. Oncogenic Role of Fusion-circRNAs Derived from Cancer-Associated Chromosomal Translocations. Cell 2016; 165(2): 289-302.
[http://dx.doi.org/10.1016/j.cell.2016.03.020] [PMID: 27040497]
[161]
Dos Santos GA, Kats L, Pandolfi PP. Synergy against PML-RARa: targeting transcription, proteolysis, differentiation, and self-renewal in acute promyelocytic leukemia. J Exp Med 2013; 210(13): 2793-802.
[http://dx.doi.org/10.1084/jem.20131121] [PMID: 24344243]
[162]
Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin 2015; 65(2): 87-108.
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[163]
Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 2016; 131(6): 803-20.
[http://dx.doi.org/10.1007/s00401-016-1545-1] [PMID: 27157931]
[164]
Schwartzbaum JA, Fisher JL, Aldape KD, Wrensch M. Epidemiology and molecular pathology of glioma Nature clinical practice Neurology 2006 2006; 2(9): 494-503..
[http://dx.doi.org/10.1038/ncpneuro0289]
[165]
Berges R, Balzeau J, Peterson AC, Eyer J. A tubulin binding peptide targets glioma cells disrupting their microtubules, blocking migration, and inducing apoptosis Molecular therapy: the journal of the American Society of Gene Therapy 2012; 20(7): 1367-77
[http://dx.doi.org/10.1038/mt.2012.45]
[166]
Ferguson SD. Malignant gliomas: diagnosis and treatment. Dis Mon 2011; 57(10): 558-69.
[http://dx.doi.org/10.1016/j.disamonth.2011.08.020] [PMID: 22036112]
[167]
Li B, Huang MZ, Wang XQ, et al. TMEM140 is associated with the prognosis of glioma by promoting cell viability and invasion. J Hematol Oncol 2015; 8: 89.
[http://dx.doi.org/10.1186/s13045-015-0187-4] [PMID: 26198430]
[168]
Stupp R, Mason WP, van den Bent MJ, et al. European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups; National Cancer Institute of Canada Clinical Trials Group. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005; 352(10): 987-96.
[http://dx.doi.org/10.1056/NEJMoa043330] [PMID: 15758009]
[169]
Wang Z, Guo Q, Wang R, et al. The D Domain of LRRC4 anchors ERK1/2 in the cytoplasm and competitively inhibits MEK/ERK activation in glioma cells. J Hematol Oncol 2016; 9(1): 130.
[http://dx.doi.org/10.1186/s13045-016-0355-1] [PMID: 27884160]
[170]
Wang Y, Jiang T. Understanding high grade glioma: molecular mechanism, therapy and comprehensive management. Cancer Lett 2013; 331(2): 139-46.
[http://dx.doi.org/10.1016/j.canlet.2012.12.024] [PMID: 23340179]
[171]
Miller JJ, Wen PY. Emerging targeted therapies for glioma. Expert Opin Emerg Drugs 2016; 21(4): 441-52.
[http://dx.doi.org/10.1080/14728214.2016.1257609] [PMID: 27809598]
[172]
Chen Z, Duan X. hsa_circ_0000177-miR-638-FZD7-Wnt signaling cascade contributes to the malignant behaviors in glioma. DNA Cell Biol 2018; 37(9): 791-7.
[http://dx.doi.org/10.1089/dna.2018.4294] [PMID: 30010402]
[173]
Bai QL, Hu CW, Wang XR, Shang JX, Yin GF. MiR-616 promotes proliferation and inhibits apoptosis in glioma cells by suppressing expression of SOX7 via the Wnt signaling pathway. Eur Rev Med Pharmacol Sci 2017; 21(24): 5630-7.
[PMID: 29271996]
[174]
Wu W, Dang S, Feng Q, Liang J, Wang Y, Fan N. MicroRNA-542-3p inhibits the growth of hepatocellular carcinoma cells by targeting FZD7/Wnt signaling pathway. Biochem Biophys Res Commun 2017; 482(1): 100-5.
[http://dx.doi.org/10.1016/j.bbrc.2016.10.136] [PMID: 27815069]
[175]
Wan L, Zhang L, Fan K, Cheng ZX, Sun QC, Wang JJ. Circular RNA-ITCH Suppresses Lung Cancer Proliferation via Inhibiting the Wnt/β-Catenin Pathway. BioMed Res Int 2016.20161579490
[http://dx.doi.org/10.1155/2016/1579490] [PMID: 27642589]
[176]
Jin Y, Yu LL, Zhang B, Liu CF, Chen Y. Circular RNA hsa_circ_0000523 regulates the proliferation and apoptosis of colorectal cancer cells as miRNA sponge. Braz J Med Biol Res 2018; 51(12)e7811
[http://dx.doi.org/10.1590/1414-431x20187811] [PMID: 30403259]
[177]
Wang R, Zhang S, Chen X, et al. CircNT5E Acts as a Sponge of miR-422a to Promote Glioblastoma Tumorigenesis. Cancer Res 2018; 78(17): 4812-25.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-0532] [PMID: 29967262]
[178]
Xu H, Zhang Y, Qi L, Ding L, Jiang H, Yu H. NFIX Circular RNA Promotes Glioma Progression by Regulating miR-34a-5p via Notch Signaling Pathway. Front Mol Neurosci 2018; 11: 225.
[http://dx.doi.org/10.3389/fnmol.2018.00225] [PMID: 30072869]
[179]
Zheng J, Liu X, Xue Y, et al. TTBK2 circular RNA promotes glioma malignancy by regulating miR-217/HNF1β/Derlin-1 pathway. J Hematol Oncol 2017; 10(1): 52.
[http://dx.doi.org/10.1186/s13045-017-0422-2] [PMID: 28219405]
[180]
Yuan RH, Lai HS, Hsu HC, Lai PL, Jeng YM. Expression of bile duct transcription factor HNF1β predicts early tumor recurrence and is a stage-independent prognostic factor in hepatocellular carcinoma. J Gastrointest Surg 2014; 18(10): 1784-94.
[http://dx.doi.org/10.1007/s11605-014-2596-z] [PMID: 25052070]
[181]
Qian L, Guan J, Wu Y, Wang Q. Upregulated circular RNA circ_0074027 promotes glioblastoma cell growth and invasion by regulating miR-518a-5p/IL17RD signaling pathway. Biochem Biophys Res Commun 2019; 510(4): 515-9.
[http://dx.doi.org/10.1016/j.bbrc.2019.01.140] [PMID: 30738578]
[182]
Barbagallo D, Caponnetto A, Cirnigliaro M, et al. CircSMARCA5 inhibits migration of glioblastoma multiforme cells by regulating a molecular axis involving splicing factors SRSF1/SRSF3/PTB. Int J Mol Sci 2018; 19(2)E480
[http://dx.doi.org/10.3390/ijms19020480] [PMID: 29415469]
[183]
Barbagallo D, Caponnetto A, Brex D, et al. CircSMARCA5 regulates VEGFA mRNA splicing and angiogenesis in glioblastoma multiforme through the binding of SRSF1. Cancers (Basel) 2019; 11(2)E194
[http://dx.doi.org/10.3390/cancers11020194] [PMID: 30736462]
[184]
Li X, Diao H. Circular RNA circ_0001946 acts as a competing endogenous RNA to inhibit glioblastoma progression by modulating miR-671-5p and CDR1. J Cell Physiol 2019; 234(8): 13807-19..
[http://dx.doi.org/10.1002/jcp.28061] [PMID: 30663767]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy