Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Review Article

Bioactive Compounds for Effective Management of Drug-Resistant Tuberculosis

Author(s): Monika Targhotra*, Rohan Aggarwal and Meenakshi K. Chauhan

Volume 17, Issue 3, 2021

Published on: 18 May, 2020

Page: [196 - 205] Pages: 10

DOI: 10.2174/1573407216999200518090132

Price: $65

Abstract

Background: Tuberculosis is a granulomatous irresistible bacterial infection caused by Mycobacterium tuberculosis. The present anti-TB antibiotics are less useful in the treatment of Multi- Drug-Resistant (MDR) strains.

Methods: We focused on distinguishing phyto-bioactive compounds dependent on customary uses and testing their concentrates against MDR strains. This will help abbreviate the present remedial regimens for TB and for treating HIV-TB co-disease.

Results: This article is an endeavor to examine the antimycobacterial and immunomodulatory role of phyto-bioactive compounds as another option and feature them for additional examination for the management of drug-resistant tuberculosis.

Conclusion: This review focused on the tubercle bacilli utilizing bioactive compounds as the therapeutic vehicle against MDR strains and also the synergistic action with available TB medications.

Keywords: Tuberculosis, mycobacterium, isoniazid, MDR, phyto-bioactive, natural, antimycobacterial.

Graphical Abstract
[1]
Youmans, G.P. Acquired immunity in tuberculosis. J. Chronic Dis., 1957, 6(6), 606-632.
[http://dx.doi.org/10.1016/0021-9681(57)90015-2] [PMID: 13491671]
[2]
Gupta, A.; Kulkarni, S.; Rastogi, N.; Anupurba, S. A study of Mycobacterium tuberculosis genotypic diversity & drug resistance mutations in Varanasi; North India. Indian J Med Res, 2014, 139, 892-902.
[3]
Raviglione, CM.; O’Brien, RJ. Antimycobacterial agents. In: Harrison’s Principles of Internal Medicine, 20th ed.; , 2014; 18, .
[4]
World Health Organization. World Health Organization Global Tuberculosis Report., 2014. Available from: https://www.who.int/tb/publications/global_report/en/;2017 [Accessed 12 Feb, 2020].
[5]
Goyal, V.; Kadam, V.; Narang, P.; Singh, V. Prevalence of drug-resistant pulmonary tuberculosis in India: Systematic review and meta-analysis. BMC Public Health, 2017, 17(1), 817.
[http://dx.doi.org/10.1186/s12889-017-4779-5] [PMID: 29041901]
[6]
Ministry of Health and Family Welfare Government of India Central TB Division. First National Anti- Tuberculosis Drug Resistance Survey 2014-16., Available from: https://tbcindia.gov.in/index1.php?page=1&ipp=All&lang=1&level=1&sublinkid=4869&lid=3131/;2018 [Accessed 16 Feb, 2020].
[7]
Rivoire, N.; Ravololonandriana, P.; Rasolonavalona, T.; Martin, A.; Portaels, F.; Ramarokoto, H.; Rasolofo, R.V. Evaluation of the resazurin assay for the detection of multidrug-resistant Mycobacterium tuberculosis in Madagascar. Int. J. Tuberc. Lung Dis., 2007, 11(6), 683-688.
[PMID: 17519102]
[8]
Higuchi, C.T.; Sannomiya, M.; Pavan, F.R.; Leite, S.R.A.; Sato, D.N.; Franzblau, S.G. Byrsonima fagifolia Niedenzu a polar compounds with anti-tubercular activity. Evid. Based Complement. Alternat. Med., 2008, 2011, 1-5.
[http://dx.doi.org/10.1093/ecam/nen077]
[9]
Guzman, J.D.; Gupta, A.; Evangelopoulos, D.; Basavannacharya, C.; Pabon, L.C.; Plazas, E.A.; Munoz, D.R.; Delgado, W.A.; Cuca, L.E.; Ribon, W.; Gibbons, S.; Bhakta, S. Anti-tubercular screening of natural products from Colombian plants: 3-methoxynordomesticine, an inhibitor of MurE ligase of Mycobacterium tuberculosis. J. Antimicrob. Chemother., 2010, 65(10), 2101-2107.
[http://dx.doi.org/10.1093/jac/dkq313] [PMID: 20719764]
[10]
Lawal, T.O.; Adeniyi, B.; Wan, A.B.; Franzblau, S.G.; Mahady, G.B. in vitro Susceptibility of Mycobacterium tuberculosis to Extracts of Uvaria Afzelli Scott Elliot and Tetraca Alnifolia Willd. Afr. J. Biomed. Res., 2011, 14, 17-21.
[11]
Altmann, K.H. Microtubule-stabilizing agents: A growing class of important anticancer drugs. Curr. Opin. Chem. Biol., 2001, 5(4), 424-431.
[http://dx.doi.org/10.1016/S1367-5931(00)00225-8] [PMID: 11470606]
[12]
Cohen, M.L. Epidemiology of drug resistance: Implications for a post-antimicrobial era. Science, 1992, 257(5073), 1050-1055.
[http://dx.doi.org/10.1126/science.257.5073.1050] [PMID: 1509255]
[13]
Nardi, G.M.; Felippi, R.; Dalbo, S.; Siqueirajunior, J.M.; Arruda, D.C.; Delle, Monache, F.; Timbola, AK.; Pizzolatti, MG.; Ckless, K.; Ribeiro do-Valle, RM. Anti- inflammatory and antioxidant effects of Croton celtidifolius bark. Phytome, 2003, 10, 176-184.
[http://dx.doi.org/10.1078/094471103321659906]
[14]
Essawi, T.; Srour, M. Screening of some Palestinian medicinal plants for antibacterial activity. J. Ethnopharmacol, 2000, 70(3), 343-349.
[http://dx.doi.org/10.1016/S0378-8741(99)00187-7] [PMID: 10837997]
[15]
Tomoko, N.; Takashi, A.; Hiromu, T.; Yuka, I.; Hiroko, M.; Munekazu, I.; Totshiyuki, T.; Tetsuro, I.; Fujio, A.; Iriya, I.; Tsutomu, N.; Kazuhito, W. Antibacterial activity of extracts preparated from tropical and subtropical plants on methicillin-resistant Staphylococcus aureus. J. Health Sci., 2002, 48, 273-276.
[http://dx.doi.org/10.1248/jhs.48.273]
[16]
Iwu, M.W.; Duncan, A.R.; Okunji, C.O. New antimicrobials of plant origin. Perspectives on new crops and new uses. In: ASHS Press Alexandria; Janick, J., Ed.; , 1999; pp. 457-462.
[17]
Basso, L.A.; da Silva, L.H.; Fett-Neto, A.G.; de Azevedo, W.F., Jr; Moreira, Ide.S.; Palma, M.S.; Calixto, J.B.; Astolfi Filho, S.; dos Santos, R.R.; Soares, M.B.; Santos, D.S. The use of biodiversity as source of new chemical entities against defined molecular targets for treatment of malaria, tuberculosis, and T-cell mediated diseases--a review. Mem. Inst. Oswaldo Cruz, 2005, 100(6), 475-506.
[http://dx.doi.org/10.1590/S0074-02762005000600001] [PMID: 16302058]
[18]
DeFelice, S.L. The nutraceutical revolution: Its impact on food industry R&D. Trends Food Sci. Technol., 1995, 6, 59-61.
[http://dx.doi.org/10.1016/S0924-2244(00)88944-X]
[19]
Santini, A.; Novellino, E. To nutraceuticals and back: Rethinking a concept. Foods, 2017, 6(9), E74.
[http://dx.doi.org/10.3390/foods6090074] [PMID: 28872585]
[20]
Durazzo, A.; Lucarini, M.; Santini, A. Nutraceuticals in Human Health. Foods, 2020, 9(3), 370.
[http://dx.doi.org/10.3390/foods9030370] [PMID: 32209968]
[21]
Santini, A.; Novellino, E. Nutraceuticals - Shedding light on the grey area between pharmaceuticals and food. Expert Rev. Clin. Pharmacol., 2018, 11(6), 545-547.
[http://dx.doi.org/10.1080/17512433.2018.1464911] [PMID: 29667442]
[22]
Daliu, P.; Santini, A.; Novellino, E. From pharmaceuticals to nutraceuticals: Bridging disease prevention and management. Expert Rev. Clin. Pharmacol., 2019, 12(1), 1-7.
[http://dx.doi.org/10.1080/17512433.2019.1552135] [PMID: 30484336]
[23]
Lu, M.A.A.; Báez, G.J.G.; Bautista, V.M.; García, A.K.G.; Galindo, R.S.A.; García, M.E. Studied of defatted flour and protein concentrate of Prunus serotine and applications. Foods, 2020, 9, 29.
[24]
Campos, J.R.; Severino, P.; Ferreira, C.S.; Zielinska, A.; Santini, A.; Souto, S.B.; Souto, E.B. Linseed essential oil - Source of lipids as active ingredients for pharmaceuticals and nutraceuticals. Curr. Med. Chem., 2019, 26(24), 4537-4558.
[http://dx.doi.org/10.2174/0929867325666181031105603] [PMID: 30378485]
[25]
Salehi, B.; Venditti, A.; Sharifi-Rad, M.; Kregiel, D.; Sharifi-Rad, J.; Durazzo, A.; Lucarini, M.; Santini, A.; Souto, E.B.; Novellino, E.; Antolak, H.; Azzini, E.; Setzer, W.N.; Martins, N. The therapeutic potential of apigenin. Int. J. Mol. Sci., 2019, 20(6), 1305.
[http://dx.doi.org/10.3390/ijms20061305] [PMID: 30875872]
[26]
Lucarini, M.; Durazzo, A.; Romani, A.; Campo, M.; Lombardi-Boccia, G.; Cecchini, F. Bio-based compounds from grape seeds: A biorefinery approach. Molecules, 2018, 23(8), 1888.
[http://dx.doi.org/10.3390/molecules23081888] [PMID: 30060557]
[27]
Santini, A.; Novellino, E. Nutraceuticals: Beyond the diet before the drugs. Curr. Bioact. Compd., 2014, 10, 1-12.
[http://dx.doi.org/10.2174/157340721001140724145924]
[28]
Bernal, J.; Mendiola, J.A.; Ibanez, E.; Cifuentes, A. Advanced analysis of nutraceuticals. J. Pharm. Biomed. Anal., 2011, 55(4), 758-774.
[http://dx.doi.org/10.1016/j.jpba.2010.11.033] [PMID: 21168989]
[29]
Das, L.; Bhaumik, E.; Raychaudhuri, U.; Chakraborty, R. Role of nutraceuticals in human health. J. Food Sci. Technol., 2012, 49(2), 173-183.
[http://dx.doi.org/10.1007/s13197-011-0269-4] [PMID: 23572839]
[30]
Adelaja, A.O.; Schilling, B.J. Nutraceutical:Blurring the line between food and drugs in the twenty-first century. Mag. Food Farm. Resour, 1999, 14, 35-40.
[31]
Kong, W.; Wei, J.; Abidi, P.; Lin, M.; Inaba, S.; Li, C.; Wang, Y.; Wang, Z.; Si, S.; Pan, H.; Wang, S.; Wu, J.; Wang, Y.; Li, Z.; Liu, J.; Jiang, J.D. Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins. Nat. Med., 2004, 10(12), 1344-1351.
[http://dx.doi.org/10.1038/nm1135] [PMID: 15531889]
[32]
Albert, C.M.; Campos, H.; Stampfer, M.J.; Ridker, P.M.; Manson, J.E.; Willett, W.C.; Ma, J. Blood levels of long-chain n-3 fatty acids and the risk of sudden death. N. Engl. J. Med., 2002, 346(15), 1113-1118.
[http://dx.doi.org/10.1056/NEJMoa012918] [PMID: 11948270]
[33]
Tenore, G.C.; Campiglia, P.; Stiuso, P.; Ritieni, A.; Novellino, E. Nutraceutical potential of polyphenolic fractions from Annurca apple (M. pumila Miller cv Annurca). Food Chem., 2013, 140(4), 614-622.
[http://dx.doi.org/10.1016/j.foodchem.2012.10.112] [PMID: 23692744]
[34]
Biesalski, H.K.; Dragsted, L.O.; Elmadfa, I.; Grossklaus, R.; MA1/4ller, M.; Schrenk, D.; Walter, P.; Weber, P. Bioactive compounds: Definition and assessment of activity. Nutrition, 2009, 25(11-12), 1202-1205.
[http://dx.doi.org/10.1016/j.nut.2009.04.023] [PMID: 19695833]
[35]
Roessner, U.; Beckles, D.M. Metabolite measurements.Plant Metabolic Networks, 3rd ed; Schwender, J., Ed.; Springer-Verlag: New York, 2009, pp. 39-69.
[http://dx.doi.org/10.1007/978-0-387-78745-9_3]
[36]
El, G.H. Polyphenols: Food sources, properties and applications: A review. Int. J. Food Sci. Technol., 2009, 44(12), 2512-2518.
[http://dx.doi.org/10.1111/j.1365-2621.2009.02077.x]
[37]
De la Rosa, L.A.; Alvarez-Parrilla, E.; Gonzalez-Aguilar, G.A. Fruit and Vegetable Phytochemicals-Chemistry, Nutritional Value, and Stability, 1sted.; Wiley-Blackwell: Ames, IA, USA, 2009.
[http://dx.doi.org/10.1002/9780813809397]
[38]
Roche, A.; Ross, E.; Walsh, N.; O’Donnell, K.; Williams, A.; Klapp, M.; Fullard, N.; Edelstein, S. Representative literature on the phytonutrients category: Phenolic acids. Crit. Rev. Food Sci. Nutr., 2017, 57(6), 1089-1096.
[http://dx.doi.org/10.1080/10408398.2013.865589] [PMID: 25831057]
[39]
Andrew, R.; Izzo, A.A. Principles of pharmacological research of nutraceuticals. Br. J. Pharmacol., 2017, 174(11), 1177-1194.
[http://dx.doi.org/10.1111/bph.13779] [PMID: 28500635]
[40]
Salehi, B.; Fokou, P.V.T.; Sharifi-Rad, M.; Zucca, P.; Pezzani, R.; Martins, N.; Sharifi-Rad, J. The Therapeutic potential of naringenin: A review of clinical trials. Pharmaceuticals (Basel), 2019, 12(1), E11.
[http://dx.doi.org/10.3390/ph12010011] [PMID: 30634637]
[41]
Ranka, S.; Gee, J.M.; Biro, L.; Brett, G.; Saha, S.; Kroon, P.; Skinner, J.; Hart, A.R.; Cassidy, A.; Rhodes, M.; Johnson, I.T. Development of a food frequency questionnaire for the assessment of quercetin and naringenin intake. Eur. J. Clin. Nutr., 2008, 62(9), 1131-1138.
[http://dx.doi.org/10.1038/sj.ejcn.1602827] [PMID: 17538531]
[42]
Durazzo, A.; Lucarini, M.; Souto, E.B.; Cicala, C.; Caiazzo, E.; Izzo, A.A.; Novellino, E.; Santini, A. Polyphenols: A concise overview on the chemistry, occurrence, and human health. Phytother. Res., 2019, 33(9), 2221-2243.
[http://dx.doi.org/10.1002/ptr.6419] [PMID: 31359516]
[43]
Durazzo, A.; Nazhand, A.; Lucarini, M.; Atanasov, A.G.; Souto, E.B.; Novellino, E.; Capasso, R.; Santini, A. An updated overview on nanonutraceuticals: Focus on nanoprebiotics and nanoprobiotics. Int. J. Mol. Sci, 2020, 21(7), 2285.
[http://dx.doi.org/10.3390/ijms21072285] [PMID: 32225036]
[44]
Thammarutwasik, P.; Hongpattarakere, T.; Chantachum, S.; Kijroongrojana, K.; Itharat, A.; Reanmongkol, W.; Tewtrakul, S.; Ooraikul, B. Prebiotics-A review. Songklanakarin J. Sci. Technol., 2009, 31, 401-408.
[45]
Patel, S.; Goyal, A. The current trends and future perspectives of prebiotics research: A review. Biotech, 2012, 2, 115-125.
[http://dx.doi.org/10.1007/s13205-012-0044-x]
[46]
Monteagudo-Mera, A.; Rastall, R.A.; Gibson, G.R.; Charalampopoulos, D.; Chatzifragkou, A. Adhesion mechanisms mediated by probiotics and prebiotics and their potential impact on human health. Appl. Microbiol. Biotechnol., 2019, 103(16), 6463-6472.
[http://dx.doi.org/10.1007/s00253-019-09978-7] [PMID: 31267231]
[47]
Pandey, K.R.; Naik, S.R.; Vakil, B.V. Probiotics, prebiotics and synbiotics- A review. J. Food Sci. Technol., 2015, 52(12), 7577-7587.
[http://dx.doi.org/10.1007/s13197-015-1921-1] [PMID: 26604335]
[48]
Ranjan, S.; Dasgupta, N.; Chakraborty, A.R.; Melvin Samuel, S.; Ramalingam, C.; Shanker, R.; Kumar, A. Nanoscience and nanotechnologies in food industries: Opportunities and research trends. J. Nanopart. Res., 2014, 16, 2464.
[http://dx.doi.org/10.1007/s11051-014-2464-5]
[49]
Atia, A.; Gomaa, A.; Fliss, I.; Beyssac, E.; Garrait, G.; Subirade, M. A prebiotic matrix for encapsulation of probiotics: Physicochemical and microbiological study. J. Microencapsul., 2016, 33(1), 89-101.
[http://dx.doi.org/10.3109/02652048.2015.1134688] [PMID: 26805512]
[50]
Krithika, B.; Preetha, R. Formulation of protein based inulin incorporated synbiotic nanoemulsion for enhanced stability of probiotic. Mater. Res. Express, 2019, 6, 114003.
[http://dx.doi.org/10.1088/2053-1591/ab4d1a]
[51]
Caneus, D. Nanotechnology and its Partnership with Synbiotics. J. Nanomed. Res, 2017, 6, 142.
[http://dx.doi.org/10.15406/jnmr.2017.06.00142]
[52]
Pan, S.Y.; Zhou, S.F.; Gao, S.H.; Yu, Z.L.; Zhang, S.F.; Tang, M.K.; Sun, J.N.; Ma, D.L.; Han, Y.F.; Fong, W.F.; Ko, K.M. New perspectives on how to discover drugs from herbal medicines: CAM’s outstanding contribution to modern therapeutics. Evid. Based Complement. Alternat. Med., 2013, 2013, 627375.
[http://dx.doi.org/10.1155/2013/627375] [PMID: 23634172]
[53]
Pauli, G.F.; Case, R.J.; Inui, T.; Wang, Y.; Cho, S.; Fischer, N.H.; Franzblau, S.G. New perspectives on natural products in TB drug research. Life Sci., 2005, 78(5), 485-494.
[http://dx.doi.org/10.1016/j.lfs.2005.09.004] [PMID: 16243360]
[54]
Chaturvedi, V.; Dwivedi, N.; Tripathi, R.P.; Sinha, S. Evaluation of Mycobacterium smegmatis as a possible surrogate screen for selecting molecules active against multi-drug resistant Mycobacterium tuberculosis. J. Gen. Appl. Microbiol., 2007, 53(6), 333-337.
[http://dx.doi.org/10.2323/jgam.53.333] [PMID: 18187888]
[55]
Altaf, M.; Miller, C.H.; Bellows, D.S.; O’Toole, R. Evaluation of the Mycobacterium smegmatis and BCG models for the discovery of Mycobacterium tuberculosis inhibitors. Tuberculosis (Edinb.), 2010, 90(6), 333-337.
[http://dx.doi.org/10.1016/j.tube.2010.09.002] [PMID: 20933470]
[56]
Gupta, A.; Bhakta, S. An integrated surrogate model for screening of drugs against Mycobacterium tuberculosis. J. Antimicrob. Chemother., 2012, 67(6), 1380-1391.
[http://dx.doi.org/10.1093/jac/dks056] [PMID: 22398649]
[57]
Phelan, J.; Maitra, A.; McNerney, R.; Nair, M.; Gupta, A.; Coll, F.; Pain, A.; Bhakta, S.; Clark, T.G. The draft genome of Mycobacterium aurum, a potential model organism for investigating drugs against Mycobacterium tuberculosis and Mycobacterium leprae. Int. J. Mycobacteriol., 2015, 4(3), 207-216.
[http://dx.doi.org/10.1016/j.ijmyco.2015.05.001] [PMID: 27649868]
[58]
JimA(c)nez-Arellanes, A.; Luna-Herrera, J.; Cornejo-Garrido, J.; LA3pez-GarcA-a, S.; Castro-Mussot, M.E.; Meckes-Fischer, M.; Mata-Espinosa, D.; Marquina, B.; Torres, J.; Hernandez-Pando, R. Ursolic and oleanolic acids as antimicrobial and immunomodulatory compounds for tuberculosis treatment. BMC Complement. Altern. Med., 2013, 13, 258.
[http://dx.doi.org/10.1186/1472-6882-13-258] [PMID: 24098949]
[59]
Luo, X.; Pires, D.; AA-nsa, J.A.; Gracia, B.; Duarte, N.; Mulhovo, S.; Anes, E.; Ferreira, M.J. Zanthoxylum capense constituents with antimycobacterial activity against Mycobacterium tuberculosisin vitro and ex vivo within human macrophages. J. Ethnopharmacol., 2013, 146(1), 417-422.
[http://dx.doi.org/10.1016/j.jep.2013.01.013] [PMID: 23337743]
[60]
Jyoti, M.A.; Nam, K.W.; Jang, W.S.; Kim, Y.H.; Kim, S.K.; Lee, B.E.; Song, H.Y. Antimycobacterial activity of methanolic plant extract of Artemisia capillaris containing ursolic acid and hydroquinone against Mycobacterium tuberculosis. J. Infect. Chemother., 2016, 22(4), 200-208.
[http://dx.doi.org/10.1016/j.jiac.2015.11.014] [PMID: 26867795]
[61]
Martin, A.; Camacho, M.; Portaels, F.; Palomino, J.C. Resazurin microtiter assay plate testing of Mycobacterium tuberculosis susceptibilities to second-line drugs: Rapid, simple, and inexpensive method. Antimicrob. Agents Chemother., 2003, 47(11), 3616-3619.
[http://dx.doi.org/10.1128/AAC.47.11.3616-3619.2003] [PMID: 14576129]
[62]
Navarro-GarcA-a, V.M.; Luna-Herrera, J.; Rojas-Bribiesca, M.G.; A?lvarez-Fitz, P.; RA-os, M.Y. Antibacterial activity of Aristolochia brevipes against multidrug-resistant Mycobacterium tuberculosis. Molecules, 2011, 16(9), 7357-7364.
[http://dx.doi.org/10.3390/molecules16097357] [PMID: 21876482]
[63]
Kumar, P.; Singh, A.; Sharma, U.; Singh, D.; Dobhal, M.P.; Singh, S. Anti-mycobacterial activity of plumericin and isoplumericin against MDR Mycobacterium tuberculosis. Pulm. Pharmacol. Ther., 2013, 26(3), 332-335.
[http://dx.doi.org/10.1016/j.pupt.2013.01.003] [PMID: 23333815]
[64]
O’Neill, T.E.; Li, H.; Colquhoun, C.D.; Johnson, J.A.; Webster, D.; Gray, C.A. Optimisation of the microplate resazurin assay for screening and bioassay-guided fractionation of phytochemical extracts against Mycobacterium tuberculosis. Phytochem. Anal., 2014, 25(5), 461-467.
[http://dx.doi.org/10.1002/pca.2516] [PMID: 24733665]
[65]
Gupta, V.K.; Shukla, C.; Bisht, G.R.; Saikia, D.; Kumar, S.; Thakur, R.L. Detection of anti-tuberculosis activity in some folklore plants by radiometric BACTEC assay. Lett. Appl. Microbiol., 2011, 52(1), 33-40.
[http://dx.doi.org/10.1111/j.1472-765X.2010.02963.x] [PMID: 21114505]
[66]
Collins, L.A.; Torrero, M.N.; Franzblau, S.G. Green fluorescent protein reporter microplate assay for high-throughput screening of compounds against Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 1998, 42(2), 344-347.
[http://dx.doi.org/10.1128/AAC.42.2.344] [PMID: 9527783]
[67]
Songsri, S.; Nuntawong, N. Cytotoxic labdane diterpenes from Hedychium ellipticum Buch.-Ham. ex Sm. Molecules, 2016, 21(6), 749.
[http://dx.doi.org/10.3390/molecules21060749] [PMID: 27294893]
[68]
Gupta, R.; Thakur, B.; Singh, P.; Singh, H.B.; Sharma, V.D.; Katoch, V.M.; Chauhan, S.V. Anti-tuberculosis activity of selected medicinal plants against multi-drug resistant Mycobacterium tuberculosis isolates. Indian J. Med. Res., 2010, 131, 809-813.
[PMID: 20571171]
[69]
Deb, C.; Lee, C.M.; Dubey, V.S.; Daniel, J.; Abomoelak, B.; Sirakova, T.D.; Pawar, S.; Rogers, L.; Kolattukudy, P.E. A novel in vitro multiple-stress dormancy model for Mycobacterium tuberculosis generates a lipid-loaded, drug-tolerant, dormant pathogen. PLoS One, 2009, 4(6), e6077.
[http://dx.doi.org/10.1371/journal.pone.0006077] [PMID: 19562030]
[70]
Betts, J.C.; Lukey, P.T.; Robb, L.C.; McAdam, R.A.; Duncan, K. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol. Microbiol., 2002, 43(3), 717-731.
[http://dx.doi.org/10.1046/j.1365-2958.2002.02779.x] [PMID: 11929527]
[71]
Cho, S.H.; Warit, S.; Wan, B.; Hwang, C.H.; Pauli, G.F.; Franzblau, S.G. Low-oxygen-recovery assay for high-throughput screening of compounds against nonreplicating Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2007, 51(4), 1380-1385.
[http://dx.doi.org/10.1128/AAC.00055-06] [PMID: 17210775]
[72]
Elkington, B.G.; Sydara, K.; Newsome, A.; Hwang, C.H.; Lankin, D.C.; Simmler, C.; Napolitano, J.G.; Ree, R.; Graham, J.G.; Gyllenhaal, C.; Bouamanivong, S.; Souliya, O.; Pauli, G.F.; Franzblau, S.G.; Soejarto, D.D. New finding of an anti-TB compound in the genus Marsypopetalum (Annonaceae) from a traditional herbal remedy of Laos. J. Ethnopharmacol., 2014, 151(2), 903-911.
[http://dx.doi.org/10.1016/j.jep.2013.11.057] [PMID: 24333958]
[73]
Heinrich, M.; Gibbons, S. Ethnopharmacology in drug discovery: An analysis of its role and potential contribution. J. Pharm. Pharmacol., 2001, 53(4), 425-432.
[http://dx.doi.org/10.1211/0022357011775712] [PMID: 11341358]
[74]
Mishra, S.; Khatri, M.; Mehra, V. Trials and tribulations in tuberculosis research: Can plant based drug (s) be the solution? Chem Biol Lett., 2017, 4, 33-47.
[75]
Hora, S.L.; Nair, K.K. Pollution of streams and conservation of fisheries. Proceeding of the National Institute of Sciences of India, 1944, pp. 147-66.
[76]
Kumar, S.; Kamboj, J.; Suman, ; Sharma, S. Overview for various aspects of the health benefits of Piper longum linn. fruit. J. Acupunct. Meridian Stud., 2011, 4(2), 134-140.
[http://dx.doi.org/10.1016/S2005-2901(11)60020-4] [PMID: 21704957]
[77]
Sharma, S.; Kalia, N.P.; Suden, P.; Chauhan, P.S.; Kumar, M.; Ram, A.B.; Khajuria, A.; Bani, S.; Khan, I.A. Protective efficacy of piperine against Mycobacterium tuberculosis. Tuberculosis (Edinb.), 2014, 94(4), 389-396.
[http://dx.doi.org/10.1016/j.tube.2014.04.007] [PMID: 24880706]
[78]
Viswanathan, V.; Phadatare, A.G.; Mukne, A. Antimycobacterial and Antibacterial Activity of Allium sativum Bulbs. Indian J. Pharm. Sci., 2014, 76(3), 256-261.
[PMID: 25035540]
[79]
Hannan, A.; Ikram Ullah, M.; Usman, M.; Hussain, S.; Absar, M.; Javed, K. Anti-mycobacterial activity of garlic (Allium sativum) against multi-drug resistant and non-multi-drug resistant Mycobacterium tuberculosis. Pak. J. Pharm. Sci., 2011, 24(1), 81-85.
[PMID: 21190924]
[80]
Gazuwa, S.Y.; Makanjuola, E.R.; Jaryum, K.H.; Kutshik, J.R.; Mafulul, S.G. The phytochemical composition of Allium cepa/Allium sativum and the effects of their aqueous extracts (cooked and raw forms) on the lipid profile and other hepatic biochemical parameters in female albino wistar rats. Asian J. Exp. Biol. Sci., 2013, 4(3), 406-410.
[81]
Sivakumar, A.; Jayaraman, G. Anti-tuberculosis activity of commonly used medicinal plants of south India. In: School of Bio Sciences and Technology;
[82]
Gupta, V.K.; Fatima, A.; Faridi, U.; Negi, A.S.; Shanker, K.; Kumar, J.K.; Rahuja, N.; Luqman, S.; Sisodia, B.S.; Saikia, D.; Darokar, M.P.; Khanuja, S.P. Antimicrobial potential of Glycyrrhiza glabra roots. J. Ethnopharmacol., 2008, 116(2), 377-380.
[http://dx.doi.org/10.1016/j.jep.2007.11.037] [PMID: 18182260]
[83]
Reddy, N.M. Tinospora cordifolia chemical constituents and medicinal properties: A Review. Sch. Acad. J. Pharm., 2015, 4(8), 364-369.
[84]
The anti-mycobacterial activity of Tinospora cordifolia medicinal plant used for the treatment of leprosy and Tuberculosis. Int. J. Sci. Eng. Res., 2013.
[85]
Grange, J.M.; Davey, R.W. Detection of antituberculous activity in plant extracts. J. Appl. Bacteriol., 1990, 68(6), 587-591.
[http://dx.doi.org/10.1111/j.1365-2672.1990.tb05224.x] [PMID: 2118130]
[86]
Tiwari, R.; Chakraborty, S.; Saminathan, M.; Dhama, K.; Kumar, A.; Karthik, K.; Wani, M.Y.; Amarpal, S.S.; Rahal, A. (Withania somnifera): Role in safeguarding health; Immunomodulatory effects; Combating infections and therapeutic applications: A review. J. Biol. Sci., 2014, 14, 77-94.
[http://dx.doi.org/10.3923/jbs.2014.77.94]
[87]
Periyakaruppan, A.; Kannapiran, M.; Anthonisamy, A. Antimycobacterial activity of Withania somnifera and Pueraria tuberosa against Mycobacterium tuberculosis H37Rv. J. Acad. Indus. Res, 2012, 1(4), 153-156.
[88]
Esquivel-Ferrino, P.C.; Favela-Hernandez, J.M.; Garza-Gonzalez, E.; Waksman, N.; RA-os, M.Y.; del Rayo Camacho-Corona, M.; Yolanda RA-os, M.; Camacho-Corona, M. Antimycobacterial activity of constituents from Foeniculum vulgare var. dulce grown in Mexico. Molecules, 2012, 17(7), 8471-8482.
[http://dx.doi.org/10.3390/molecules17078471] [PMID: 22797778]
[89]
Soundhari, C.; Rajarajan, S. In vitro screening of lyophilised extracts of Alpinia galanga and Oldenlandia umbellata for antimycobacterial activity. Int J Biol. Pharm. Res., 2013, 4, 427-432.
[90]
Askun, T.; Tumen, G.; Satil, F.; Ates, M. Characterization of the phenolic composition and antimicrobial activities of Turkish medicinal plants. Pharm. Biol., 2009, 47(7), 563-571.
[http://dx.doi.org/10.1080/13880200902878069]
[91]
Siddiqui, B.S.; Bhatti, H.A.; Begum, S.; Perwaiz, S. Evaluation of the antimycobacterium activity of the constituents from Ocimum basilicum against Mycobacterium tuberculosis. J. Ethnopharmacol., 2012, 144(1), 220-222.
[http://dx.doi.org/10.1016/j.jep.2012.08.003] [PMID: 22982011]
[92]
Andrade-Ochoa, S.; Nevarez-Moorillion, G.V.; Sanchez-Torres, LE.; Villanueva-Garcia, M.; Sanchez-RamA-rez, BE.; RodrA-guez-Valdez, LM.; Rivera-Chavira, BE. Quantitative structure-activity relationship of molecules constituent of different essential oils with antimycobacterial activity against Mycobacterium tuberculosis and Mycobacterium bovis. BMC Complement. Altern. Med., 2015, 15, 332.
[93]
Stavri, M.; Gibbons, S. The antimycobacterial constituents of dill (Anethum graveolens). Phytother. Res., 2005, 19(11), 938-941.
[http://dx.doi.org/10.1002/ptr.1758] [PMID: 16317649]
[94]
Sivakumar, A.; Jayaraman, G. Anti-tuberculosis activity of commonly used medicinal plants of south India. J. Med. Plants Res., 2011, 5, 6881-6884.
[http://dx.doi.org/10.5897/JMPR11.1397]
[95]
Greco, W.R.; Bravo, G.; Parsons, J.C. The search for synergy: A critical review from a response surface perspective. Pharmacol. Rev., 1995, 47(2), 331-385.
[PMID: 7568331]
[96]
Mativandlela, S.P.N.; Muthivhi, T.; Kikuchi, H.; Oshima, Y.; Hamilton, C.; Hussein, A.A.; van der Walt, M.L.; Houghton, P.J.; Lall, N. Antimycobacterial flavonoids from the leaf extract of Galenia africana. J. Nat. Prod., 2009, 72(12), 2169-2171.
[http://dx.doi.org/10.1021/np800778b] [PMID: 20035557]
[97]
Bapela, N.B.; Lall, N.; Fourie, P.B.; Franzblau, S.G.; Van Rensburg, C.E.J. Activity of 7-methyljuglone in combination with antituberculous drugs against Mycobacterium tuberculosis. Phytomedicine, 2006, 13(9-10), 630-635.
[http://dx.doi.org/10.1016/j.phymed.2006.08.001] [PMID: 16987644]
[98]
Guo, N.; Wu, J.; Fan, J.; Yuan, P.; Shi, Q.; Jin, K.; Cheng, W.; Zhao, X.; Zhang, Y.; Li, W.; Tang, X.; Yu, L. in vitro activity of isoimperatorin, alone and in combination, against Mycobacterium tuberculosis. Lett. Appl. Microbiol., 2014, 58(4), 344-349.
[http://dx.doi.org/10.1111/lam.12195] [PMID: 24330002]
[99]
Safitri, C.; Ritmaleni, R.; Ning, S.; Kanek, T. Evaluation of benzylidene-acetone analogues of curcumin as antituberculosis. Asian. J. Pharm. Clin. Res., 2018, 11, 226.
[http://dx.doi.org/10.22159/ajpcr.2018.v11i4.22991]
[100]
Ernst, J.D. The immunological life cycle of tuberculosis. Nat. Rev. Immunol., 2012, 12(8), 581-591.
[http://dx.doi.org/10.1038/nri3259] [PMID: 22790178]
[101]
Cox, H.S.; Morrow, M.; Deutschmann, P.W. Long term efficacy of DOTS regimens for tuberculosis: Systematic review. BMJ, 2008, 336(7642), 484-487.
[http://dx.doi.org/10.1136/bmj.39463.640787.BE] [PMID: 18250104]
[102]
Dwivedi, V.P.; Bhattacharya, D.; Singh, M.; Bhaskar, A.; Kumar, S.; Fatima, S.; Sobia, P.; Kaer, L.V.; Das, G. Allicin enhances antimicrobial activity of macrophages during Mycobacterium tuberculosis infection. J. Ethnopharmacol., 2019, 243, 111634.
[http://dx.doi.org/10.1016/j.jep.2018.12.008] [PMID: 30537531]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy