Generic placeholder image

Recent Innovations in Chemical Engineering

Editor-in-Chief

ISSN (Print): 2405-5204
ISSN (Online): 2405-5212

Research Article

Deposition Time-dependent Study of Structural and Optical Properties of PbS Thin Films Grown by CBD Method

Author(s): Minakshi Chaudhary, Yogesh Hase, Ashwini Punde, Pratibha Shinde, Ashish Waghmare, Priti Vairale, Vidya Doiphode, Nilesh Patil, Subhash Pandharkar, Mohit Prasad and Sandesh Jadkar*

Volume 14, Issue 1, 2021

Published on: 17 May, 2020

Page: [35 - 45] Pages: 11

DOI: 10.2174/2405520413999200517123919

Price: $65

Abstract

Background: Thin films of PbS were prepared onto glass substrates by using a simple and cost-effective CBD method.

Methods: The influence of deposition time on structural, morphology and optical properties have been investigated systematically. The XRD analysis revealed that PbS films are polycrystalline with preferred orientation in (200) direction. Enhancement in crystallinity and PbS crystallite size has been observed with an increase in deposition time. The formation of single-phase PbS thin films has been further confirmed by Raman spectroscopy. The surface morphology analysis revealed the formation of prismatic and pebble-like PbS particles and with an increase in deposition time, these PbS particles are separated from each other without secondary growth. The data obtained from the EDX spectra show the formation of high-quality but slightly sulfur-rich PbS thin films over the entire range of deposition time studied.

Results and Conclusion: All films show an increase in absorption with an increase in deposition time and strong absorption in the visible and sub-bandgap regime of the NIR range of the spectrum with red-shift in band edge. The optical band gap shows a decreasing trend, as deposition time increases but it is higher than the bandgap of bulk PbS.

Keywords: PbS thin films, Chemical bath deposition, Raman spectroscopy, X-ray diffraction, UV-Vis- NIR spectroscopy, XRD analysis.

Graphical Abstract
[1]
Smith DK, Luther JM, Semonin OE, Nozik AJ, Beard MC. Tuning the synthesis of ternary lead chalcogenide quantum dots by balancing precursor reactivity. ACS Nano 2011; 5(1): 183-90.
[http://dx.doi.org/10.1021/nn102878u ] [PMID: 21141910]
[2]
Ma W, Luther JM, Zheng H, Wu Y, Alivisatos AP. Photovoltaic devices employing ternary PbSxSe1-x nanocrystals. Nano Lett 2009; 9(4): 1699-703.
[http://dx.doi.org/10.1021/nl900388a ] [PMID: 19351196]
[3]
Abdel RM, Roushdy N. Study of optical properties of nanostructured PbS films. Mag Philos Lett 2010; 90: 113-20.
[http://dx.doi.org/10.1080/09500830903459663]
[4]
Bai R, Kumar D, Chaudhary S, Pandya D. Highly crystalline p-PbS thin films with tunable optical and hole transport parameters by chemical bath deposition. Acta Mater 2017; 131: 11-21.
[http://dx.doi.org/10.1016/j.actamat.2017.03.062]
[5]
Patil SV, Deshmukh PR, Lokhande CD. Fabrication and liquefied petroleum gas (LPG) sensing performance of p-polyaniline/n-PbS heterojunction at room temperature. Sens Actuator B 2011; 156: 450-5.
[http://dx.doi.org/10.1016/j.snb.2011.04.005]
[6]
Popescu V. Nanostructured PbS Film Temperature Sensors. Chemistry Magazine 2004; 12: 983-5. [Revista de Chimie]
[7]
Perera A, Jayaweera P, Ariyawansa G, et al. Room temperature nano-and microstructure photon detectors Micro-electr J 2009; 40: 507-11.
[8]
Nair PK, Garcia VM, Hernandez AB, Nair MTS. Photoaccelerated chemical deposition of PbS thin films: Novel applications in decorative coatings and imaging techniques. J Phys D Appl Phys 1991; 24: 1466-72.
[http://dx.doi.org/10.1088/0022-3727/24/8/036]
[9]
Wise FW. Lead salt quantum dots: The limit of strong quantum confinement. Acc Chem Res 2000; 33(11): 773-80.
[http://dx.doi.org/10.1021/ar970220q ] [PMID: 11087314]
[10]
Yang P, Song CF, Liu MK, et al. The luminescence of nanoparticles embedded in sol-gel silica glass. Chem Phys Lett 2001; 345: 429-34.
[http://dx.doi.org/10.1016/S0009-2614(01)00926-5]
[11]
Hirata H, Higashiyama K. Analytical study of the lead ion-selective ceramic membrane electrode. Bull Chem Soc Jpn 1971; 44: 2420-3.
[http://dx.doi.org/10.1246/bcsj.44.2420]
[12]
Sun L, Choi JJ, Stachnik D, et al. Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control. Nat Nanotechnol 2012; 7(6): 369-73.
[http://dx.doi.org/10.1038/nnano.2012.63 ] [PMID: 22562037]
[13]
Kane RS, Cohen RE, Silbey R. Theoretical study of the electronic structure of PbS nanoclusters. J Phys Chem 1996; 100: 7928-32.
[http://dx.doi.org/10.1021/jp952869n]
[14]
Slonopas A, Alijabbari N, Saltonstall C, Globus T, Norris P. Chemically deposited nanocrystalline lead sulfide thin films with tunable properties for use in photovoltaics. Electrochim Acta 2015; 151: 140-9.
[http://dx.doi.org/10.1016/j.electacta.2014.11.021]
[15]
Thangaraju B, Kalainnan P. Spray pyrolytically deposited PbS thin films. Semicond Sci Technol 2000; 15: 849-53.
[http://dx.doi.org/10.1088/0268-1242/15/8/311]
[16]
Ni Y, Wang F, Lui H, et al. A novel aqueous-phase route to prepare flower-shaped PbS micron crystals. J Cryst Growth 2004; 262: 399-402.
[http://dx.doi.org/10.1016/j.jcrysgro.2003.10.053]
[17]
Zhao Y, Lino XH, Hong JM, Zhu JJ. Structural and optical characterization of chemically deposited PbS thin films. Silicon 2017; 9: 809-16.
[http://dx.doi.org/10.1007/s12633-015-9399-z]
[18]
Kumar S, Sharma TP, Zulfequar M, Husain M. Characterization of vacuum evaporated PbS thin films. Phys B 2003; 325: 8-16.
[http://dx.doi.org/10.1016/S0921-4526(02)01272-3]
[19]
Preetha KC, Murali KV, Ragina AJ, Deepa K, Remadevi TL. Effect of cationic precursor pH on optical and transport properties of SILARdeposited nano crystalline PbS thin films. Curr Appl Phys 2012; 12: 53-9.
[http://dx.doi.org/10.1016/j.cap.2011.04.040]
[20]
Aadim K, Ibrahim A, Marie J. Structural and optical properties of PbS thin films deposited by pulsed laser deposited (PLD) technique at different annealing temperature. Int J Phys 2017; 5: 1-8.
[http://dx.doi.org/10.12691/ijp-5-4-3]
[21]
Xiu Z, Liu S, Yu J, Xu F, Yu W, Feng G. Sonochemical synthesis of PbS nanorods. J Alloys Comp 2008; 457: 9-11.
[http://dx.doi.org/10.1016/j.jallcom.2007.03.060]
[22]
Martucci A, Fick J, Leblanc SE, Locascio M, Hache A. Optical properties of PbS quantum dot doped sol-gel films. J Non-Cryst Solids 2004; 345: 639-42.
[http://dx.doi.org/10.1016/j.jnoncrysol.2004.08.114]
[23]
Ni Y, Wei X, Hong J, Ma X. Hydrothermal preparation of PbS crystals and shape evolution. Mater Res Bull 2007; 42(1): 17-26.
[http://dx.doi.org/10.1016/j.materresbull.2006.05.016]
[24]
Eya DO. Influence of thermal annealing on the structural and optical properties of lead oxide thin films prepared by chemical bath deposition technique. Pac J Sci Technol 2006; 7(1): 1-14.
[25]
Perez RG, Tellez GH, Rosas UP, et al. Growth of PbS nanocrystals thin films by chemical bath. J Mar Sci Eng 2013; 3: 1-13.
[26]
Carrillo-Castillo A, Aguirre-Tostado FS, Salasvillasenor A, Mejia I, Gnade BE, Sotelo-Lerma M. M. A. quevedo Lopez, Effect of chemical bath deposition parameters on the growth of PbS thin films for TFTs applications. Chalcogenide Lett 2013; 10: 105-11.
[27]
Seghaier S, Kamoun N, Brini R, Amara AB. Structural and optical properties of PbS thin films deposited by chemical bath deposition. Mater Chem Phys 2006; 97: 71-80.
[http://dx.doi.org/10.1016/j.matchemphys.2005.07.061]
[28]
Gode F, Guneri E, Emen F, Kafadar V, Unlu S. Synthesis, structural, optical, electrical and thermoluminescence properties of chemically deposited PbS thin films. J Lumin 2014; 147: 41-8.
[http://dx.doi.org/10.1016/j.jlumin.2013.10.050]
[29]
Ezenwa IA. Effect of Film thickness on the transmittivity of chemical bath synthesized PbS thin film. Res J Engg Sci 2013; 2(2): 23-5.
[30]
Swanepoel R. Determination of the thickness and optical constants of amorphous silicon. J Phys E Sci Instrum 1983; 16: 1214-22.
[http://dx.doi.org/10.1088/0022-3735/16/12/023]
[31]
Mane RS, Lokhande CD. Chemical deposition method for metal chalcogenide thin films. Mater Chem Phys 2000; 65: 1.
[http://dx.doi.org/10.1016/S0254-0584(00)00217-0]
[32]
Perez-Garcia CE, Ramirez-Bon R, Vorobiev YV. PbS thin films growth with CBD and PCBD techniques: A comparative study. Chalcogenide Lett 2015; 12(11): 579-88.
[33]
Obaid AS, Mahdi MA, Alaa Ahmed Dihe Z. Dubai. 2012.International Conference on Education, Applied Sciences and Management (ICEASM’2012).
[34]
Cullity B, Stock S. Elements of X-ray Diffraction. 3rd ed. Princeton Hall 2001.
[35]
Ding T, Zhu JJ. Microwave heating synthesis of HgS and PbS nanocrystals in ethanol solvent. Mater Sci Eng 2003; B100: 307-13.
[http://dx.doi.org/10.1016/S0921-5107(03)00125-9]
[36]
Zhao Y, Liao X, Hong J, Zhu J. Synthesis of lead sulfide nanocrystals via microwave and sonochemical methods. Mater Chem Phys 2004; 87: 149-53.
[http://dx.doi.org/10.1016/j.matchemphys.2004.05.026]
[37]
Kumara D, Agarwal G, Tripathi B, Vyas D, Kulshrestha V. Characterization of PbS nanoparticles synthesized by chemical bath deposition. J Alloys Compd 2009; 484: 463-6.
[http://dx.doi.org/10.1016/j.jallcom.2009.04.127]
[38]
Ubale AU, Junghare AR, Wadibhasme NA, Daryapurkar AS, Mankar RB, Sangawar VS. Thickness dependent structural, electrical and optical properties of chemically deposited nanopartical PbS thin films. J Phys 2007; 31: 279-86.
[39]
Smith GD, Firth S, Clark RJH, Cardona M. First- and second-order Raman spectra of galena (PbS). J Appl Phys 2002; 92: 4375.
[http://dx.doi.org/10.1063/1.1505670]
[40]
Slonopas A, Alijabbari N, Saltonstall C, Globus T, Norris P. Chemically deposited nanocrystalline lead sulfide thin films with tunable properties for use in photovoltaics. Electrochim Acta 2015; 151: 40-149.
[http://dx.doi.org/10.1016/j.electacta.2014.11.021]
[41]
Arora AK, Rajalakshmi M, Ravindran TR, Sivasubramanian V. Raman spectroscopy of optical phonon confinement in nanostructured materials. J Raman Spectrosc 2007; 38: 604-17.
[http://dx.doi.org/10.1002/jrs.1684]
[42]
Jiao J, Liu X, Gao W, et al. Synthesis of PbS nanoflowers by biomolecule-assisted method in the presence of supercritical carbon dioxide. Solid State Sci 2009; 11: 976-81.
[http://dx.doi.org/10.1016/j.solidstatesciences.2009.01.010]
[43]
Parashar P. Structural properties of silver particulate films deposited on softened polymer blends of polystyrene/poly (2-vinyl pyridine). J Mater Sci Mater Electron 2012; 23: 1169-73.
[http://dx.doi.org/10.1007/s10854-011-0567-7]
[44]
Tauc J. Absorption edge and internal electric fields in amorphous semiconductors. Mater Res Bull 1970; 5: 721-9.
[http://dx.doi.org/10.1016/0025-5408(70)90112-1]
[45]
Zaman S, Mansoor M, Abubakar MM. FM investigation and optical band gap study of chemically deposited PbS thin films. IOP Conf Series Materials Science and Engineering 146: 012034-40.
[46]
Rafa M, Rousdy N. Study of optical properties of nanostructured PbS films. J Phil Mag Lett 2010; 90(2): 113-20.
[http://dx.doi.org/10.1080/09500830903459663]
[47]
Khot KV, Mali SS, Pawar NB, et al. Novel synthesis of interconnected nanocubic PbS thin films by facile aqueous chemical route. J Mater Sci Mater Electron 2014; 25: 3762-70.
[http://dx.doi.org/10.1007/s10854-014-2087-8]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy