Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

Role of Genetic Polymorphisms of Cytochrome P450 2C19 in Pantoprazole Metabolism and Pantoprazole-based Helicobacter pylori Eradication Regimens

Author(s): Paulius Jonaitis, Laimas Jonaitis* and Juozas Kupcinskas

Volume 21, Issue 11, 2020

Page: [830 - 837] Pages: 8

DOI: 10.2174/1389200221666200514081442

Price: $65

Abstract

Background: Cytochrome P450 (CYP450) enzymes play an important role in the metabolism of 70-80% of the currently used medications, including proton pump inhibitors. There are some data analyzing the impact of gene polymorphisms of CYP450 enzymes on most widely used PPIs, such as omeprazole, however, the data on pantoprazole are highly lacking.

Objective: To summarize the most recent publications and studies on the role of polymorphisms of the genes encoding CYP450 enzyme 2C19 in the metabolism of pantoprazole and pantoprazole based Helicobacter pylori eradication regimens.

Methods: We performed a non-systematic search of the available literature on the selected topic.

Results and Conclusion: The data on cytochrome P450 gene polymorphisms and their role in pantoprazole metabolism and pantoprazole based Helicobacter pylori eradication remain conflicting. Individual differences in pantoprazole metabolism might be partly related to genetic polymorphisms of CYP450 enzymes. Most of the studies support the observation that cytochrome 2C19 polymorphisms have an impact on the pharmacokinetics of pantoprazole and its therapeutic effects: poor metabolizers of PPIs are more likely to have a better response to pantoprazole therapy and achieve better H. pylori eradication rates compared to rapid metabolizers. The determination of alleles that are associated with decreased (e.g., *2, *3 alleles) or increased (e.g., *17 allele) cytochrome 2C19 enzyme activity might be used as predictive factors for the potential of acid suppression and the success of Helicobacter pylori eradication. Overall, currently available data do not provide robust evidence, therefore, the application of genetic polymorphisms of cytochrome enzymes in clinical practice still cannot be recommended as routine practice for personalized pantoprazole prescription strategies.

Keywords: Pantoprazole, cytochrome P450, CYP2C19, genetic polymorphisms, Helicobacter pylori eradication, pantoprazole metabolism.

[1]
Zanger, U.M.; Schwab, M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther., 2013, 138(1), 103-141.
[http://dx.doi.org/10.1016/j.pharmthera.2012.12.007] [PMID: 23333322]
[2]
Preissner, S.C.; Hoffmann, M.F.; Preissner, R.; Dunkel, M.; Gewiess, A.; Preissner, S. Polymorphic cytochrome P450 enzymes (CYPs) and their role in personalized therapy. PLoS One, 2013, 8(12)e82562
[http://dx.doi.org/10.1371/journal.pone.0082562] [PMID: 24340040]
[3]
Gilard, M.; Arnaud, B.; Cornily, J.C.; Le Gal, G.; Lacut, K.; Le Calvez, G.; Mansourati, J.; Mottier, D.; Abgrall, J.F.; Boschat, J. Influence of omeprazole on the antiplatelet action of clopidogrel associated with aspirin: the randomized, double-blind OCLA (Omeprazole CLopidogrel Aspirin) study. J. Am. Coll. Cardiol., 2008, 51(3), 256-260.
[http://dx.doi.org/10.1016/j.jacc.2007.06.064] [PMID: 18206732]
[4]
Shin, J.M.; Sachs, G. Pharmacology of proton pump inhibitors. Curr. Gastroenterol. Rep., 2008, 10(6), 528-534.
[http://dx.doi.org/10.1007/s11894-008-0098-4] [PMID: 19006606]
[5]
Hunt, R.H. Importance of pH control in the management of GERD. Arch. Intern. Med., 1999, 159(7), 649-657.
[http://dx.doi.org/10.1001/archinte.159.7.649] [PMID: 10218743]
[6]
Sugimoto, M.; Furuta, T.; Shirai, N.; Kodaira, C.; Nishino, M.; Ikuma, M.; Ishizaki, T.; Hishida, A. Evidence that the degree and duration of acid suppression are related to Helicobacter pylori eradication by triple therapy. Helicobacter, 2007, 12(4), 317-323.
[http://dx.doi.org/10.1111/j.1523-5378.2007.00508.x] [PMID: 17669104]
[7]
Shin, J.M.; Kim, N. Pharmacokinetics and pharmacodynamics of the proton pump inhibitors. J. Neurogastroenterol. Motil., 2013, 19(1), 25-35.
[http://dx.doi.org/10.5056/jnm.2013.19.1.25] [PMID: 23350044]
[8]
El Rouby, N.; Lima, J.J.; Johnson, J.A. Proton pump inhibitors: from CYP2C19 pharmacogenetics to precision medicine. Expert Opin. Drug Metab. Toxicol., 2018, 14(4), 447-460.
[http://dx.doi.org/10.1080/17425255.2018.1461835] [PMID: 29620484]
[9]
Meyer, U.A. Interaction of proton pump inhibitors with cytochromes P450: consequences for drug interactions. Yale J. Biol. Med., 1996, 69(3), 203-209.
[PMID: 9165689]
[10]
Zhong, D.; Xie, Z.; Chen, X. Metabolism of pantoprazole involving conjugation with glutathione in rats. J. Pharm. Pharmacol., 2005, 57(3), 341-349.
[http://dx.doi.org/10.1211/0022357055669] [PMID: 15807990]
[11]
Zhou, S.F.; Liu, J.P.; Chowbay, B. Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab. Rev., 2009, 41(2), 89-295.
[http://dx.doi.org/10.1080/03602530902843483] [PMID: 19514967]
[12]
Zhou, S.; Yung Chan, S.; Cher Goh, B.; Chan, E.; Duan, W.; Huang, M.; McLeod, H.L. Mechanism-based inhibition of cytochrome P450 3A4 by therapeutic drugs. Clin. Pharmacokinet., 2005, 44(3), 279-304.
[http://dx.doi.org/10.2165/00003088-200544030-00005] [PMID: 15762770]
[13]
Kupcinskas, J.; Wex, T.; Bornschein, J.; Selgrad, M.; Leja, M.; Juozaityte, E.; Kiudelis, G.; Jonaitis, L.; Malfertheiner, P. Lack of association between gene polymorphisms of Angiotensin converting enzyme, Nod-like receptor 1, Toll-like receptor 4, FAS/FASL and the presence of Helicobacter pylori -induced premalignant gastric lesions and gastric cancer in Caucasians. BMC Med. Genet., 2011, 12(1), 112-121.
[http://dx.doi.org/10.1186/1471-2350-12-112] [PMID: 21864388]
[14]
Kupcinskas, J.; Wex, T.; Link, A.; Leja, M.; Bruzaite, I.; Steponaitiene, R.; Juzenas, S.; Gyvyte, U.; Ivanauskas, A.; Ancans, G.; Petrenkiene, V.; Skieceviciene, J.; Kupcinskas, L.; Malfertheiner, P. Gene polymorphisms of micrornas in Helicobacter pylori -induced high risk atrophic gastritis and gastric cancer. PLoS One, 2014, 9(1)e87467
[http://dx.doi.org/10.1371/journal.pone.0087467] [PMID: 24475294]
[15]
Kupcinskas, J.; Wex, T.; Link, A.; Bartuseviciute, R.; Dedelaite, M.; Kevalaite, G.; Leja, M.; Skieceviciene, J. PSCA and MUC1 gene polymorphisms are linked with gastric cancer and pre-malignant gastric conditions. Anticancer Res., 2014, 34(14), 7167-7175.
[PMID: 25503145]
[16]
Petkevicius, V.; Salteniene, V.; Juzenas, S.; Wex, T.; Link, A.; Leja, M.; Steponaitiene, R.; Skieceviciene, J.; Kupcinskas, L.; Jonaitis, L.; Kiudelis, G.; Malfertheiner, P.; Kupcinskas, J. Polymorphisms of microRNA target genes IL12B, INSR, CCND1 and IL10 in gastric cancer. World J. Gastroenterol., 2017, 23(19), 3480-3487.
[http://dx.doi.org/10.3748/wjg.v23.i19.3480] [PMID: 28596683]
[17]
Kupcinskas, J.; Valantiene, I.; Varkalaitė, G.; Steponaitiene, R.; Skieceviciene, J.; Sumskiene, J.; Petrenkiene, V.; Kondrackiene, J.; Kiudelis, G.; Lammert, F.; Kupcinskas, L. PNPLA3 and RNF7 gene variants are associated with the risk of developing liver fibrosis and cirrhosis in an Eastern European population. J. Gastrointestin. Liver Dis., 2017, 26(1), 37-43.
[http://dx.doi.org/10.15403/jgld.2014.1121.261.pnp] [PMID: 28338112]
[18]
Reichert, M.C.; Kupcinskas, J.; Krawczyk, M.; Jüngst, C.; Casper, M.; Grünhage, F.; Appenrodt, B.; Zimmer, V.; Weber, S.N.; Tamelis, A.; Lukosiene, J.I.; Pauziene, N.; Kiudelis, G.; Jonaitis, L.; Schramm, C.; Goeser, T.; Schulz, A.; Malinowski, M.; Glanemann, M.; Kupcinskas, L.; Lammert, F. A Variant of COL3A1 (rs3134646) is associated with risk of developing diverticulosis in white men. Dis. Colon Rectum, 2018, 61(5), 604-611.
[http://dx.doi.org/10.1097/DCR.0000000000001001] [PMID: 29533249]
[19]
Kupcinskas, L.; Wex, T.; Kupcinskas, J.; Leja, M.; Ivanauskas, A.; Jonaitis, L.V.; Janciauskas, D.; Kiudelis, G.; Funka, K.; Sudraba, A.; Chiu, H.M.; Lin, J.T.; Malfertheiner, P. Interleukin-1B and interleukin-1 receptor antagonist gene polymorphisms are not associated with premalignant gastric conditions: a combined haplotype analysis. Eur. J. Gastroenterol. Hepatol., 2010, 22(10), 1189-1195.
[http://dx.doi.org/10.1097/MEG.0b013e32833cf3d5] [PMID: 20631624]
[20]
Dargiene, G.; Streleckiene, G.; Skieceviciene, J.; Leja, M.; Link, A.; Wex, T.; Kupcinskas, L.; Malfertheiner, P.; Kupcinskas, J. TLR1 and PRKAA1 gene polymorphisms in the development of atrophic gastritis and gastric cancer. J. Gastrointestin. Liver Dis., 2018, 27(4), 363-369.
[http://dx.doi.org/10.15403/jgld.2014.1121.274.tlr] [PMID: 30574617]
[21]
Kupcinskas, J.; Gyvyte, U.; Bruzaite, I.; Leja, M.; Kupcinskaite-Noreikiene, R.; Pauzas, H.; Tamelis, A.; Jonaitis, L.; Skieceviciene, J.; Kiudelis, G. Common Genetic Variants of PSCA, MUC1 and PLCE1 Genes are not associated with colorectal cancer. Asian Pac. J. Cancer Prev., 2015, 16(14), 6027-6032.
[http://dx.doi.org/10.7314/APJCP.2015.16.14.6027] [PMID: 26320491]
[22]
Steponaitiene, R.; Kupcinskas, J.; Survilaite, S.; Varkalaite, G.; Jonaitis, L.; Kiudelis, G.; Denapiene, G.; Valantinas, J.; Skieceviciene, J.; Kupcinskas, L. TPMT and ITPA genetic variants in Lithuanian inflammatory bowel disease patients: prevalence and azathioprine-related side effects. Adv. Med. Sci., 2016, 61(1), 135-140.
[http://dx.doi.org/10.1016/j.advms.2015.09.008] [PMID: 26674571]
[23]
Bornschein, J.; Leja, M.; Kupcinskas, J.; Link, A.; Weaver, J.; Rugge, M.; Malfertheiner, P.; Diseases, I. Molecular diagnostics in gastric cancer. Front. Biosci., 2014, 19, 312-338.
[http://dx.doi.org/10.2741/4210] [PMID: 24389187]
[24]
Link, A.; Kupcinskas, J.; Link, A. MicroRNAs as non-invasive diagnostic biomarkers for gastric cancer: current insights and future perspectives. World J. Gastroenterol., 2018, 24(30), 3313-3329.
[http://dx.doi.org/10.3748/wjg.v24.i30.3313] [PMID: 30122873]
[25]
Dehbozorgi, M.; Kamalidehghan, B.; Hosseini, I.; Dehghanfard, Z.; Sangtarash, M.H.; Firoozi, M.; Ahmadipour, F.; Meng, G.Y.; Houshmand, M. Prevalence of the CYP2C19*2 (681 G>A), *3 (636 G>A) and *17 (-806 C>T) alleles among an Iranian population of different ethnicities. Mol. Med. Rep., 2018, 17(3), 4195-4202.
[http://dx.doi.org/10.3892/mmr.2018.8377] [PMID: 29328413]
[26]
Pharmacogene Variation Consortium Data on CYP2C19 alleles., https://www.pharmvar.org/gene/CYP2C19 [Accessed on: January 16, 2020].
[27]
Hunfeld, N.G.; Mathot, R.A.; Touw, D.J.; van Schaik, R.H.; Mulder, P.G.; Franck, P.F.; Kuipers, E.J.; Geus, W.P. Effect of CYP2C19*2 and *17 mutations on pharmacodynamics and kinetics of proton pump inhibitors in Caucasians. Br. J. Clin. Pharmacol., 2008, 65(5), 752-760.
[http://dx.doi.org/10.1111/j.1365-2125.2007.03094.x] [PMID: 18241283]
[28]
Dean, L. Clopidogrel Therapy and CYP2C19 Genotype. Medical Genetics Summaries; Bethesda (MD); National Center for Biotechnology Information: USA, 2012, pp. 1-13.
[29]
Deshpande, N. v, S.; v v, R.K.; H v v, M.; M, S.; Banerjee, R.; Tandan, M.; D, N.R. Rapid and ultra-rapid metabolizers with CYP2C19*17 polymorphism do not respond to standard therapy with proton pump inhibitors. Meta Gene, 2016, 9, 159-164.
[http://dx.doi.org/10.1016/j.mgene.2016.06.004] [PMID: 27419077]
[30]
Klotz, U.; Schwab, M.; Treiber, G. CYP2C19 polymorphism and proton pump inhibitors. Basic Clin. Pharmacol. Toxicol., 2004, 95(1), 2-8.
[http://dx.doi.org/10.1111/j.1600-0773.2004.pto950102.x] [PMID: 15245569]
[31]
Saito, Y.; Serizawa, H.; Kato, Y.; Nakano, M.; Nakamura, M.; Saito, H.; Suzuki, H.; Kanai, T. First-line eradication for Helicobacter pylori -positive gastritis by esomeprazole-based triple therapy is influenced by CYP2C19 genotype. World J. Gastroenterol., 2015, 21(48), 13548-13554.
[http://dx.doi.org/10.3748/wjg.v21.i48.13548] [PMID: 26730167]
[32]
Zhao, F.; Wang, J.; Yang, Y.; Wang, X.; Shi, R.; Xu, Z.; Huang, Z.; Zhang, G. Effect of CYP2C19 genetic polymorphisms on the efficacy of proton pump inhibitor-based triple therapy for Helicobacter pylori eradication: a meta-analysis. Helicobacter, 2008, 13(6), 532-541.
[http://dx.doi.org/10.1111/j.1523-5378.2008.00643.x] [PMID: 19166419]
[33]
Malfertheiner, P.; Megraud, F.; O’Morain, C.A.; Gisbert, J.P.; Kuipers, E.J.; Axon, A.T.; Bazzoli, F.; Gasbarrini, A.; Atherton, J.; Graham, D.Y.; Hunt, R.; Moayyedi, P.; Rokkas, T.; Rugge, M.; Selgrad, M.; Suerbaum, S.; Sugano, K.; El-Omar, E.M. European Helicobacter and Microbiota Study Group and Consensus panel. Management of Helicobacter pylori infection-the Maastricht V/Florence Consensus Report. Gut, 2017, 66(1), 6-30.
[http://dx.doi.org/10.1136/gutjnl-2016-312288] [PMID: 27707777]
[34]
Gawrońska-Szklarz, B.; Adamiak-Giera, U.; Wyska, E.; Kurzawski, M.; Gornik, W.; Kaldonska, M.; Drozdzik, M. CYP2C19 polymorphism affects single-dose pharmacokinetics of oral pantoprazole in healthy volunteers. Eur. J. Clin. Pharmacol., 2012, 68(9), 1267-1274.
[http://dx.doi.org/10.1007/s00228-012-1252-3] [PMID: 22418828]
[35]
Pandey, A.V.; Sproll, P. Pharmacogenomics of human P450 oxidoreductase. Front. Pharmacol., 2014, 5, 103.
[http://dx.doi.org/10.3389/fphar.2014.00103] [PMID: 24847272]
[36]
Miller, W.L.; Agrawal, V.; Sandee, D.; Tee, M.K.; Huang, N.; Choi, J.H.; Morrissey, K.; Giacomini, K.M. Consequences of POR mutations and polymorphisms. Mol. Cell. Endocrinol., 2011, 336(1-2), 174-179.
[http://dx.doi.org/10.1016/j.mce.2010.10.022] [PMID: 21070833]
[37]
Kurzawski, M.; Gawrońska-Szklarz, B.; Adamiak-Giera, U.; Wyska, E.; Droździk, M.; Szeląg-Pieniek, S. Cytochrome P450 Oxidoreductase Genetic Polymorphism and Pantoprazole Pharmacokinetics in Healthy Volunteers. Pomeranian J. Life Sci., 2018, 64(2), 27-30.
[http://dx.doi.org/10.21164/pomjlifesci.400]
[38]
Kearns, G.L.; Leeder, J.S.; Gaedigk, A. Impact of the CYP2C19*17 allele on the pharmacokinetics of omeprazole and pantoprazole in children: evidence for a differential effect. Drug Metab. Dispos., 2010, 38(6), 894-897.
[http://dx.doi.org/10.1124/dmd.109.030601] [PMID: 20223877]
[39]
Hunfeld, N.G.; Touw, D.J.; Mathot, R.A.; Mulder, P.G.H.; Schaik, V.A.N. R.H.; Kuipers, E.J.; Kooiman, J.C.; Geus, W.P. A comparison of the acid-inhibitory effects of esomeprazole and pantoprazole in relation to pharmacokinetics and CYP2C19 polymorphism. Aliment. Pharmacol. Ther., 2010, 31(1), 150-159.
[http://dx.doi.org/10.1111/j.1365-2036.2009.04150.x] [PMID: 19785625]
[40]
Dargiene, G.; Kupcinskas, J.; Jonaitis, L.; Vezbavicius, M.; Kadusevicius, E.; Kupcinskiene, E.; Frandsen, T.H.; Kucinskiene, R.; Kupcinskas, L.; Andersen, L.P. Primary antibiotic resistance of Helicobacter pylori strains among adults and children in a tertiary referral centre in Lithuania. APMIS, 2018, 126(1), 21-28.
[http://dx.doi.org/10.1111/apm.12752] [PMID: 29131410]
[41]
Kupcinskas, L.; Rasmussen, L.; Jonaitis, L.; Kiudelis, G.; Jørgensen, M.; Urbonaviciene, N.; Tamosiunas, V.; Kupcinskas, J.; Miciuleviciene, J.; Kadusevicius, E.; Berg, D.; Andersen, L.P. Evolution of Helicobacter pylori susceptibility to antibiotics during a 10-year period in Lithuania. APMIS, 2013, 121(5), 431-436.
[http://dx.doi.org/10.1111/apm.12012] [PMID: 23078193]
[42]
Kupcinskas, J.; Leja, M. Management of Helicobacter pylori-related diseases in the Baltic States. Dig. Dis., 2014, 32(3), 295-301.
[http://dx.doi.org/10.1159/000357862] [PMID: 24732196]
[43]
Karaca, R.O.; Kalkisim, S.; Altinbas, A.; Kilincalp, S.; Yuksel, I.; Goktas, M.T.; Yasar, U.; Bozkurt, A.; Babaoglu, M.O. Effects of genetic polymorphisms of cytochrome P450 enzymes and MDR1 transporter on pantoprazole metabolism and Helicobacter pylori eradication. Basic Clin. Pharmacol. Toxicol., 2017, 120(2), 199-206.
[http://dx.doi.org/10.1111/bcpt.12667] [PMID: 27611887]
[44]
Ormeci, A.; Emrence, Z.; Baran, B.; Gokturk, S.; Soyer, O.M.; Evirgen, S.; Akyuz, F.; Karaca, C.; Besisik, F.; Kaymakoglu, S.; Ustek, D.; Demir, K. Effect of cytochrome P450 2C19 polymorphisms on the Helicobacter pylori eradication rate following two-week triple therapy with pantoprazole or rabeprazole. Eur. Rev. Med. Pharmacol. Sci., 2016, 20(5), 879-885.
[PMID: 27010145]
[45]
Kang, J.M.; Kim, N.; Lee, D.H.; Park, Y.S.; Kim, J.S.; Chang, I.J.; Song, I.S.; Jung, H.C. Effect of the CYP2C19 polymorphism on the eradication rate of Helicobacter pylori infection by 7-day triple therapy with regular proton pump inhibitor dosage. J. Gastroenterol. Hepatol., 2008, 23(8 Pt 1), 1287-1291.
[http://dx.doi.org/10.1111/j.1440-1746.2008.05392.x] [PMID: 18637061]
[46]
Kurzawski, M.; Gawrońska-Szklarz, B.; Wrześniewska, J.; Siuda, A.; Starzyńska, T.; Droździk, M. Effect of CYP2C19*17 gene variant on Helicobacter pylori eradication in peptic ulcer patients. Eur. J. Clin. Pharmacol., 2006, 62(10), 877-880.
[http://dx.doi.org/10.1007/s00228-006-0183-2] [PMID: 16912869]
[47]
Gawrońska-Szklarz, B.; Wrześniewska, J.; Starzyńska, T.; Pawlik, A.; Safranow, K.; Ferenc, K.; Droździk, M. Effect of CYP2C19 and MDR1 polymorphisms on cure rate in patients with acid-related disorders with Helicobacter pylori infection. Eur. J. Clin. Pharmacol., 2005, 61(5-6), 375-379.
[http://dx.doi.org/10.1007/s00228-005-0901-1] [PMID: 15976989]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy