Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

General Research Article

Antihyperglycemic, Antihyperlipidemic and Antioxidant Effects of Cotula cinerea (Del) in Normal and Streptozotocin-Induced Diabetic Rats

Author(s): Ayoub Amssayef and Mohamed Eddouks*

Volume 20, Issue 9, 2020

Page: [1504 - 1513] Pages: 10

DOI: 10.2174/1871530320666200513081312

Price: $65

Abstract

Aims: The current investigation aimed to assess the antioxidant, antidiabetic and antilipidemic effects of the aqueous extract of aerial part of Cotula cinerea (C. cinerea).

Background: Cotula cinerea (Del). which belongs to the Asteraceae family is commonly used traditionally for the treatment of diabetes.

Objective: The objective of the study was to study the effect of the aqueous C. cinerea extract on glucose and lipid metabolism in normal and streptozotocin-induced diabetic rats using a single and repeated oral administration.

Methods: A preliminary phytochemical screening and the quantification of phenolic and flavonoid contents as well as the antioxidant activity using three methods (DPPH, FRAP and ABTS) were carried out. The effect of a single and repeated (15 days of treatment) oral administration of the aqueous extract of aerial part of Cotula cinerea (AEAPCC) at a dose of 20 mg/kg on glucose and lipid profile was examined in normal and streptozotocin-induced diabetic rats. Additionally, histopathological examination of the pancreas and liver was carried out according to the Hematoxylin-Eosin method.

Results: AEAPCC (20 mg/kg) showed a significant blood glucose-lowering activity in both normal and diabetic rats after a single and repeated oral administration during 15 days. The aqueous extract was also able to decrease the plasma triglycerides levels in both normal and diabetic rats after 15 days of oral treatment at a dose of 20 mg/Kg while no effect was observed on plasma cholesterol levels. In addition, the results show that AEAPCC exhibits an in vitro antioxidant activity using different tests. Histopathological analysis of the pancreas and liver of AEAPCC-treated diabetic rats has revealed that AEAPCC had a beneficial effect on the architecture of these organs while no improvement of glucose tolerance was noticed using the glucose tolerance test. Furthermore, the results showed that the extract is rich in several phytochemical compounds and exhibited an important antioxidant activity. The phytochemical screening revealed that AEAPCC contains polyphenolic compounds, flavonoids, tannins, alkaloids, saponins, quinones, sterols, terpenoids, anthroquinones and reducing sugars. Whereas, it is free from glycosides.

Conclusion: In conclusion, this study demonstrates that Cotula cinerea possesses a beneficial effect on diabetes. Further investigations are required to study the mechanism of action of the antidiabetic effect of this plant.

Keywords: Antioxidant activity, antihyperglycemic, antihypertriglyceridemia, Cotula cinerea (Del), histopathology, diabetes.

Graphical Abstract
[1]
Punthakee, Z.; Goldenberg, R.; Katz, P. Definition, Classification and Diagnosis of Diabetes, Prediabetes and Metabolic Syndrome. Can. J. Diabetes, 2018, 42(Suppl. 1), S10-S15.
[http://dx.doi.org/10.1016/j.jcjd.2017.10.003] [PMID: 29650080]
[2]
World Health Organization. Global health risks: Mortality and burden of disease attributable to selected major risks., 2009.Available from:. http://www.who.int/healthinfo/global_burden_disease/GlobalHealthRisks_report_full.pdf (Accessed on September 1, 2019)
[3]
Cho, N.H.; Shaw, J.E.; Karuranga, S.; Huang, Y.; da Rocha Fernandes, J.D.; Ohlrogge, A.W.; Malanda, B. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract., 2018, 138, 271-281.
[http://dx.doi.org/10.1016/j.diabres.2018.02.023] [PMID: 29496507]
[4]
Alarcon-Aguilar, F.J.; Roman-Ramos, R.; Flores-Saenz, J.L.; Aguirre-García, F. Investigation on the hypoglycemic effects of extracts of four Mexican medicinal plants in normal and alloxan-diabetic mice. Phytother. Res., 2002, 16, 383-386.
[5]
Trojan-Rodrigues, M.; Alves, T.L.S.; Soares, G.L.G.; Ritter, M.R. Plants used as antidiabetics in popular medicine in Rio Grande do Sul, southern Brazil. J. Ethnopharmacol., 2012, 139, 155-163.
[6]
Lakhdar, M. Traditional uses, phytochemistry and biological activities of Cotula cinerea Del: A review. Trop. J. Pharm. Res., 2018, 17(2), 365-373.
[http://dx.doi.org/10.4314/tjpr.v17i2.24]
[7]
Telli, A.; Esnault, M.A. Ould el Hadj khelil, A. An ethnopharmaclogical survey of plants used in traditional diabetes treatment in South-eastern Algeria (Ouargla province). J. Arid Environ., 2016, 127.
[8]
Hamza, N.; Berke, B.; Umar, A.; Cheze, C.; Gin, H.; Moore, N. A review of Algerian medicinal plants used in the treatment of diabetes. J. Ethnopharmacol., 2019, 238111841
[http://dx.doi.org/10.1016/j.jep.2019.111841] [PMID: 30959140 ]
[9]
Ajebli, M.; Eddouks, M. Pharmacological and phytochemical study of mentha suaveolens ehrh in normal and streptozotocin-induced diabetic rats. Nat. Prod. J., 2018, 8(3), 213-227.
[http://dx.doi.org/10.2174/2210315508666180327120434]
[10]
Bouhlali, E.D.T.; Alem, C.; Zegzouti, Y.F. Antioxidant and anti-hemolytic activities of phenolic constituents of six moroccan date fruit (Phoenix dactylifera L.) syrups. Indian J. Biotechnol., 2015, 12(1), 45-52.
[11]
Kim, D.O.; Jeong, S.W.; Lee, C.Y. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem., 2003, 81(3), 321-326.
[http://dx.doi.org/10.1016/S0308-8146(02)00423-5]
[12]
Ajebli, M.; Eddouks, M. Buxus sempervirens L Improves Streptozotocin-induced Diabetes Mellitus in Rats. Cardiovasc. Hematol. Disord. Drug Targets, 2017, 17(2), 142-152.
[http://dx.doi.org/10.2174/1871529X17666170918140817] [PMID: 28925906]
[13]
Benzie, I.F.; Strain, J.J. Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol., 1999, 299(299), 15-27.
[http://dx.doi.org/10.1016/S0076-6879(99)99005-5] [PMID: 9916193]
[14]
Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med., 1999, 26(9-10), 1231-1237.
[http://dx.doi.org/10.1016/S0891-5849(98)00315-3] [PMID: 10381194]
[15]
Ajebli, M.; Eddouks, M. Flavonoid-Enriched Extract from Desert Plant Warionia saharae Improves Glucose and Cholesterol Levels in Diabetic Rats. Cardiovasc. Hematol. Agents Med. Chem., 2019, 17(1), 28-39.
[http://dx.doi.org/10.2174/1871525717666190121143934] [PMID: 30666919]
[16]
Djellouli, M.; Benmehdi, H.; Mammeri, S.; Moussaoui, A.; Ziane, L.; Hamidi, N. Chemical Constituents in the Essential Oil of the Endemic Plant Cotula Cinerea (Del.) from the South West of Algeria. Asian Pac. J. Trop. Biomed., 2015, 5(10), 870-873.
[http://dx.doi.org/10.1016/j.apjtb.2015.06.007]
[17]
Wu, D.; Cederbaum, A.I. Alcohol, oxidative stress, and free radical damage. Alcohol Res. Health, 2003, 27(4), 277-284.
[PMID: 15540798]
[18]
Ighodaro, O.M. Molecular pathways associated with oxidative stress in diabetes mellitus. Biomed. Pharmacother., 2018, 108, 656-662.
[http://dx.doi.org/10.1016/j.biopha.2018.09.058] [PMID: 30245465]
[19]
Bozin, B.; Mimica-Dukic, N.; Samojlik, I.; Goran, A.; Lgic, R. Phenolic as antioxydants in garlic (Allium sativum l., Alliaceae). Food Chem., 2008, 111, 925-929.
[http://dx.doi.org/10.1016/j.foodchem.2008.04.071]
[20]
Guessan, J.D.; Bidié, A.P.; Lenta, B.N.; Weniger, B.; André, P.; Guédé-Guina, F. In vitro assays for bioactivity-guided isolation of antisalmonella and antioxidant compounds in Thonningia sanguinea flowers. Afr. J. Biotechnol., 2007, 6, 1685-1689.
[21]
Bougandoura, N.; Bendimeraa, N. Evaluation de l’activité antioxydante des extraits aqueux et méthanolique de satureja colamintha ssp nepta (L) bnq; Nature et Technologie, 2002, pp. 14-19.
[22]
Shi, F.; Jia, X.; Zhao, C.; Chen, Y. Antioxidant activities of various extracts from Artemisisa selengensis Turcz (LuHao). Molecules, 2010, 15(7), 4934-4946.
[http://dx.doi.org/10.3390/molecules15074934] [PMID: 20657401]
[23]
Gulcin, I. Antioxidant properties of resveratrol: A structure-activity insight. Innov. Food Sci. Emerg. Technol., 2010, 11, 210-218.
[http://dx.doi.org/10.1016/j.ifset.2009.07.002]
[24]
Lenzen, S. The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia, 2008, 51(2), 216-226.
[http://dx.doi.org/10.1007/s00125-007-0886-7] [PMID: 18087688]
[25]
Nenquin, M.; Henquin, J-C. Sulphonylurea receptor-1, sulphonylureas and amplification of insulin secretion by Epac activation in β cells. Diabetes Obes. Metab., 2016, 18(7), 698-701.
[http://dx.doi.org/10.1111/dom.12607] [PMID: 26584950]
[26]
Salani, B.; Ravera, S.; Fabbi, P.; Garibaldi, S.; Passalacqua, M.; Brunelli, C.; Maggi, D.; Cordera, R.; Ameri, P. Glibenclamide Mimics Metabolic Effects of Metformin in H9c2 Cells. Cell. Physiol. Biochem., 2017, 43(3), 879-890.
[http://dx.doi.org/10.1159/000481638] [PMID: 28954268]
[27]
Mooradian, A.D. Dyslipidemia in type 2 diabetes mellitus. Nat. Clin. Pract. Endocrinol. Metab., 2009, 5(3), 150-159.
[http://dx.doi.org/10.1038/ncpendmet1066] [PMID: 19229235]
[28]
Hu, F.B.; Stampfer, M.J.; Haffner, S.M.; Solomon, C.G.; Willett, W.C.; Manson, J.E. Elevated risk of cardiovascular disease prior to clinical diagnosis of type 2 diabetes. Diabetes Care, 2002, 25(7), 1129-1134.
[http://dx.doi.org/10.2337/diacare.25.7.1129] [PMID: 12087009]
[29]
Kasetti, R.B.; Rajasekhar, M.D.; Kondeti, V.K.; Fatima, S.S.; Kumar, E.G.; Swapna, S.; Ramesh, B.; Rao, C.A. Antihyperglycemic and antihyperlipidemic activities of methanol:water (4:1) fraction isolated from aqueous extract of Syzygium alternifolium seeds in streptozotocin induced diabetic rats. Food Chem. Toxicol., 2010, 48(4), 1078-1084.
[http://dx.doi.org/10.1016/j.fct.2010.01.029] [PMID: 20122979]
[30]
Governa, P.; Baini, G.; Borgonetti, V.; Cettolin, G.; Giachetti, D.; Magnano, A.R.; Miraldi, E.; Biagi, M. Phytotherapy in the management of diabetes: a review. Molecules, 2018, 23(1)E105
[http://dx.doi.org/10.3390/molecules23010105] [PMID: 29300317]
[31]
Nazarian-Samani, Z.; Sewell, R.D.E.; Lorigooini, Z.; Rafieian-Kopaei, M. Medicinal Plants with Multiple Effects on Diabetes Mellitus and Its Complications: A Systematic Review. Curr. Diab. Rep., 2018, 18(10), 72.
[http://dx.doi.org/10.1007/s11892-018-1042-0] [PMID: 30105479]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy