Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

General Research Article

COX and PTGDS Gene Expression Levels in PGD2 Synthesis Pathway are Correlated with miR-520 in Patients with Vessel Restenosis

Author(s): Shima Rezaee, Naser Kakavandi, Mohammad Shabani, Mohsen Khosravi, Seyed R. Hosseini-Fard and Mohammad Najafi*

Volume 20, Issue 9, 2020

Page: [1514 - 1522] Pages: 9

DOI: 10.2174/1871530320666200511012142

Price: $65

Abstract

Background: The vessel restenosis is related to the inflammatory events in subendothelial space. It is proposed that the inflammatory agents affect the prostaglandin synthesis pathway. In this study, we investigated the COX-1, COX-2, PTGDS and miRNA-520a-5p expression levels and the serum 15-Deoxy-Δ12,14-PGJ2 metabolite values in patients with the stenosed and re-stenosed vessels. Furthermore, the associations between genes and miR-520 were evaluated in the monocyte transfection studies.

Methods: The subjects (n=60) were included three groups; healthy subjects (control (stenosis < 5%), stent no restenosis (SNR, restenosis < 5%) and in-stent restenosis (ISR, restenosis > 70%)). The miRNA and gene expression levels were measured by RT-qPCR technique. 15-Deoxy-Δ12,14-PGJ2 values were measured by the ELISA technique. The miR-520 was transfected into myocytes using PEI polymer.

Results: The monocyte COX-1, COX-2 and PTGDS gene expression levels and the serum 15-Deoxy- Δ12,14-PGJ2 values increased significantly in the patients. Furthermore, the miR-520 correlated conversely with the COX-1, and PTGDS gene expression levels.

Conclusion: The results showed that the PGD2 synthesis pathway is active in the patients and, miR- 520 may be involved in the function of this pathway.

Keywords: Stenosis, restenosis, PGD2, miR-520a-5p, COX-1, COX-2, PTGDS.

Graphical Abstract
[1]
Libby, P.; Theroux, P. Pathophysiology of coronary artery disease. Circulation, 2005, 111(25), 3481-3488.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.537878 ] [PMID: 15983262]
[2]
Fukuda, D.; Shimada, K.; Tanaka, A.; Kawarabayashi, T.; Yoshiyama, M.; Yoshikawa, J. Circulating monocytes and in-stent neointima after coronary stent implantation. J. Am. Coll. Cardiol., 2004, 43(1), 18-23.
[http://dx.doi.org/10.1016/j.jacc.2003.08.026] [PMID: 14715176]
[3]
Levitzki, A. PDGF receptor kinase inhibitors for the treatment of restenosis. Cardiovasc. Res., 2005, 65(3), 581-586.
[http://dx.doi.org/10.1016/j.cardiores.2004.08.008] [PMID: 15664384]
[4]
Li, P-C.; Sheu, M-J.; Ma, W-F.; Pan, C-H.; Sheu, J-H.; Wu, C.H. Wu C-HJMd. Anti-restenotic roles of dihydroaustrasulfone alcohol involved in inhibiting PDGF-BB-stimulated proliferation and migration of vascular smooth muscle cells. Mar. Drugs, 2015, 13(5), 3046-3060.
[http://dx.doi.org/10.3390/md13053046] [PMID: 25988521]
[5]
Dangas, G.; Kuepper, F. Cardiology patient page. Restenosis: repeat narrowing of a coronary artery: Prevention and treatment. Circulation, 2002, 105(22), 2586-2587.
[http://dx.doi.org/10.1161/01.CIR.0000019122.00032.DF] [PMID: 12045160]
[6]
Kimura, S.; Wang, K.Y.; Tanimoto, A.; Murata, Y.; Nakashima, Y.; Sasaguri, Y. Acute inflammatory reactions caused by histamine via monocytes/macrophages chronically participate in the initiation and progression of atherosclerosis. Pathol. Int., 2004, 54(7), 465-474.
[http://dx.doi.org/10.1111/j.1440-1827.2004.01653.x] [PMID: 15189499]
[7]
Ricciotti, E.; FitzGerald, G.A.J.A. Prostaglandins and inflammation. Arterioscler. Thromb. Vasc. Biol., 2011, 31(5), 986-1000.
[http://dx.doi.org/10.1161/ATVBAHA.110.207449] [PMID: 21508345]
[8]
Cipollone, F.; Cicolini, G.; Bucci, M. Cyclooxygenase and prostaglandin synthases in atherosclerosis: recent insights and future perspectives. Pharmacol. Ther., 2008, 118(2), 161-180.
[http://dx.doi.org/10.1016/j.pharmthera.2008.01.002] [PMID: 18420277]
[9]
Dubois, R.N.; Abramson, S.B.; Crofford, L.; Gupta, R.A.; Simon, L.S.; Van De Putte, L.B.; Lipsky, P.E. Cyclooxygenase in biology and disease. FASEB J., 1998, 12(12), 1063-1073.
[http://dx.doi.org/10.1096/fasebj.12.12.1063] [PMID: 9737710]
[10]
McAdam, B.F.; Mardini, I.A.; Habib, A.; Burke, A.; Lawson, J.A.; Kapoor, S.; FitzGerald, G.A. Effect of regulated expression of human cyclooxygenase isoforms on eicosanoid and isoeicosanoid production in inflammation. J. Clin. Invest., 2000, 105(10), 1473-1482.
[http://dx.doi.org/10.1172/JCI9523] [PMID: 10811855]
[11]
Smyth, E.M.; Grosser, T.; Wang, M.; Yu, Y.; FitzGerald, G.A. Prostanoids in health and disease. J. Lipid Res., 2009, 50(Suppl.), S423-S428.
[http://dx.doi.org/10.1194/jlr.R800094-JLR200] [PMID: 19095631]
[12]
Urade, Y.; Hayaishi, O. Prostaglandin D synthase: structure and function. Vitam. Horm., 2000, 58, 89-120.
[13]
Joo, M Sadikot, RTJMoi. PGD synthase and PGD2 in immune resposne. Mediators Inflamm., 2012, 2012(2012), 503128.
[14]
Hirawa, N.; Uehara, Y.; Yamakado, M.; Toya, Y.; Gomi, T.; Ikeda, T.; Eguchi, Y.; Takagi, M.; Oda, H.; Seiki, K.; Urade, Y.; Umemura, S. Lipocalin-type prostaglandin d synthase in essential hypertension. Hypertension, 2002, 39(2 Pt 2), 449-454.
[http://dx.doi.org/10.1161/hy0202.102835] [PMID: 11882588]
[15]
Taba, Y.; Sasaguri, T.; Miyagi, M.; Abumiya, T.; Miwa, Y.; Ikeda, T.; Mitsumata, M. Fluid shear stress induces lipocalin-type prostaglandin D(2) synthase expression in vascular endothelial cells. Circ. Res., 2000, 86(9), 967-973.
[http://dx.doi.org/10.1161/01.RES.86.9.967] [PMID: 10807869]
[16]
Nagoshi, H.; Uehara, Y.; Kanai, F.; Maeda, S.; Ogura, T.; Goto, A.; Toyo-oka, T.; Esumi, H.; Shimizu, T.; Omata, M. Prostaglandin D2 inhibits inducible nitric oxide synthase expression in rat vascular smooth muscle cells. Circ. Res., 1998, 82(2), 204-209.
[http://dx.doi.org/10.1161/01.RES.82.2.204] [PMID: 9468191]
[17]
Negoro, H.; Soo Shin, W.; Hakamada-Taguchi, R.; Eguchi, N.; Urade, Y.; Goto, A.; Toyo-Oka, T.; Fujita, T.; Omata, M.; Uehara, Y. Endogenous prostaglandin D2 synthesis reduces an increase in plasminogen activator inhibitor-1 following interleukin stimulation in bovine endothelial cells. J. Hypertens., 2002, 20(7), 1347-1354.
[http://dx.doi.org/10.1097/00004872-200207000-00021] [PMID: 12131531]
[18]
Yu, X-M; Meng, H-Y; Yuan, X-L; Wang, Y; Guo, Q-Y; Peng, J MicroRNAs’ involvement in osteoarthritis and the prospects for treatments. Evid Based Complement Alternat Med. 2015, 2015.
[19]
Lodygin, D.; Tarasov, V.; Epanchintsev, A.; Berking, C.; Knyazeva, T.; Körner, H.; Knyazev, P.; Diebold, J.; Hermeking, H. Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle, 2008, 7(16), 2591-2600.
[http://dx.doi.org/10.4161/cc.7.16.6533] [PMID: 18719384]
[20]
Bommer, G.T.; Gerin, I.; Feng, Y.; Kaczorowski, A.J.; Kuick, R.; Love, R.E.; Zhai, Y.; Giordano, T.J.; Qin, Z.S.; Moore, B.B.; MacDougald, O.A.; Cho, K.R.; Fearon, E.R. p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr. Biol., 2007, 17(15), 1298-1307.
[http://dx.doi.org/10.1016/j.cub.2007.06.068] [PMID: 17656095]
[21]
Navarro, F.; Lieberman, J. Lieberman JJPo. miR-34 and p53: new insights into a complex functional relationship. PLoS One, 2015, 10(7)e0132767
[http://dx.doi.org/10.1371/journal.pone.0132767] [PMID: 26177460]
[22]
Yi, M.; Li, M.; Long, X.; Ye, J.; Cui, J.; Wei, W.; Wan, H.; Yin, M.; Gao, S.; Su, Z.; Zhang, F. miR-520e regulates cell proliferation, apoptosis and migration in breast cancer. Oncol. Lett., 2016, 12(5), 3543-3548.
[http://dx.doi.org/10.3892/ol.2016.5085] [PMID: 27900034]
[23]
Lu, Y-C.; Cheng, A-J.; Lee, L-Y.; You, G-R.; Li, Y-L.; Chen, H-Y.; Chang, J.T. MiR-520b as a novel molecular target for suppressing stemness phenotype of head-neck cancer by inhibiting CD44. Sci. Rep., 2017, 7(1), 2042.
[http://dx.doi.org/10.1038/s41598-017-02058-8] [PMID: 28515423]
[24]
Zhang, C.; Chi, Y.L.; Wang, P.Y.; Wang, Y.Q.; Zhang, Y.X.; Deng, J.; Lv, C.J.; Xie, S.Y. miR-511 and miR-1297 inhibit human lung adenocarcinoma cell proliferation by targeting oncogene TRIB2. PLoS One, 2012, 7(10)e46090
[http://dx.doi.org/10.1371/journal.pone.0046090] [PMID: 23071539]
[25]
Liang, L.; Feng, L.; Wei, B. microRNA-1297 involves in the progression of oral squamous cell carcinoma through PTEN. Saudi J. Biol. Sci., 2018, 25(5), 923-927.
[http://dx.doi.org/10.1016/j.sjbs.2018.01.013] [PMID: 30108442]
[26]
Fleming, R.J.J.A.C.A. Angina and coronary ischemia are the result of coronary regional blood flow differences. Heart, 2003, 1, 127-142.
[27]
Hansson, G.K.; Hermansson, A. The immune system in atherosclerosis. Nat. Immunol., 2011, 12(3), 204-212.
[http://dx.doi.org/10.1038/ni.2001] [PMID: 21321594]
[28]
Rafieian-Kopaei, M.; Setorki, M.; Doudi, M.; Baradaran, A.; Nasri, H. Atherosclerosis: process, indicators, risk factors and new hopes. Int. J. Prev. Med., 2014, 5(8), 927-946.
[PMID: 25489440]
[29]
Kolodgie, F.D.; Nakazawa, G.; Sangiorgi, G.; Ladich, E.; Burke, A.P.; Virmani, R. Pathology of atherosclerosis and stenting. Neuroimaging Clin. N. Am., 2007, 17(3), 285-301. [vii.]
[http://dx.doi.org/10.1016/j.nic.2007.03.006] [PMID: 17826632]
[30]
Ross, R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature, 1993, 362(6423), 801-809.
[http://dx.doi.org/10.1038/362801a0] [PMID: 8479518]
[31]
Morteau, O. Prostaglandins and inflammation: the cyclooxygenase controversy. Arch. Immunol. Ther. Exp. (Warsz.), 2001, 67-81.
[PMID: 11197601]
[32]
Smith, W.L.; Marnett, L.J. Prostaglandin endoperoxide synthase: structure and catalysis. Biochim. Biophys. Acta, 1991, 1083(1), 1-17.
[http://dx.doi.org/10.1016/0005-2760(91)90119-3] [PMID: 1903304]
[33]
Babaev, V.R.; Chew, J.D.; Ding, L.; Davis, S.; Breyer, M.D.; Breyer, R.M.; Oates, J.A.; Fazio, S.; Linton, M.F. Macrophage EP4 deficiency increases apoptosis and suppresses early atherosclerosis. Cell Metab., 2008, 8(6), 492-501.
[http://dx.doi.org/10.1016/j.cmet.2008.09.005] [PMID: 19041765]
[34]
Raz, A.; Wyche, A.; Siegel, N.; Needleman, P. Regulation of fibroblast cyclooxygenase synthesis by interleukin-1. J. Biol. Chem., 1988, 263(6), 3022-3028.
[PMID: 3125173]
[35]
Reed, D.W.; Bradshaw, W.S.; Xie, W.; Simmons, D.L.J.P. In vivo and in vitro expression of a non-mammalian cyclooxygenase-1. Prostaglandins, 1996, 52(4), 269-284.
[http://dx.doi.org/10.1016/S0090-6980(96)00089-5] [PMID: 8936583]
[36]
Wu, K.K. Cyclooxygenase-2 induction in congestive heart failure: friend or foe? Circulation, 1998, 98(2), 95-96.
[http://dx.doi.org/10.1161/01.CIR.98.2.95] [PMID: 9679712]
[37]
Schönbeck, U.; Sukhova, G.K.; Graber, P.; Coulter, S.; Libby, P. Augmented expression of cyclooxygenase-2 in human atherosclerotic lesions. Am. J. Pathol., 1999, 155(4), 1281-1291.
[http://dx.doi.org/10.1016/S0002-9440(10)65230-3] [PMID: 10514410]
[38]
Belton, O.; Byrne, D.; Kearney, D.; Leahy, A.; Fitzgerald, D.J.J.C. Cyclooxygenase-1 and -2-dependent prostacyclin formation in patients with atherosclerosis. Circulation, 2000, 102(8), 840-845.
[http://dx.doi.org/10.1161/01.CIR.102.8.840] [PMID: 10952950]
[39]
Linton, M.F.; Fazio, S. Cyclooxygenase products and atherosclerosis. Drug Discov. Today Ther. Strateg., 2008, 5(1), 25-36.
[http://dx.doi.org/10.1016/j.ddstr.2008.05.006] [PMID: 19343100]
[40]
Inoue, T.; Eguchi, Y.; Matsumoto, T.; Kijima, Y.; Kato, Y.; Ozaki, Y.; Waseda, K.; Oda, H.; Seiki, K.; Node, K.; Urade, Y. Lipocalin-type prostaglandin D synthase is a powerful biomarker for severity of stable coronary artery disease. Atherosclerosis, 2008, 201(2), 385-391.
[http://dx.doi.org/10.1016/j.atherosclerosis.2008.03.010] [PMID: 18436228]
[41]
Miwa, Y.; Oda, H.; Shiina, Y.; Shikata, K.; Tsushima, M.; Nakano, S.; Maruyama, T.; Kyotani, S.; Eguchi, N.; Urade, Y.; Takahashi-Yanaga, F.; Morimoto, S.; Sasaguri, T. Association of serum lipocalin-type prostaglandin D synthase levels with subclinical atherosclerosis in untreated asymptomatic subjects. Hypertens. Res., 2008, 31(10), 1931-1939.
[http://dx.doi.org/10.1291/hypres.31.1931] [PMID: 19015601]
[42]
Ragolia, L.; Palaia, T.; Hall, C.E.; Maesaka, J.K.; Eguchi, N.; Urade, Y. Accelerated glucose intolerance, nephropathy, and atherosclerosis in prostaglandin D2 synthase knock-out mice. J. Biol. Chem., 2005, 280(33), 29946-29955.
[http://dx.doi.org/10.1074/jbc.M502927200] [PMID: 15970590]
[43]
Ragolia, L.; Palaia, T.; Koutrouby, T.B.; Maesaka, J.K. Inhibition of cell cycle progression and migration of vascular smooth muscle cells by prostaglandin D2 synthase: resistance in diabetic Goto-Kakizaki rats. Am. J. Physiol. Cell Physiol., 2004, 287(5), C1273-C1281.
[http://dx.doi.org/10.1152/ajpcell.00230.2004] [PMID: 15240344]
[44]
Tanaka, R.; Miwa, Y.; Mou, K.; Tomikawa, M.; Eguchi, N.; Urade, Y.; Takahashi-Yanaga, F.; Morimoto, S.; Wake, N.; Sasaguri, T. Knockout of the l-pgds gene aggravates obesity and atherosclerosis in mice. Biochem. Biophys. Res. Commun., 2009, 378(4), 851-856.
[http://dx.doi.org/10.1016/j.bbrc.2008.11.152] [PMID: 19070593]
[45]
Babaev, V.R.; Yancey, P.G.; Ryzhov, S.V.; Kon, V.; Breyer, M.D.; Magnuson, M.A.; Fazio, S.; Linton, M.F. Conditional knockout of macrophage PPARgamma increases atherosclerosis in C57BL/6 and low-density lipoprotein receptor-deficient mice. Arterioscler. Thromb. Vasc. Biol., 2005, 25(8), 1647-1653.
[http://dx.doi.org/10.1161/01.ATV.0000173413.31789.1a] [PMID: 15947238]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy