Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Research Article

Giemsa Staining of Some Nano-formulations on Neuroblastoma Cell Line

Author(s): Kuldeep Nigam and Shweta Dang*

Volume 11, Issue 3, 2021

Published on: 08 May, 2020

Page: [357 - 362] Pages: 6

DOI: 10.2174/2210681210999200508084714

Price: $65

Abstract

Background: Nano-formulations of various drugs and natural compounds are becoming popular day by day. A number of cosmetic, medicinal and herbal products are formulated using nano-carriers. However, one of the concerns using these carriers is the alteration in morphology of cell by using such particles or droplets.

Methods: In the present work, Giemsa staining was used to study the morphological changes on mammalian Neuro-2a cell line upon treatment with prepared capsaicin loaded nanoemulsion (Caps-NE), baclofen loaded poly(lactic-co-glycolic acid) nanoparticles (Bcf-PLGA-NPs) and lamotrigine loaded poly(lactic-co-glycolic acid) nanoparticles (Ltg-PLGA-NPs). Caps-NE, Bcf- PLGA-NPs and Ltg-PLGA-NPs, along with their respective aqueous drug counterparts, were examined for visible morphological changes at their corresponding reported maximum plasma concentration (Cmax) and 10xCmax values.

Results: Microscopic images showed that drug loaded nanoemulsion/nanoparticles showed comparable cell viability and exhibited lesser cytotoxicity than the available aqueous drug forms at both the concentrations.

Conclusion: The prepared formulations can be used as potentially safer option as compared to their aqueous counterparts.

Keywords: Capsaicin, baclofen, lamotrigine, nanoparticles, nanoemulsions, giemsa staining.

Graphical Abstract
[1]
O’Neill, J.; Brock, C.; Olesen, A.E.; Andresen, T.; Nilsson, M.; Dickenson, A.H. Unravelling the mystery of capsaicin: A tool to understand and treat pain. Pharmacol. Rev., 2012, 64(4), 939-971.
[http://dx.doi.org/10.1124/pr.112.006163] [PMID: 23023032]
[2]
Mou, J.; Paillard, F.; Turnbull, B.; Trudeau, J.; Stoker, M.; Katz, N.P. Efficacy of Qutenza® (capsaicin) 8% patch for neuropathic pain: A meta-analysis of the Qutenza Clinical Trials Database. Pain, 2013, 154(9), 1632-1639.
[http://dx.doi.org/10.1016/j.pain.2013.04.044] [PMID: 23707278]
[3]
Babbar, S.; Marier, J.F.; Mouksassi, M.S.; Beliveau, M.; Vanhove, G.F.; Chanda, S.; Bley, K. Pharmacokinetic analysis of capsaicin after topical administration of a high-concentration capsaicin patch to patients with peripheral neuropathic pain. Ther. Drug Monit., 2009, 31(4), 502-510.
[http://dx.doi.org/10.1097/FTD.0b013e3181a8b200] [PMID: 19494795]
[4]
Finnimore, A.J.; Roebuck, M.; Sajkov, D.; McEvoy, R.D. The effects of the GABA agonist, baclofen, on sleep and breathing. Eur. Respir. J., 1995, 8(2), 230-234.
[http://dx.doi.org/10.1183/09031936.95.08020230] [PMID: 7758556]
[5]
Chen, K.; Li, H.Z.; Ye, N.; Zhang, J.; Wang, J.J. Role of GABAB receptors in GABA and baclofen-induced inhibition of adult rat cerebellar interpositus nucleus neurons in vitro. Brain Res. Bull., 2005, 67(4), 310-318.
[http://dx.doi.org/10.1016/j.brainresbull.2005.07.004] [PMID: 16182939]
[6]
Fu, Z.; Yang, H.; Xiao, Y.; Zhao, G.; Huang, H. The γ-amino-butyric acid type B (GABAB) receptor agonist baclofen inhibits morphine sensitization by decreasing the dopamine level in rat nucleus accumbens. Behav. Brain Funct., 2012, 8(1), 20.
[http://dx.doi.org/10.1186/1744-9081-8-20] [PMID: 22559224]
[7]
Pacifen. New Zealand Data Sheet., Available from: https://www.me dsafe.govt.nz/profs/Datasheet/p/Pacifentab.pdf
[8]
Ghanavatian, S.; Derian, A. Baclofen. In: StatPearls; Stat Pearls Publishing: Treasure Island, FL, 2019.
[9]
Foroutan, S.M.; Shafaati, A.; Zarghi, A.; Khoddam, A. Bioequivalence studies of two formulations of baclofen tablet in healthy volunteers. Iran. J. Pharm. Res., 2010, 20(3), 153-155.
[10]
Dibué-Adjei, M.; Kamp, M.A.; Alpdogan, S.; Tevoufouet, E.E.; Neiss, W.F.; Hescheler, J.; Schneider, T. Cav2. 3 (R-type) calcium channels are critical for mediating anticonvulsive and neuroprotective properties of lamotrigine in vivo. Cell. Physiol. Biochem., 2017, 44(3), 935-947.
[http://dx.doi.org/10.1159/000485361] [PMID: 29176325]
[11]
Rang, H.P.; Ritter, J.M.; Flower, R.J.; Henderson, G. Rang & Dale’s Pharmacology E-Book; Elsevier Health Sciences, 2014.
[12]
Cohen, A.F.; Land, G.S.; Breimer, D.D.; Yuen, W.C.; Winton, C.; Peck, A.W. Lamotrigine, a new anticonvulsant: Pharmacokinetics in normal humans. Clin. Pharmacol. Ther., 1987, 42(5), 535-541.
[http://dx.doi.org/10.1038/clpt.1987.193] [PMID: 3677542]
[13]
Srichaiya, A.; Longchoopol, C.; Oo-Puthinan, S.; Sayasathid, J.; Sripalakit, P.; Viyoch, J. Bioequivalence of generic lamotrigine 100-mg tablets in healthy Thai male volunteers: a randomized, single-dose, two-period, two-sequence crossover study. Clin. Ther., 2008, 30(10), 1844-1851.
[http://dx.doi.org/10.1016/j.clinthera.2008.10.018] [PMID: 19014839]
[15]
Nigam, K.; Kaur, A.; Tyagi, A.; Manda, K.; Gabrani, R.; Dang, S. Baclofen-loaded poly (d, l-lactide-co-glycolic acid) nanoparticles for neuropathic pain management: In vitro and in vivo evaluation. Rejuvenation Res., 2019, 22(3), 235-245.
[http://dx.doi.org/10.1089/rej.2018.2119] [PMID: 30175946]
[16]
Nigam, K. Gabrani. R.; Dang, S. Nano-emulsion from Capsaicin: Formulation and characterization. Mater. Today. Proc., 2019, 18, 869-878.
[17]
Nigam, K.; Kaur, A.; Tyagi, A.; Nematullah, M.; Khan, F.; Gabrani, R.; Dang, S. Nose-to-brain delivery of lamotrigine-loaded PLGA nanoparticles. Drug Deliv. Transl. Res., 2019, 9(5), 879-890.
[http://dx.doi.org/10.1007/s13346-019-00622-5] [PMID: 30887226]
[18]
Govender, T.; Stolnik, S.; Garnett, M.C.; Illum, L.; Davis, S.S. PLGA nanoparticles prepared by nanoprecipitation: Drug loading and release studies of a water soluble drug. J. Control. Release, 1999, 57(2), 171-185.
[http://dx.doi.org/10.1016/S0168-3659(98)00116-3] [PMID: 9971898]
[19]
Das, D.; Sahu, P.; Chaurasia, A.; Mishra, V.K.; Kashaw, S.K. Nanoemulsion: The Emerging Contrivance in the Field of Nanotechnology. Nanosci. Nanotechnol. Asia, 2018, 8(2), 146-171.
[http://dx.doi.org/10.2174/2210681207666170418123826]
[20]
Mir, M.; Ebrahimnejad, P. Preparation and characterization of bifunctional nanoparticles of vitamin E TPGS-emulsified PLGA-PEG-FOL containing deferasirox. Nanosci. Nanotechnol. Asia, 2014, 4(2), 80-87.
[http://dx.doi.org/10.2174/2210681205666150515000224]
[21]
Pandya, A.; Athawale, R.; Puro, D. Bhagwat. G. Design and Evaluation of Long Acting Biodegradable PLGA Microspheres for Ocular Drug Delivery. Nanosci. Nanotechnol. Asia, 2020, 10, 1.
[22]
Kumar, S.; Dang, S.; Nigam, K.; Ali, J.; Baboota, S. Selegiline nanoformulation in attenuation of oxidative stress and upregulation of dopamine in the brain for the treatment of Parkinson’s disease. Rejuvenation Res., 2018, 21(5), 464-476.
[http://dx.doi.org/10.1089/rej.2017.2035] [PMID: 29717617]
[23]
Barcia, J.J. The Giemsa stain: Its history and applications. Int. J. Surg. Pathol., 2007, 15(3), 292-296.
[http://dx.doi.org/10.1177/1066896907302239] [PMID: 17652540]
[24]
Offerdahl, D.K.; Dorward, D.W.; Hansen, B.T.; Bloom, M.E. Cytoarchitecture of Zika virus infection in human neuroblastoma and Aedes albopictus cell lines. Virology, 2017, 501, 54-62.
[http://dx.doi.org/10.1016/j.virol.2016.11.002] [PMID: 27863275]
[26]
Jamur, M.C.; Oliver, C. Permeabilization of cell membranes. In: Immunocytochemical methods and protocols; Humana Press: NJ, USA, 2010; pp. 63-66.
[http://dx.doi.org/10.1007/978-1-59745-324-0_9]
[27]
Dong, W.; Lin, Y.; Cao, Y.; Liu, Y.; Xie, X.; Gu, W. Luteolin induces myelodysplastic syndrome derived cell apoptosis via the p53 dependent mitochondrial signaling pathway mediated by reactive oxygen species. Int. J. Mol. Med., 2018, 42(2), 1106-1115.
[http://dx.doi.org/10.3892/ijmm.2018.3696] [PMID: 29786746]
[28]
Reddy, V.R.A.P.; Mwangi, W.; Sadigh, Y.; Nair, V. In vitro interactions of chicken programmed cell death 1 (PD-1) and PD-1 ligand-1 (PD-L1). Front. Cell. Infect. Microbiol., 2019, 9, 436.
[http://dx.doi.org/10.3389/fcimb.2019.00436] [PMID: 31921710]
[29]
Nowak, A.; Zakłos-Szyda, M. ˙Zyzelewicz, D.; Koszucka, A.; Motyl, I. Acrylamide decreases cell viability, and provides oxidative stress, DNA damage, and apoptosis in human colon adenocarcinoma cell line CaCo-2. Molecules, 2020, 25, 1-18.
[http://dx.doi.org/10.3390/molecules25020368]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy