Generic placeholder image

Cardiovascular & Hematological Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5257
ISSN (Online): 1875-6182

Research Article

Antidyslipidemic and Antioxidant Activities of Matricaria pubescens (Desf.) Shultz. in Streptozotocin-Induced Diabetic Rats

Author(s): Ayoub Amssayef, Bouchra El Azzaoui, Mohammed Ajebli and Mohamed Eddouks*

Volume 19, Issue 1, 2021

Published on: 06 May, 2020

Page: [62 - 71] Pages: 10

DOI: 10.2174/1871525718666200506100139

Price: $65

Abstract

Aims: The study aimed to evaluate the antihyperlipidemic and antioxidant activities of Matricaria pubescens.

Background: Matricaria pubescens (Desf.) Shultz belongs to Asteraceae family and it is commonly used traditionally for handling diabetes mellitus.

Objective: The objective of this study was to assess the antioxidant activity of Matricaria pubescens (Desf.) Shultz and its effect on lipid and lipoprotein profile in normal and streptozotocin-induced diabetic rats.

Methods: The effect of repeated (7 days of treatment) oral administration of the aqueous extracts of aerial part of Matricaria pubescens (MPAE) at a dose of 40 mg/kg on lipid and lipoprotein profile was examined in normal and streptozotocin-induced diabetic rats. Furthermore, a preliminary phytochemical screening and the quantification of phenolic, flavonoid and tannin contents as well as the antioxidant activity using two methods (FRAP and ABTS) were carried out.

Results: MPAE demonstrated a potent antidyslipidemic effect in diabetic rats by reducing serum levels of triglycerides, total cholesterol and Low-Density Lipoprotein (LDL). In addition, the results showed that the extract is rich in several phytochemical compounds and revealed an important antioxidant activity.

Conclusion: In summary, this study proved that Matricaria pubescens (Desf.) Shultz. has a favorable effect on diabetic dyslipidemia.

Keywords: Antioxidant, diabetes, lipid, Matricaria pubescens, medicinal plant, streptozotocin.

Graphical Abstract
[1]
Sudagani, J.; Hitman, G.A. Diabetes mellitus: Etiology and epidemiology; Encycloped. Human Nut, 2013, pp. 40-46.
[http://dx.doi.org/10.1016/b978-0-12-375083-9.00071-4.]
[2]
Chapman, M.J.; Ginsberg, H.N.; Amarenco, P.; Andreotti, F.; Borén, J.; Catapano, A.L.; Descamps, O.S.; Fisher, E.; Kovanen, P.T.; Kuivenhoven, J.A.; Lesnik, P.; Masana, L.; Nordestgaard, B.G.; Ray, K.K.; Reiner, Z.; Taskinen, M.R.; Tokgözoglu, L.; Tybjærg-Hansen, A.; Watts, G.F. European atherosclerosis society consensus panel. Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: Evidence and guidance for management. Eur. Heart J., 2011, 32(11), 1345-1361.
[http://dx.doi.org/10.1093/eurheartj/ehr112] [PMID: 21531743]
[3]
Zhao, T.; Mao, G.H.; Zhang, M.; Li, F.; Zou, Y.; Zhou, Y.; Wu, X.Y. Anti-diabetic effects of polysaccharides from ethanolinsoluble residue of Schisandra chinensis (Turcz.) Baill on alloxan-induced diabetic mice. Chem. Res. Chin. Univ., 2013, 29(1), 99-102.
[http://dx.doi.org/10.1007/s40242-012-2218-9]
[4]
Bronowicka-Szydełko, A.; Krzystek-Korpacka, M.; Kuzan, A.; Gostomska-Pampuch, K.; Gacka, M.; Jakobsche-Policht, U.; Adamiec, R.; Gamian, A. Advanced glycation end products derived from serum albumin modification by glucose (AGE-1) reflect clustering of lipid-associated metabolic abnormalities and are decreased in patients treated with acarbose: A cross-sectional study. Adv. Clin. Exp. Med., 2020, 29(3), 275-284.
[http://dx.doi.org/10.17219/acem/112611] [PMID: 32207583]
[5]
Burggraaf, B.; Pouw, N.M.C.; Arroyo, S.F.; van Vark-van der Zee, L.C.; van de Geijn, G.M.; Birnie, E.; Huisbrink, J.; van der Zwan, E.M.; Mulder, M.T.; Rensen, P.C.N.; de Herder, W.W.; Cabezas, M.C. A placebo-controlled proof-of-concept study of alirocumab on postprandial lipids and vascular elasticity in insulin-treated patients with type 2 diabetes mellitus. Diabetes Obes. Metab., 2020, 22(5), 807-816.
[http://dx.doi.org/10.1111/dom.13960] [PMID: 31912632]
[6]
Warraich, H.J.; Wong, N.D.; Rana, J.S. Role for combination therapy in diabetic dyslipidemia. Curr. Cardiol. Rep., 2015, 17(5), 32.
[http://dx.doi.org/10.1007/s11886-015-0589-5] [PMID: 25894802]
[7]
Muscari, A.; Puddu, G.M.; Puddu, P. Lipid-lowering drugs: Are adverse effects predictable and reversible? Cardiol., 2002, 97(3), 115-121.
[http://dx.doi.org/10.1159/000063326] [PMID: 12077562]
[8]
Visavadiya, N.P.; Narasimhacharya, A.V.R.L. Ameliorative effects of herbal combinations in hyperlipidemia. Oxid. Med. Cell. Longev., 2011, 2011160408
[http://dx.doi.org/10.1155/2011/160408] [PMID: 21941605]
[9]
Madihi, Y.; Merrikhi, A.; Baradaran, A. Impact of sumac on postprandial high-fat oxidative stress. Pak. J. Med. Sci., 2013, 29, 340-345.
[http://dx.doi.org/10.12669/pjms.291(Suppl).3529]
[10]
Asgary, S.; Kelishadi, R.; Rafieian-Kopaei, M.; Najafi, S.; Najafi, M.; Sahebkar, A. Investigation of the lipid-modifying and antiinflammatory effects of Cornus mas L. supplementation on dyslipidemic children and adolescents. Pediatr. Cardiol., 2013, 34(7), 1729-1735.
[http://dx.doi.org/10.1007/s00246-013-0693-5] [PMID: 23625305]
[11]
Djellouli, M.; Moussaoui, A.; Benmehdi, H. Ethnopharmacological study and phytochemical screening of three plants (Asteraceae family) from the region of South West Algeria. Asian J. Nat. Appl. Sci., 2013, 2, 59-65.
[12]
Telli, A.; Esnault, M.A. Ould el Hadj khelil, A. An ethnopharmaclogical survey of plants used in traditional diabetes treatment in South-eastern Algeria (Ouargla province). J. Arid Environ., 2016, 127, 82-92.
[http://dx.doi.org/10.1016/j.jaridenv.2015.11.005]
[13]
Makhloufi, A.; Moussaoui, A.; Lazouni, H.A. Antibacterial activities of essential oil and crude extracts from Matricaria pubescens (Desf.) growing wild in Bechar, South West of Algeria. J. Med. Plants Res., 2012, 6(16), 3124-3128.
[http://dx.doi.org/10.5897/JMPR11.1367]
[14]
Boutaghane, N.; Kabouche, A.; Touzani, R.; Maklad, Y.A.; El-Azzouny, A.; Bruneau, C.; Kabouche, Z. GC/MS analysis and analgesic effect of the essential oil of Matricaria pubescens from Algeria. Nat. Prod. Commun., 2011, 6(2), 251-252.
[http://dx.doi.org/10.1177/1934578X1100600224] [PMID: 21425687]
[15]
Amssayef, A.; Eddouks, M. Aqueous extract of Matricaria pubescens exhibits antihypertensive activity in L-name-induced hypertensive rats through its vasorelaxant effect. Cardiovasc. Hematol. Agents Med. Chem., 2019, 17(2), 135-143.
[http://dx.doi.org/10.2174/1871525717666191007151413] [PMID: 31589128]
[16]
Ajebli, M.; Eddouks, M. Buxus sempervirens L. improves streptozotocin-induced diabetes mellitus in rats. Cardiovasc. Hematol. Disord. Drug Targets, 2017, 17(2), 142-152.
[http://dx.doi.org/10.2174/1871529X17666170918140817] [PMID: 28925906]
[17]
Ajebli, M.; Eddouks, M. Pharmacological and phytochemical study of mentha suaveolens EHRH in normal and streptozotocin induced diabetic rats. Nat. Prod. J., 2018.
[http://dx.doi.org/10.2174/2210315508666180327120434]
[18]
Bouhlali, E.D.T.; Alem, C.; Zegzouti, Y.F. Antioxidant and anti-hemolytic activities of phenolic constituents of six moroccan date fruit (Phoenix dactylifera L.) syrups. Indian J. Biotechnol., 2015, 12(1), 45-52.
[19]
Kim, D.O.; Jeong, S.W.; Lee, C.Y. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem., 2003, 81(3), 321-326.
[http://dx.doi.org/10.1016/S0308-8146(02)00423-5]
[20]
Makkar, H.P.; Becker, K. Vanillin-HCl method for condensed tannins: Effect of organic solvents used for extraction of tannins. J. Chem. Ecol., 1993, 19(4), 613-621.
[http://dx.doi.org/10.1007/BF00984996] [PMID: 24249005]
[21]
Benzie, I.F.; Strain, J.J. Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol., 1999, 299, 15-27.
[http://dx.doi.org/10.1016/S0076-6879(99)99005-5] [PMID: 9916193]
[22]
Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med., 1999, 26(9-10), 1231-1237.
[http://dx.doi.org/10.1016/S0891-5849(98)00315-3 ] [PMID: 10381194]
[23]
Vohnout, B.; Vachulová, A.; Blazícek, P.; Dukát, A.; Fodor, G.; Lietava, J. Evaluation of alternative calculation methods for determining LDL cholesterol. Vnitr. Lek., 2008, 54(10), 961-964.
[PMID: 19009762]
[24]
Taskinen, M.R. Diabetic dyslipidaemia: From basic research to clinical practice. Diabetologia, 2003, 46(6), 733-749.
[http://dx.doi.org/10.1007/s00125-003-1111-y] [PMID: 12774165]
[25]
Jonathan, D.S.; Yifen, L.; Prasanna, R.B.; Rayaz, A.M.; Soran, H. Diabetes dyslipidemia. Diabetes Ther., 2016, 7(2), 203-219.
[http://dx.doi.org/10.1007/s13300-016-0167-x] [PMID: 27056202]
[26]
Goldberg, I.J. Clinical review 124: Diabetic dyslipidemia: Causes and consequences. J. Clin. Endocrinol. Metab., 2001, 86(3), 965-971.
[http://dx.doi.org/10.1210/jcem.86.3.7304] [PMID: 11238470]
[27]
Vyas, P.; Gonsai, R.N.; Meenakshi, C.; Nanavati, M.G. Coronary atherosclerosis in noncardiac deaths: An autopsy study. J Midlife Health, 2015, 6(1), 5-9.
[http://dx.doi.org/10.4103/0976-7800.153596] [PMID: 25861201]
[28]
Hirano, T. Pathophysiology of diabetic dyslipidemia. J. Atheroscler. Thromb., 2018, 25(9), 771-782.
[http://dx.doi.org/10.5551/jat.RV17023] [PMID: 29998913]
[29]
Ibrahim, E.; Hemmat, E.; Ahmed, R.; Mona, Y.; Maha, R.; Randa, S. Severe hypertriglyceridemia in type 1 diabetes accompanied by acute pancreatitis and organomegaly. Endocrine Abstracts., 2018, 56(86)
[http://dx.doi.org/10.1530/endoabs.56.EP86]
[30]
Skålén, K.; Gustafsson, M.; Rydberg, E.K.; Hultén, L.M.; Wiklund, O.; Innerarity, T.L.; Borén, J. Subendothelial retention of atherogenic lipoproteins in early atherosclerosis. Nature, 2002, 417(6890), 750-754.
[http://dx.doi.org/10.1038/nature00804] [PMID: 12066187]
[31]
Weidner, C.; Wowro, S.J.; Rousseau, M.; Freiwald, A.; Kodelja, V.; Abdel-Aziz, H.; Kelber, O.; Sauer, S. Antidiabetic effects of chamomile flowers extract in obese mice through transcriptional stimulation of nutrient sensors of the Peroxisome Proliferator-Activated Receptor (PPAR) family. PLoS One, 2013, 8(11)e80335
[http://dx.doi.org/10.1371/journal.pone.0080335] [PMID: 24265809]
[32]
Watanabe, M.; Houten, S.M.; Wang, L.; Moschetta, A.; Mangelsdorf, D.J.; Heyman, R.A.; Moore, D.D.; Auwerx, J. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J. Clin. Invest., 2004, 113(10), 1408-1418.
[http://dx.doi.org/10.1172/JCI21025] [PMID: 15146238]
[33]
Lehmann, J.M.; Kliewer, S.A.; Moore, L.B.; Smith-Oliver, T.A.; Oliver, B.B.; Su, J.L.; Sundseth, S.S.; Winegar, D.A.; Blanchard, D.E.; Spencer, T.A.; Willson, T.M. Activation of the nuclear receptor LXR by oxysterols defines a new hormone response pathway. J. Biol. Chem., 1997, 272(6), 3137-3140.
[http://dx.doi.org/10.1074/jbc.272.6.3137] [PMID: 9013544]
[34]
Ajebli, M.; Eddouks, M. Flavonoid-enriched extract from desert plant Warionia saharae improves glucose and cholesterol levels in diabetic rats. Cardiovasc. Hematol. Agents Med. Chem., 2019, 17(1), 28-39.
[http://dx.doi.org/10.2174/1871525717666190121143934] [PMID: 30666919]
[35]
Ajebli, M.; El Ouady, F.; Eddouks, M. Study of antihyperglycemic, antihyperlipidemic and antioxidant activities of tannins extracted from Warionia saharae. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(2), 189-198.
[http://dx.doi.org/10.2174/1871530318666181029160539] [PMID: 30370866]
[36]
Pham-Huy, L.A.; He, H.; Pham-Huy, C. Free radicals, antioxidants in disease and health. Int. J. Biomed. Sci., 2008, 4(2), 89-96.
[PMID: 23675073]
[37]
Asmat, U.; Abad, K.; Ismail, K. Diabetes mellitus and oxidative stress-A concise review. Saudi Pharm. J., 2016, 24(5), 547-553.
[http://dx.doi.org/10.1016/j.jsps.2015.03.013] [PMID: 27752226]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy