Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Letter to the Editor

Novel Insights on the Role of the Human Sperm Proteome

Author(s): Rossella Cannarella, Rosita A. Condorelli*, Aldo E. Calogero and Sandro La Vignera

Volume 27, Issue 12, 2020

Page: [1181 - 1185] Pages: 5

DOI: 10.2174/0929866527666200505215921

Price: $65

Abstract

The spermatozoon has classically been seen only as a paternal DNA transporter into the oocyte, thus underestimating the entire contribution of the male gamete to the embryo development. The advancement of the research supports that not only the sperm genome, but the entire sperm transcriptome and proteome carry crucial information for fertilization and embryo development.

Altogether, 6871 proteins have been reported in spermatozoa so far. Their functional analysis has recently addressed to the sperm proteome a role in fertilization, preimplantation embryo development and paternal epigenetic inheritance. Targeted analysis of human spermatozoa is warranted to compile an evidence-based list of sperm-carried molecular targets in infertile patients.

Keywords: Sperm proteome, fertilization, embryo development, epigenetic, gene ontology, male infertility.

Graphical Abstract
[1]
World Health Organization. Report of the meeting on the prevention of infertility at the primary health care levels. WHO: Geneva, 1983
[2]
Agarwal, A.; Mulgund, A.; Hamada, A.; Chyatte, M.R. A unique view on male infertility around the globe. Reprod. Biol. Endocrinol., 2015, 13, 37.
[http://dx.doi.org/10.1186/s12958-015-0032-1] [PMID: 25928197]
[3]
Valenti, D.; La Vignera, S.; Condorelli, R.A.; Rago, R.; Barone, N.; Vicari, E.; Calogero, A.E. Follicle-stimulating hormone treatment in normogonadotropic infertile men. Nat. Rev. Urol., 2013, 10(1), 55-62.
[http://dx.doi.org/10.1038/nrurol.2012.234] [PMID: 23229508]
[4]
Tüttelmann, F.; Ruckert, C.; Röpke, A. Disorders of spermatogenesis: Perspectives for novel genetic diagnostics after 20 years of unchanged routine. Med. Genetik, 2018, 30(1), 12-20.
[http://dx.doi.org/10.1007/s11825-018-0181-7] [PMID: 29527098]
[5]
Cannarella, R.; Condorelli, R.A.; Duca, Y.; La Vignera, S.; Calogero, A.E. New insights into the genetics of spermatogenic failure: A review of the literature. Hum. Genet., 2019, 138(2), 125-140.
[http://dx.doi.org/10.1007/s00439-019-01974-1] [PMID: 30656449]
[6]
Castillo, J.; Jodar, M.; Oliva, R. The contribution of human sperm proteins to the development and epigenome of the preimplantation embryo. Hum. Reprod. Update, 2018, 24(5), 535-555.
[http://dx.doi.org/10.1093/humupd/dmy017] [PMID: 29800303]
[7]
Aebersold, R.; Mann, M. Mass spectrometry-based proteomics. Nature, 2003, 422(6928), 198-207.
[http://dx.doi.org/10.1038/nature01511] [PMID: 12634793]
[8]
Domon, B.; Aebersold, R. Mass spectrometry and protein analysis. Science, 2006, 312(5771), 212-217.
[http://dx.doi.org/10.1126/science.1124619] [PMID: 16614208]
[9]
Cox, J.; Mann, M. Is proteomics the new genomics? Cell, 2007, 130(3), 395-398.
[http://dx.doi.org/10.1016/j.cell.2007.07.032] [PMID: 17693247]
[10]
Rui, H.; Mevåg, B.; Purvis, K. Two-dimensional electrophoresis of proteins in various fractions of the human split ejaculate. Int. J. Androl., 1984, 7(6), 509-520.
[http://dx.doi.org/10.1111/j.1365-2605.1984.tb00808.x] [PMID: 6526515]
[11]
Wen, L.; Liu, Q.; Xu, J.; Liu, X.; Shi, C.; Yang, Z.; Zhang, Y.; Xu, H.; Liu, J.; Yang, H.; Huang, H.; Qiao, J.; Tang, F.; Chen, Z.J. Recent advances in mammalian reproductive biology. Sci. China Life Sci., 2019, 63(1), 18-58.
[http://dx.doi.org/10.1007/s11427-019-1572-7] [PMID: 31813094]
[12]
Hao, J.; Chen, M.; Ji, S.; Wang, X.; Wang, Y.; Huang, X.; Yang, L.; Wang, Y.; Cui, X.; Lv, L.; Liu, Y.; Gao, F. Equatorin is not essential for acrosome biogenesis but is required for the acrosome reaction. Biochem. Biophys. Res. Commun., 2014, 444(4), 537-542.
[http://dx.doi.org/10.1016/j.bbrc.2014.01.080] [PMID: 24480441]
[13]
Kanemori, Y.; Koga, Y.; Sudo, M.; Kang, W.; Kashiwabara, S.; Ikawa, M.; Hasuwa, H.; Nagashima, K.; Ishikawa, Y.; Ogonuki, N.; Ogura, A.; Baba, T. Biogenesis of sperm acrosome is regulated by pre-mRNA alternative splicing of Acrbp in the mouse. Proc. Natl. Acad. Sci. USA, 2016, 113(26), E3696-E3705.
[http://dx.doi.org/10.1073/pnas.1522333113] [PMID: 27303034]
[14]
Stival, C.; Puga Molina, Ldel.C.; Paudel, B.; Buffone, M.G.; Visconti, P.E.; Krapf, D. del C.; Paudel, B.; Buffone, M.G.; Visconti, P.E.; Krapf, D. Sperm capacitation and acrosome reaction in mammalian sperm. Adv. Anat. Embryol. Cell Biol., 2016, 220, 93-106.
[http://dx.doi.org/10.1007/978-3-319-30567-7_5] [PMID: 27194351]
[15]
Bleil, J.D.; Wassarman, P.M. Structure and function of the zona pellucida: identification and characterization of the proteins of the mouse oocyte’s zona pellucida. Dev. Biol., 1980, 76(1), 185-202.
[http://dx.doi.org/10.1016/0012-1606(80)90371-1] [PMID: 7380091]
[16]
Tanii, I.; Aradate, T.; Matsuda, K.; Komiya, A.; Fuse, H. PACAP-mediated sperm-cumulus cell interaction promotes fertilization. Reproduction, 2011, 141(2), 163-171.
[http://dx.doi.org/10.1530/REP-10-0201] [PMID: 21071464]
[17]
Shimada, M.; Yanai, Y.; Okazaki, T.; Noma, N.; Kawashima, I.; Mori, T.; Richards, J.S. Hyaluronan fragments generated by sperm-secreted hyaluronidase stimulate cytokine/chemokine production via the TLR2 and TLR4 pathway in cumulus cells of ovulated COCs, which may enhance fertilization. Development, 2008, 135(11), 2001-2011.
[http://dx.doi.org/10.1242/dev.020461] [PMID: 18434414]
[18]
Sun, T.C.; Wang, J.H.; Wang, X.X.; Liu, X.M.; Zhang, C.L.; Hao, C.F.; Ma, W.Z.; Deng, S.L.; Liu, Y.X. Effects of sperm proteins on fertilization in the female reproductive tract. Front. Biosci., 2019, 24, 735-749.
[19]
Farhadova, S.; Gomez-Velazquez, M.; Feil, R. Stability and lability of parental methylation imprints in development and disease. Genes (Basel), 2019, 10(12), E999.
[http://dx.doi.org/10.3390/genes10120999] [PMID: 31810366]
[20]
Cannarella, R.; Condorelli, R.A.; La Vignera, S.; Bellucci, C.; Luca, G.; Calafiore, R.; Calogero, A.E. IGF2 and IGF1R mRNAs are detectable in human spermatozoa. World J. Mens Health, 2019 3(Suppl_1), OR32-2.
[http://dx.doi.org/10.5534/wjmh.190070] [PMID: 31496145]
[21]
Giacone, F.; Cannarella, R.; Mongioì, L.M.; Alamo, A.; Condorelli, R.A.; Calogero, A.E.; La Vignera, S. Epigenetics of male fertility: Effects on assisted reproductive techniques. World J. Mens Health, 2019, 37(2), 148-156.
[http://dx.doi.org/10.5534/wjmh.180071] [PMID: 30588778]
[22]
Cassidy, F.C.; Charalambous, M. Genomic imprinting, growth and maternal-fetal interactions. J. Exp. Biol., 2018, 221(Pt)(Suppl. 1), 221.
[PMID: 29514882]
[23]
Williams, H.L.; Mansell, S.; Alasmari, W.; Brown, S.G.; Wilson, S.M.; Sutton, K.A.; Miller, M.R.; Lishko, P.V.; Barratt, C.L.R.; Publicover, S.J.; Martins da Silva, S. Specific loss of CatSper function is sufficient to compromise fertilizing capacity of human spermatozoa. Hum. Reprod., 2015, 30(12), 2737-2746.
[http://dx.doi.org/10.1093/humrep/dev243] [PMID: 26453676]
[24]
Ficarro, S.; Chertihin, O.; Westbrook, V.A.; White, F.; Jayes, F.; Kalab, P.; Marto, J.A.; Shabanowitz, J.; Herr, J.C.; Hunt, D.F.; Visconti, P.E. Phosphoproteome analysis of capacitated human sperm. Evidence of tyrosine phosphorylation of a kinase-anchoring protein 3 and valosin-containing protein/p97 during capacitation. J. Biol. Chem., 2003, 278(13), 11579-11589.
[http://dx.doi.org/10.1074/jbc.M202325200] [PMID: 12509440]
[25]
Yoon, S-Y.; Fissore, R.A. Release of phospholipase C zetaand [Ca2+]i oscillation-inducing activity during mammalian fertilization. Reproduction, 2007, 134(5), 695-704.
[http://dx.doi.org/10.1530/REP-07-0259] [PMID: 17965260]
[26]
Bianchi, L.; Gagliardi, A.; Campanella, G.; Landi, C.; Capaldo, A.; Carleo, A.; Armini, A.; De Leo, V.; Piomboni, P.; Focarelli, R.; Bini, L. A methodological and functional proteomic approach of human follicular fluid en route for oocyte quality evaluation. J. Proteomics, 2013, 90, 61-76.
[http://dx.doi.org/10.1016/j.jprot.2013.02.025] [PMID: 23500131]
[27]
Tardif, S.; Guyonnet, B.; Cormier, N.; Cornwall, G.A. Alteration in the processing of the ACRBP/sp32 protein and sperm head/acrosome malformations in proprotein convertase 4 (PCSK4) null mice. Mol. Hum. Reprod., 2012, 18(6), 298-307.
[http://dx.doi.org/10.1093/molehr/gas009] [PMID: 22357636]
[28]
Da Ros, V.G.; Muñoz, M.W.; Battistone, M.A.; Brukman, N.G.; Carvajal, G.; Curci, L.; Gómez-ElIas, M.D.; Cohen, D.B.; Cuasnicu, P.S.; Gómez Elías, M. From the epididymis to the egg: Participation of CRISP proteins in mammalian fertilization. Asian J. Androl., 2015, 17(5), 711-715.
[PMID: 26112483]
[29]
Cuasnicú, P.S.; Da Ros, V.G.; Weigel Muñoz, M.; Cohen, D.J. Acrosome reaction as a preparation for gamete fusion. Adv. Anat. Embryol. Cell Biol., 2016, 220, 159-172.
[http://dx.doi.org/10.1007/978-3-319-30567-7_9] [PMID: 27194355]
[30]
Garrod, D.; Chidgey, M. Desmosome structure, composition and function. Biochim. Biophys. Acta, 2008, 1778(3), 572-587.
[http://dx.doi.org/10.1016/j.bbamem.2007.07.014] [PMID: 17854763]
[31]
Biellmann, F.; Hülsmeier, A.J.; Zhou, D.; Cinelli, P.; Hennet, T. The Lc3-synthase gene B3gnt5 is essential to pre-implantation development of the murine embryo. BMC Dev. Biol., 2008, 8, 109.
[http://dx.doi.org/10.1186/1471-213X-8-109] [PMID: 19014510]
[32]
Wang, L.; Magdaleno, S.; Tabas, I.; Jackowski, S. Early embryonic lethality in mice with targeted deletion of the CTP:phosphocholine cytidylyltransferase alpha gene (Pcyt1a). Mol. Cell. Biol., 2005, 25(8), 3357-3363.
[http://dx.doi.org/10.1128/MCB.25.8.3357-3363.2005] [PMID: 15798219]
[33]
Rando, O.J. Daddy issues: Paternal effects on phenotype. Cell, 2012, 151(4), 702-708.
[http://dx.doi.org/10.1016/j.cell.2012.10.020] [PMID: 23141533]
[34]
Kaati, G.; Bygren, L.O.; Edvinsson, S. Cardiovascular and diabetes mortality determined by nutrition during parents’ and grandparents’ slow growth period. Eur. J. Hum. Genet., 2002, 10(11), 682-688.
[http://dx.doi.org/10.1038/sj.ejhg.5200859] [PMID: 12404098]
[35]
Pembrey, M.E.; Bygren, L.O.; Kaati, G.; Edvinsson, S.; Northstone, K.; Sjöström, M.; Golding, J.; Alspac, T.; Team, S. ALSPAC Study Team. Sex-specific, male-line transgenerational responses in humans. Eur. J. Hum. Genet., 2006, 14(2), 159-166.
[http://dx.doi.org/10.1038/sj.ejhg.5201538] [PMID: 16391557]
[36]
Sharma, U.; Conine, C.C.; Shea, J.M.; Boskovic, A.; Derr, A.G.; Bing, X.Y.; Belleannee, C.; Kucukural, A.; Serra, R.W.; Sun, F.; Song, L.; Carone, B.R.; Ricci, E.P.; Li, X.Z.; Fauquier, L.; Moore, M.J.; Sullivan, R.; Mello, C.C.; Garber, M.; Rando, O.J. Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science, 2016, 351(6271), 391-396.
[http://dx.doi.org/10.1126/science.aad6780] [PMID: 26721685]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy