Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Immunological Function of the Antibacterial Peptide Attacin-Like in the Chinese Oak Silkworm, Antheraea pernyi

Author(s): Qingqing Li, Jiawei Zhang, Yu Sun, Lei Wang, Cen Qian, Guoqing Wei, Baojian Zhu* and Chaoliang Liu*

Volume 27, Issue 10, 2020

Page: [953 - 961] Pages: 9

DOI: 10.2174/0929866527666200505210113

Price: $65

Abstract

Background: Antibacterial peptides play important roles in the innate immune system of insects and are divided into four categories according to their structures. Although many antibacterial peptides have been reported in lepidopteran insects, the roles of an attacin-like gene in immune response of Antheraea pernyi remain unclear.

Objective: In this study, the cloning and immunological functions of an attacin-like gene from Antheraea pernyi were investigated.

Methods: The open reading frame of Ap-attacin-like gene was cloned by PCR using the specific primers and then was ligated to the pET-32a vector to construct the recombinant plasmids Ap-attacin- like-pET-32a. The recombinant Ap-attacin-like protein was expressed in E. coli (BL21 DE3) cells and purified by Ni-NTA affinity chromatography. The expression patterns of Ap-attacin-like in different tissues or under microorganism challenges were investigated by real-time PCR and western blotting. Finally, agar well diffusion assay was performed to determine the antimicrobial activity of the recombinant Ap-attacin-like proteins based on the inhibition rate.

Results: The expression level of Ap-attacin-like was highest in the fat body compared with the other examined tissues. The expression of Ap-attacin-like in the fat body was significantly elevated after E. coli, Beauveria bassiana, Micrococcus luteus or Nuclear Polyhedrosis Virus challenges. In addition, the recombinant Ap-attacin-like proteins had obvious antibacterial activity against E. coli.

Conclusion: Ap-attacin-like was highly expressed in immune-related tissues and its expression level was significantly induced by different microorganism challenges, suggesting that Ap-attacin-like participated in the innate immunity of A. pernyi.

Keywords: Antimicrobial peptides, innate immunity, Antheraea pernyi, attacin, E. coli, Nuclear Polyhedrosis Virus.

Graphical Abstract
[1]
Marmaras, V.J.; Lampropoulou, M. Regulators and signalling in insect haemocyte immunity. Cell. Signal., 2009, 21(2), 186-195.
[http://dx.doi.org/10.1016/j.cellsig.2008.08.014] [PMID: 18790716]
[2]
Lavine, M.D.; Strand, M.R. Insect hemocytes and their role in immunity. Insect Biochem. Mol. Biol., 2002, 32(10), 1295-1309.
[http://dx.doi.org/10.1016/S0965-1748(02)00092-9] [PMID: 12225920]
[3]
Lemaitre, B.; Hoffmann, J. The host defense of Drosophila melanogaster. Annu. Rev. Immunol., 2007, 25, 697-743.
[http://dx.doi.org/10.1146/annurev.immunol.25.022106.141615] [PMID: 17201680]
[4]
Fullaondo, A.; Lee, S.Y. Regulation of Drosophila-virus interaction. Dev. Comp. Immunol., 2012, 36(2), 262-266.
[http://dx.doi.org/10.1016/j.dci.2011.08.007] [PMID: 21925207]
[5]
Moy, R.H.; Cherry, S. Antimicrobial autophagy: A conserved innate immune response in Drosophila. J. Innate Immun., 2013, 5(5), 444-455.
[http://dx.doi.org/10.1159/000350326] [PMID: 23689401]
[6]
Yi, H.Y.; Chowdhury, M.; Huang, Y.D.; Yu, X.Q. Insect antimicrobial peptides and their applications. Appl. Microbiol. Biotechnol., 2014, 98(13), 5807-5822.
[http://dx.doi.org/10.1007/s00253-014-5792-6] [PMID: 24811407]
[7]
Cruz, J.; Ortiz, C.; Guzmán, F.; Fernández-Lafuente, R.; Torres, R. Antimicrobial peptides: Promising compounds against pathogenic microorganisms. Curr. Med. Chem., 2014, 21(20), 2299-2321.
[http://dx.doi.org/10.2174/0929867321666140217110155] [PMID: 24533812]
[8]
Wang, G. Human antimicrobial peptides and proteins. Pharmaceuticals (Basel), 2014, 7(5), 545-594.
[http://dx.doi.org/10.3390/ph7050545] [PMID: 24828484]
[9]
Lakshmaiah-Narayana, J.; Chen, J.Y. Antimicrobial peptides: Possible anti-infective agents. Peptides, 2015, 72, 88-94.
[http://dx.doi.org/10.1016/j.peptides.2015.05.012] [PMID: 26048089]
[10]
Hultmark, D.; Engström, A.; Andersson, K.; Steiner, H.; Bennich, H.; Boman, H.G. Insect immunity. Attacins, a family of antibacterial proteins from Hyalophora cecropia. EMBO J., 1983, 2(4), 571-576.
[http://dx.doi.org/10.1002/j.1460-2075.1983.tb01465.x] [PMID: 6628360]
[11]
Liao, Y.Y.; Zuo, Y.H.; Tsai, C.L.; Hsu, C.M.; Chen, M.E. cDNA cloning and transcriptional regulation of the cecropin and attacin from the oriental fruit fly, Bactrocera dorsalis (diptera: tephritidae). Arch. Insect Biochem. Physiol., 2015, 89(2), 126.
[http://dx.doi.org/10.1002/arch.21230] [PMID: 5781309]
[12]
Sun, S.C.; Lindström, I.; Lee, J.Y.; Faye, I. Structure and expression of the attacin genes in Hyalophora cecropia. Eur. J. Biochem., 1991, 196(1), 247-254.
[http://dx.doi.org/10.1111/j.1432-1033.1991.tb15811.x] [PMID: 2001705]
[13]
Kockum, K.; Faye, I.; Hofsten, P.V.; Lee, J.Y.; Xanthopoulos, K.G.; Boman, H.G. Insect immunity. Isolation and sequence of two cDNA clones corresponding to acidic and basic attacins from Hyalophora cecropia. EMBO J., 1984, 3(9), 2071-2075.
[http://dx.doi.org/10.1002/j.1460-2075.1984.tb02093.x] [PMID: 16453548]
[14]
Gunne, H.; Hellers, M.; Steiner, H. Structure of preproattacin and its processing in insect cells infected with a recombinant baculovirus. Eur. J. Biochem., 1990, 187(3), 699-703.
[http://dx.doi.org/10.1111/j.1432-1033.1990.tb15356.x] [PMID: 2406140]
[15]
Engström, P.; Carlsson, A.; Engström, A.; Tao, Z.J.; Bennich, H. The antibacterial effect of attacins from the silk moth Hyalophora cecropia is directed against the outer membrane of Escherichia coli. EMBO J., 1984, 3(13), 3347-3351.
[http://dx.doi.org/10.1002/j.1460-2075.1984.tb02302.x] [PMID: 6396089]
[16]
Carlsson, A.; Engström, P.; Palva, E.T.; Bennich, H. Attacin, an antibacterial protein from Hyalophora cecropia, inhibits synthesis of outer membrane proteins in Escherichia coli by interfering with omp gene transcription. Infect. Immun., 1991, 59(9), 3040-3045.
[http://dx.doi.org/10.1128/IAI.59.9.3040-3045.1991] [PMID: 1715318]
[17]
Carlsson, A.; Nyström, T.; de Cock, H.; Bennich, H. Attacin--an insect immune protein-binds LPS and triggers the specific inhibition of bacterial outer-membrane protein synthesis. Microbiology, 1998, 144(Pt 8), 2179-2188.
[http://dx.doi.org/10.1099/00221287-144-8-2179] [PMID: 9720039]
[18]
Kwon, Y.M.; Kim, H.J.; Kim, Y.I.; Kang, Y.J.; Lee, I.H.; Jin, B.R.; Han, Y.S.; Cheon, H.M.; Ha, N.G.; Seo, S.J. Comparative analysis of two attacin genes from Hyphantria cunea. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 2008, 151(2), 213-220.
[http://dx.doi.org/10.1016/j.cbpb.2008.07.002] [PMID: 18682300]
[19]
Kausar, S.; Abbas, M.N.; Qian, C.; Zhu, B.; Sun, Y.; Sun, Y.; Wang, L.; Wei, G.; Maqsood, I.; Liu, C.L. Serpin-14 negatively regulates prophenoloxidase activation and expression of antimicrobial peptides in Chinese oak silkworm Antheraea pernyi. Dev. Comp. Immunol., 2017, 76, 45-55.
[http://dx.doi.org/10.1016/j.dci.2017.05.017] [PMID: 28545959]
[20]
Park, S.H.; Kim, A.Y.; Ma, S.H.; Kim, H.M.; Kang, H.S.; Maeng, J.S.; Ko, K.; Chung, I.S.; Joung, Y.H. Purification of human carcinoma antigen GA733-2 expressed in Escherichia coli and production of its polyclonal antibody in rabbit. Anim. Cells Syst., 2015, 19(3), 1-6.
[http://dx.doi.org/10.1080/19768354.2015.1030345]
[21]
Gao, J.; Sun, Y.; Sun, Y.; Chen, C.; Kausar, S.; Tian, J.; Zhu, B.; Liu, C. Identification and function of cAMP response element binding protein in Oak silkworm Antheraea pernyi. J. Invertebr. Pathol., 2018, 151, 14-20.
[http://dx.doi.org/10.1016/j.jip.2017.10.006] [PMID: 29079530]
[22]
Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 2001, 25(4), 402-408.
[http://dx.doi.org/10.1006/meth.2001.1262] [PMID: 11846609]
[23]
Boulanger, N.; Munks, R.J.; Hamilton, J.V.; Vovelle, F.; Brun, R.; Lehane, M.J.; Bulet, P. Epithelial innate immunity. A novel antimicrobial peptide with antiparasitic activity in the blood-sucking insect Stomoxys calcitrans. J. Biol. Chem., 2002, 277(51), 49921-49926.
[http://dx.doi.org/10.1074/jbc.M206296200] [PMID: 12372834]
[24]
Zhou, Z.X.; Huang, Q.H.; Zhu, S.; Zhou, L. Establishment of rapid determining method for antibacterial activity by microplate reader. Adv. Microbiol., 2014, 3, 29-35.
[http://dx.doi.org/10.12677/AMB.2014.32004]
[25]
Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol., 2011, 28(10), 2731-2739.
[http://dx.doi.org/10.1093/molbev/msr121] [PMID: 21546353]
[26]
Liu, S.Y.; Wang, H.L.; Na, J. Application potential of insect antimicrobial peptides in agricultural production. Tianjin Agri. Sci., 2013, 19, 50-53.
[27]
Tonk, M.; Vilcinskas, A.; Rahnamaeian, M. Insect antimicrobial peptides: Potential tools for the prevention of skin cancer. Appl. Microbiol. Biotechnol., 2016, 100(17), 7397-7405.
[http://dx.doi.org/10.1007/s00253-016-7718-y] [PMID: 27418360]
[28]
Wu, Q.; Patočka, J.; Kuča, K. Insect antimicrobial peptides, a mini review. Toxins (Basel), 2018, 10(11), E461.
[http://dx.doi.org/10.3390/toxins10110461] [PMID: 30413046]
[29]
Ourth, D.D.; Lockey, T.D.; Renis, H.E. Induction of cecropin-like and attacin-like antibacterial but not antiviral activity in Heliothis virescens larvae. Biochem. Biophys. Res. Commun., 1994, 200(1), 35-44.
[http://dx.doi.org/10.1006/bbrc.1994.1410] [PMID: 8166704]
[30]
Sugiyama, M.; Kuniyoshi, H.; Kotani, E.; Taniai, K.; Kadono-Okuda, K.; Kato, Y.; Yamamoto, M.; Shimabukuro, M.; Chowdhury, S.; Xu, J.; Choi, K.; Kataoka, H.; Suzuki, A.; Yamakawa, M. Characterization of a Bombyx mori cDNA encoding a novel member of the attacin family of insect antibacterial proteins. Insect Biochem. Mol. Biol., 1995, 25(3), 385-392.
[http://dx.doi.org/10.1016/0965-1748(94)00080-2] [PMID: 7773256]
[31]
Sudha, R.; Murthy, G.N.; Awasthi, A.K.; Ponnuvel, K.M. Attacin gene sequence variations in different ecoraces of tasar silkworm Antheraea mylitta. Bioinformation, 2015, 11(10), 481-485.
[http://dx.doi.org/10.6026/97320630011481] [PMID: 26664033]
[32]
Bang, K.; Park, S.; Yoo, J.Y.; Cho, S. Characterization and expression of attacin, an antibacterial protein-encoding gene, from the beet armyworm, Spodoptera exigua (Hübner) (Insecta: Lepidoptera: Noctuidae). Mol. Biol. Rep., 2012, 39(5), 5151-5159.
[http://dx.doi.org/10.1007/s11033-011-1311-3] [PMID: 22160467]
[33]
Asling, B.; Dushay, M.S.; Hultmark, D. Identification of early genes in the Drosophila immune response by PCR-based differential display: The Attacin A gene and the evolution of attacin-like proteins. Insect Biochem. Mol. Biol., 1995, 25(4), 511-518.
[http://dx.doi.org/10.1016/0965-1748(94)00091-C] [PMID: 7742836]
[34]
Dushay, M.S.; Roethele, J.B.; Chaverri, J.M.; Dulek, D.E.; Syed, S.K.; Kitami, T.; Eldon, E.D. Two attacin antibacterial genes of Drosophila melanogaster. Gene, 2000, 246(1-2), 49-57.
[http://dx.doi.org/10.1016/S0378-1119(00)00041-X] [PMID: 10767526]
[35]
Wang, L.N.; Yu, B.; Han, G.Q.; Chen, D.W. Molecular cloning, expression in Escherichia coli of Attacin A gene from Drosophila and detection of biological activity. Mol. Biol. Rep., 2010, 37(5), 2463-2469.
[http://dx.doi.org/10.1007/s11033-009-9758-1] [PMID: 19711194]
[36]
Wang, J.; Hu, C.; Wu, Y.; Stuart, A.; Amemiya, C.; Berriman, M.; Toyoda, A.; Hattori, M.; Aksoy, S. Characterization of the antimicrobial peptide attacin loci from Glossina morsitans. Insect Mol. Biol., 2008, 17(3), 293-302.
[http://dx.doi.org/10.1111/j.1365-2583.2008.00805.x] [PMID: 18477243]
[37]
Shin, H.S.; Park, S.I. Novel attacin from Hermetia illucens: cDNA cloning, characterization, and antibacterial properties. Prep. Biochem. Biotechnol., 2019, 49(3), 279-285.
[http://dx.doi.org/10.1080/10826068.2018.1541807] [PMID: 30767702]
[38]
Jo, Y.H.; Park, S.; Park, K.B.; Noh, M.Y.; Cho, J.H.; Ko, H.J.; Kim, C.E.; Patnaik, B.B.; Kim, J.; Won, R.; Bang, I.S.; Lee, Y.S.; Han, Y.S. In silico identification, characterization and expression analysis of attacin gene family in response to bacterial and fungal pathogens in Tenebrio molitor. Entomol. Res., 2018, 48, 45-54.
[http://dx.doi.org/10.1111/1748-5967.12287]
[39]
Li, J.Q.; Lu, X.Y.; Ma, J. Characterization and expression analysis of attacins, antimicro bial peptide-encoding genes, from the desert beetle Microdera punctipennis in response to low temperatures. Cryo Lett., 2017, 38(1), 65-74.
[PMID: 28376142]
[40]
Kishimoto, K.; Fujimoto, S.; Matsumoto, K.; Yamano, Y.; Morishima, I. Protein purification, cDNA cloning and gene expression of attacin, an antibacterial protein, from eri-silkworm, Samia cynthia ricini. Insect Biochem. Mol. Biol., 2002, 32(8), 881-887.
[http://dx.doi.org/10.1016/S0965-1748(01)00177-1] [PMID: 12110295]
[41]
Lekha, G.; Gupta, T.; Trivedy, K.; Ponnuvel, K. Paralogous gene conversion, allelic di vergence attacin genes and its expression profile in response to BmNPV infection in silkworm Bombyx mori. Invert. Surviv. J., 2015, 12, 214-224.
[42]
Hu, Y.; Aksoy, S. An antimicrobial peptide with trypanocidal activity characterized from Glossina morsitans morsitans. Insect Biochem. Mol. Biol., 2005, 35(2), 105-115.
[http://dx.doi.org/10.1016/j.ibmb.2004.10.007] [PMID: 15681221]
[43]
Xie, L.P.; Chen, G.Z.; Zhu, C.B.; Zhu, B.Q.; Hu, Y.J. Structural modification and expression of Attacin A from Glossina morsitans morsitans in E. coli and its antibacterial activities Int. J. Pept. Res. Ther., 2009, 15, 255-261.
[http://dx.doi.org/10.1007/s10989-009-9186-z]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy