Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

The Impact of Plant Bioactive Compounds on Aging and Fertility of Diverse Organisms: A Review

Author(s): Muhammad Akram Mohd Noordin, Mahanem Mat Noor and Wan Mohd Aizat*

Volume 20, Issue 13, 2020

Page: [1287 - 1299] Pages: 13

DOI: 10.2174/1389557520666200429101942

Price: $65

Abstract

It is expected that in 2050, there will be more than 20% of senior citizens aged over 60 years worldwide. Such alarming statistics require immediate attention to improve the health of the aging population. Since aging is closely related to the loss of antioxidant defense mechanisms, this situation eventually leads to numerous health problems, including fertility reduction. Furthermore, plant extracts have been used in traditional medicine as potent antioxidant sources. Although many experiments had reported the impact of various bioactive compounds on aging or fertility, there is a lack of review papers that combine both subjects. In this review, we have collected and discussed various bioactive compounds from 26 different plant species known to affect both longevity and fertility. These compounds, including phenolics and terpenes, are mostly involved in the antioxidant defense mechanisms of diverse organisms such as rats, mites, fruit flies, roundworms, and even roosters. A human clinical trial should be considered in the future to measure the effects of these bioactive compounds on human health and longevity. Ultimately, these plant-derived compounds could be developed into health supplements or potential medical drugs to ensure a healthy aging population.

Keywords: Aging, bioactive compound, natural product, polyphenol, terpenes, fertility.

Graphical Abstract
[1]
United Nations. Concise Report on the World Population Situation in 2014. Department of Economic and Social Affairs Population Division Economic & Social Affairs , 2014. https://www.un.org/en/development/desa/population/publications/trends/concise-report2014.asp
[2]
United Nations. Population Ageing and Sustainable Development 2017.http://www.un.org/en/development/desa/population/publications/pdf/popfacts/PopFacts_2017-1.pdf
[3]
Lee, S.; Mason, A.; Park, D. Why Does Population Aging Matter So Much for Asia? Population Aging , Economic Security and Economic Growth in Asia , 2011. https://hdl.handle.net/11540/2000
[4]
United Nations Population Fund. Ageing in the Twenty-First Century 2012.https://www.unfpa.org/publications/ageing-twenty-first-century
[5]
Mrsnik, M.; Beers, D.T.; Morozov, I. Global Aging 2010: An Irreversible Truth; Standard & Poor’s, , 2010. https://pdfs.semanticscholar.org/4309/5fd50ef86026fa87a855b18686691f42fd32.pdf?_ga=2.175326756.784926311.1593512361-1812584805.1551243577
[6]
Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev., 2010, 4(8), 118-126.
[http://dx.doi.org/10.4103/0973-7847.70902] [PMID: 22228951]
[7]
Aprioku, J.S. Pharmacology of free radicals and the impact of reactive oxygen species on the testis. J. Reprod. Infertil., 2013, 14(4), 158-172.
[PMID: 24551570]
[8]
Ilacqua, A.; Izzo, G.; Emerenziani, G. Pietro; Baldari, C.; Aversa, A. Lifestyle and fertility: The influence of stress and quality of life on male fertility. Reprod. Biol. Endocrinol., 2018, 16(115), 1-11.
[http://dx.doi.org/10.1186/s12958-018-0436-9]
[9]
Utami, S.; Sachrowardi, Q.R.; Damayanti, N.A.; Wardhana, A.; Syarif, I. Antioxidants, anticollagenase and antielastase potentials of ethanolic extract of ripe sesoot (Garcinia picrorrhiza Miq.) fruit as antiaging. J. Herbmed. Pharmacol., 2018, 7(2), 88-93.
[http://dx.doi.org/10.15171/jhp.2018.15]
[10]
Brawer, M.K. Testosterone replacement in men with andropause: An overview. Rev. Urol., 2004, 6(6)(Suppl. 6), S9-S15.
[PMID: 16985914]
[11]
Ng, E.H.; Ho, P.C. Ageing and ART: A waste of time and money? Best Pract. Res. Clin. Obstet. Gynaecol., 2007, 21(1), 5-20.
[http://dx.doi.org/10.1016/j.bpobgyn.2006.09.004] [PMID: 17049459]
[12]
Sengupta, P.; Nwagha, U. The aging sperm: Is the male reproductive capacity ticking to biological extinction? J. Basic Clin. Reprod. Sci., 2014, 3(1), 1-8.
[http://dx.doi.org/10.4103/2278-960X.129271]
[13]
Kovac, J.R.; Addai, J.; Smith, R.P.; Coward, R.M.; Lamb, D.J.; Lipshultz, L.I. The effects of advanced paternal age on fertility. Asian J. Androl., 2013, 15(6), 723-728.
[http://dx.doi.org/10.1038/aja.2013.92] [PMID: 23912310]
[14]
Kamaruzaman, K.A.; Noor, M.M. Gynura procumbens leaf improves blood glucose level, restores fertility and libido of diabetic induced male rats. Sains Malays., 2017, 46(9), 1471-1477.
[http://dx.doi.org/10.17576/jsm-2017-4609-16]
[15]
Hakim, P.; Sani, H.A.; Noor, M.M. Effects of Gynura procumbens extract and glibenclamide on sperm quality and specific activity of testicular lactate dehydrogenase in streptozotocin-induced diabetic rats. Malaysian J. Biochem. Mol. Biol., 2008, 16(2), 10-14.http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.580.9973
[16]
Kamaruzaman, K.A.; Aizat, W.M.; Noor, M.M. Gynura procumbens improved fertility of diabetic rats: Preliminary study of sperm proteomic. Evid. based Complement. Altern. Med., 2018, 2018, 1-13.
[http://dx.doi.org/10.1155/2018/9201539]
[17]
Nor-Raidah, R.; Mahanem, M.N. Enhancement of fertility and libido in male Sprague dawley rats following the administration of aqueous extract of Lunasia amara. Malaysian Appl. Biol. J., 2015, 44(1), 125-131.http://journalarticle.ukm.my/8719/
[18]
American College of Obstetricians and Gynecologists Committee on Gynecologic Practice and Practice Committee. Female agerelated fertility decline. Committee Opinion No. 589. Fertil. Steril., 2014, 101(3), 633-634.
[http://dx.doi.org/10.1016/j.fertnstert.2013.12.032 ] [PMID: 24559617]
[19]
Deatsman, S.; Vasilopoulos, T.; Rhoton-Vlasak, A. Age and fertility: A study on patient awareness. JBRA Assist. Reprod., 2016, 20(3), 99-106.
[http://dx.doi.org/10.5935/1518-0557.20160024] [PMID: 27584600]
[20]
Johnson, J.A.; Tough, S.; Blight, C.; Ns, D. Delayed child-bearing. J. Obstet. Gynaecol. Can., 2012, 34(1), 80-93.
[http://dx.doi.org/10.1016/S1701-2163(16)35138-6 ] [PMID: 22260768]
[21]
Vollenhoven, B.; Hunt, S.; Ivf, M.; Hunt, S. Ovarian ageing and the impact on female fertility. F1000 Res., 2018, 7, 1-6.
[http://dx.doi.org/10.12688/f1000research.16509.1 ] [PMID: 30542611]
[22]
Gougeon, A.; Ecochard, R.; Thalabard, J.C. Age-related changes of the population of human ovarian follicles: Increase in the disappearance rate of non-growing and early-growing follicles in aging women. Biol. Reprod., 1994, 50(3), 653-663.
[http://dx.doi.org/10.1095/biolreprod50.3.653] [PMID: 8167237]
[23]
Qian, D.; Li, Z.; Zhang, Y.; Huang, Y.; Wu, Q.; Ru, G.; Chen, M.; Wang, B. Response of mouse zygotes treated with mild hydrogen peroxide as a model to reveal novel mechanisms of oxidative stress-induced injury in early embryos. Oxid. Med. Cell. Longev., 2016. 1521428
[http://dx.doi.org/10.1155/2016/1521428] [PMID: 27738489]
[24]
Zhang, Y.; Qian, D.; Li, Z.; Huang, Y.; Wu, Q.; Ru, G.; Chen, M.; Wang, B. Oxidative stress-induced DNA damage of mouse zygotes triggers G2/M checkpoint and phosphorylates Cdc25 and Cdc2. Cell Stress Chaperones, 2016, 21(4), 687-696.
[http://dx.doi.org/10.1007/s12192-016-0693-5] [PMID: 27117522]
[25]
Perkins, A.T.; Das, T.M.; Panzera, L.C.; Bickel, S.E. Oxidative stress in oocytes during midprophase induces premature loss of cohesion and chromosome segregation errors. Proc. Natl. Acad. Sci. USA, 2016, 113(44), E6823-E6830.
[http://dx.doi.org/10.1073/pnas.1612047113] [PMID: 27791141]
[26]
Alkin, B. Usefull Plants - Medicines: At Least 28,187 Plant species are currently recorded as being of medicinal use. Describing the world’s plants; Willis, K., Ed.; Royal Botanic Gardens: Kew, London (UK), 2017, pp. 22-29.
[PMID: 29144713]
[27]
Agostini-costa, T.S.; Vieira, R.F.; Bizzo, H.R.; Silveira, D.; Gimenes, M.A. Secondary metabolites. Chromatography and its applications; Dhanarasu, S., Ed.; IntechOpen, 2012, pp. 131-164.
[http://dx.doi.org/10.5772/35705]
[28]
Anulika, N.P.; Ignatius, E.O.; Raymond, E.S.; Osasere, O.; Hilda, A. The chemistry of natural product. Plant Secondary Metabolites. Int. J. Technol. Enhanc. Emerg. Eng. Res., 2016, 4(8), 1-9.https://www.ijteee.org/final-print/aug2016/The-Chemistry-Of-Natural-Product-Plant-Secondary-Metabolites.pdf
[29]
Li, A.N.; Li, S.; Zhang, Y.J.; Xu, X.R.; Chen, Y.M.; Li, H.B. Resources and biological activities of natural polyphenols. Nutrients, 2014, 6(12), 6020-6047.
[http://dx.doi.org/10.3390/nu6126020] [PMID: 25533011]
[30]
Velderrain-Rodríguez, G.R.; Palafox-Carlos, H.; Wall-Medrano, A.; Ayala-Zavala, J.F.; Chen, C.Y.; Robles-Sánchez, M. Astiazaran- García, H.; Alvarez-Parrilla, E.; González-Aguilar, G.A. Phenolic compounds: Their journey after intake. Food Funct., 2014, 5(2), 189-197.
[http://dx.doi.org/10.1039/C3FO60361J] [PMID: 24336740]
[31]
Działo, M.; Mierziak, J.; Korzun, U.; Preisner, M.; Szopa, J.; Kulma, A. The potential of plant phenolics in prevention and therapy of skin disorders. Int. J. Mol. Sci., 2016, 17(2), 160-201.
[http://dx.doi.org/10.3390/ijms17020160] [PMID: 26901191]
[32]
Kaurinovic, B.; Vastag, D. Flavonoids and Phenolic Acids as Potential Natural Antioxidants; IntechOpen, 2019, pp. 1-20.
[http://dx.doi.org/10.5772/intechopen.83731]
[33]
Leavell, M.D.; McPhee, D.J.; Paddon, C.J. Developing fermentative terpenoid production for commercial usage. Curr. Opin. Biotechnol., 2016, 37, 114-119.
[http://dx.doi.org/10.1016/j.copbio.2015.10.007] [PMID: 26723008]
[34]
Perveen, S. ntroductory Chapter: Terpenes and Terpenoids. In IntechOpen , 2018; pp. 1-11. https://www.intechopen.com/books/terpenes-and terpenoids/introductorychapter- terpenes-and-terpenoids
[35]
Abdallah, I.I.; Quax, W.J. A glimpse into the biosynthesis of terpenoids. NRLS Int. Conferance Nat. Resour. Life Sci., 2017, 2017, 81-98.
[http://dx.doi.org/10.18502/kls.v3i5.981]
[36]
Girdhar, S.; Girdhar, A.; Verma, S.K.; Lather, V.; Pandita, D. Plant derived alkaloids in major neurodegenerative diseases: from animal models to clinical trials. J. Ayurvedic Herb. Med., 2015, 1(3), 91-100. https://www.ayurvedjournal.com/JAHM_201513_07.pdf
[38]
Fazry, S.; Noordin, M.A.M.; Sanusi, S.; Noor, M.M.; Aizat, W.M.; Lazim, A.M.; Dyari, H.R.E.; Jamar, N.H.; Remali, J.; Othman, B.A.; Law, D.; Sidik, N.M.; Cheah, Y.H.; Lim, Y.C. Cytotoxicity and toxicity evaluation of xanthone crude extract on hypoxic human hepatocellular carcinoma and zebrafish (Danio rerio) embryos. Toxics, 2018, 6(4), 60-70.
[http://dx.doi.org/10.3390/toxics6040060] [PMID: 30304811]
[39]
Davidson, K.T.; Zhu, Z.; Bai, Q.; Xiao, H.; Wakefield, M.R.; Fang, Y. Blueberry as a potential radiosensitizer for treating cervical cancer. Pathol. Oncol. Res., 2019, 25(1), 81-88.
[http://dx.doi.org/10.1007/s12253-017-0319-y] [PMID: 28963664]
[40]
Rajabian, A.; Rameshrad, M.; Hosseinzadeh, H. Therapeutic potential of Panax ginseng and its constituents, ginsenosides and gintonin, in neurological and neurodegenerative disorders: A patent review. Expert Opin. Ther. Pat., 2019, 29(1), 55-72.
[http://dx.doi.org/10.1080/13543776.2019.1556258]
[41]
Silva, J.; Alves, C.; Freitas, R.; Martins, A.; Pinteus, S.; Ribeiro, J.; Gaspar, H.; Alfonso, A.; Pedrosa, R. Antioxidant and neuroprotective potential of the brown seaweed Bifurcaria bifurcata in an in vitro Parkinson’s Disease Model. Mar. Drugs, 2019, 17(2), 1-16.
[http://dx.doi.org/10.3390/md17020085] [PMID: 30717087]
[42]
Villeponteau, B.; Matsagas, K.; Nobles, A.C.; Rizza, C.; Horwitz, M.; Benford, G.; Mockett, R.J. Herbal supplement extends life span under some environmental conditions and boosts stress resistance. PLoS One, 2015, 10(4) e0119068
[http://dx.doi.org/10.1371/journal.pone.0119068] [PMID: 25879540]
[43]
Adeldust, H.; Farzinpour, A.; Farshad, A.; Rostamzadeh, J. Lopez- Bejar, M. Increased sperm cell production in ageing roosters by an oral treatment with an aromatase inhibitor and a natural herbal extract designed for improving fertility. Reprod. Domest. Anim., 2017, 52(4)(Suppl. 4), 58-60.
[http://dx.doi.org/10.1111/rda.13058] [PMID: 29052328]
[44]
Solon-Biet, S.M.; Walters, K.A.; Simanainen, U.K.; McMahon, A.C.; Ruohonen, K.; Ballard, J.W.; Raubenheimer, D.; Handelsman, D.J.; Le Couteur, D.G.; Simpson, S.J. Macronutrient balance, reproductive function, and lifespan in aging mice. Proc. Natl. Acad. Sci. USA, 2015, 112(11), 3481-3486.
[http://dx.doi.org/10.1073/pnas.1422041112] [PMID: 25733862]
[45]
Kubrak, O.I.; Kučerová, L.; Theopold, U.; Nässel, D.R. The sleeping beauty: How reproductive diapause affects hormone signaling, metabolism, immune response and somatic maintenance in Drosophila melanogaster. PLoS One, 2014, 9(11) e113051
[http://dx.doi.org/10.1371/journal.pone.0113051] [PMID: 25393614]
[46]
Gerofotis, C.D.; Ioannou, C.S.; Nakas, C.T.; Papadopoulos, N.T. The odor of a plant metabolite affects life history traits in dietary restricted adult olive flies. Sci. Rep., 2016, 6, 28540.
[http://dx.doi.org/10.1038/srep28540] [PMID: 27339862]
[47]
Gao, L.; Duan, D.D.; Zhang, J.Q.; Zhou, Y.Z.; Qin, X.M.; Du, G.H. A bioinformatic approach for the discovery of antiaging effects of baicalein from Scutellaria baicalensis Georgi. Rejuvenation Res., 2016, 19(5), 414-422.
[http://dx.doi.org/10.1089/rej.2015.1760] [PMID: 26778291]
[48]
Chhabra, R.; Kolli, S.; Bauer, J.H. Organically grown food provides health benefits to Drosophila melanogaster. PLoS One, 2013, 8(1) e52988
[http://dx.doi.org/10.1371/journal.pone.0052988] [PMID: 23326371]
[49]
Kim, S.; Jung, J.; Ahn, Y.; Restifo, L.L.; Kwon, H. Drosophila as a model system for studying lifespan and neuroprotective activities of plant-derived compounds. J. Asia Pac. Entomol., 2011, 14(4), 509-517.
[http://dx.doi.org/10.1016/j.aspen.2011.07.001]
[50]
Martel, J.; Ojcius, D.M.; Ko, Y-F.; Chang, C-J.; Young, J.D. Antiaging effects of bioactive molecules isolated from plants and fungi. Med. Res. Rev., 2019, 39(5), 1515-1552.
[http://dx.doi.org/10.1002/med.21559] [PMID: 30648267]
[51]
Chattopadhyay, D.; Thirumurugan, K. Longevity promoting efficacies of different plant extracts in lower model organisms. Mech. Ageing Dev., 2018, 171, 47-57.
[http://dx.doi.org/10.1016/j.mad.2018.03.002] [PMID: 29526449]
[52]
Leonov, A.; Arlia-Ciommo, A.; Piano, A.; Svistkova, V.; Lutchman, V.; Medkour, Y.; Titorenko, V.I. Longevity extension by phytochemicals. Molecules, 2015, 20(4), 6544-6572.
[http://dx.doi.org/10.3390/molecules20046544] [PMID: 25871373]
[53]
Askari Jahromi, M.; Movahedin, M.; Mazaheri, Z.; Amanlu, M.; Mowla, S.J.; Batooli, H. Evaluating the effects of Escanbil (Calligonum) extract on the expression level of Catsper gene variants and sperm motility in aging male mice. Iran. J. Reprod. Med., 2014, 12(7), 459-466.
[PMID: 25114667]
[54]
Badria, F.A.; Ameen, M.; Akl, M.R. Evaluation of cytotoxic compounds from Calligonum comosum L. growing in Egypt. Z. Natforsch. C J. Biosci., 2007, 62(9-10), 656-660.
[http://dx.doi.org/10.1515/znc-2007-9-1005] [PMID: 18069236]
[55]
Jin, J.L.; O’Doherty, A.M.; Wang, S.; Zheng, H.; Sanders, K.M.; Yan, W. Catsper3 and catsper4 encode two cation channel-like proteins exclusively expressed in the testis. Biol. Reprod., 2005, 73(6), 1235-1242.
[http://dx.doi.org/10.1095/biolreprod.105.045468] [PMID: 16107607]
[56]
Dhawan, K.; Kumar, S.; Sharma, A. Beneficial effects of chrysin and benzoflavone on virility in 2-year-old male rats. J. Med. Food, 2002, 5(1), 43-48.
[http://dx.doi.org/10.1089/109662002753723214] [PMID: 12511112]
[57]
Chan, H.J.; Petrossian, K.; Chen, S. Structural and functional characterization of aromatase, estrogen receptor, and their genes in endocrine- responsive and -resistant breast cancer cells. J. Steroid Biochem. Mol. Biol., 2016, 161, 73-83.
[http://dx.doi.org/10.1016/j.jsbmb.2015.07.018] [PMID: 26277097]
[58]
Campbell, D.R.; Kurzer, M.S. Flavonoid inhibition of aromatase enzyme activity in human preadipocytes. J. Steroid Biochem. Mol. Biol., 1993, 46(3), 381-388.
[http://dx.doi.org/10.1016/0960-0760(93)90228-O] [PMID: 9831487]
[59]
Edmunds, K.M.; Holloway, A.C.; Crankshaw, D.J.; Agarwal, S.K.; Foster, W.G. The effects of dietary phytoestrogens on aromatase activity in human endometrial stromal cells. Reprod. Nutr. Dev., 2005, 45(6), 709-720.
[http://dx.doi.org/10.1051/rnd:2005055] [PMID: 16285913]
[60]
Ganzera, M.; Bedir, E.; Khan, I.A. Determination of steroidal saponins in Tribulus terrestris by reversed-phase high-performance liquid chromatography and evaporative light scattering detection. J. Pharm. Sci., 2001, 90(11), 1752-1758.
[http://dx.doi.org/10.1002/jps.1124] [PMID: 11745732]
[61]
Hemalatha, S.; Hari, R. Fertility Enhancing Effect of saponin rich butanol extracts of Tribulus terrestris fruits in male albino rats. Int. J. Pharm. Clin. Res., 2015, 7(1), 36-43. https://impactfactor.org/PDF/IJPCR/7/IJPCR,Vol7,Issue1,Article7.pdf
[62]
Jeong, D-E.; Artan, M.; Seo, K.; Lee, S-J. Regulation of lifespan by chemosensory and thermosensory systems: Findings in invertebrates and their implications in mammalian aging. Front. Genet., 2012, 3, 218.
[http://dx.doi.org/10.3389/fgene.2012.00218] [PMID: 23087711]
[63]
Hansen, M.; Flatt, T.; Aguilaniu, H. Reproduction, fat metabolism, and life span: What is the connection? Cell Metab., 2013, 17(1), 10-19.
[http://dx.doi.org/10.1016/j.cmet.2012.12.003] [PMID: 23312280]
[64]
Karthikeyan, R.; Kanimozhi, G.; Madahavan, N.R.; Agilan, B.; Ganesan, M.; Prasad, N.R.; Rathinaraj, P. Alpha-pinene attenuates UVA-induced photoaging through inhibition of matrix metalloproteinases expression in mouse skin. Life Sci., 2019, 217, 110-118.
[http://dx.doi.org/10.1016/j.lfs.2018.12.003] [PMID: 30521868]
[65]
Boyd, O.; Weng, P.; Sun, X.; Alberico, T.; Laslo, M.; Obenland, D.M.; Kern, B.; Zou, S. Nectarine promotes longevity in Drosophila melanogaster. Free Radic. Biol. Med., 2011, 50(11), 1669-1678.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.03.011 PMID:21406223]
[66]
Dwivedi, V.; Anandan, E.M.; Mony, R.S.; Muraleedharan, T.S.; Valiathan, M.S.; Mutsuddi, M.; Lakhotia, S.C. In vivo effects of traditional Ayurvedic formulations in Drosophila melanogaster model relate with therapeutic applications. PLoS One, 2012, 7(5) e37113
[http://dx.doi.org/10.1371/journal.pone.0037113] [PMID: 22606337]
[67]
Cantín, C.M.; Moreno, M.A.; Gogorcena, Y. Evaluation of the antioxidant capacity, phenolic compounds, and vitamin C content of different peach and nectarine [Prunus persica (L.) Batsch] breeding progenies. J. Agric. Food Chem., 2009, 57(11), 4586-4592.
[http://dx.doi.org/10.1021/jf900385a] [PMID: 19397288]
[68]
Gil, M.I.; Tomás-Barberán, F.A.; Hess-Pierce, B.; Kader, A.A.; Vitamin, C. Antioxidant capacities, phenolic compounds, carotenoids, and vitamin C contents of nectarine, peach, and plum cultivars from California. J. Agric. Food Chem., 2002, 50(17), 4976-4982.
[http://dx.doi.org/10.1021/jf020136b] [PMID: 12166993]
[69]
Huber, M.; Rembiałkowska, E.; Srednicka, D.; Bügel, S.; van de Vijver, L.P. Organic food and impact on human health: Assessing the status quo and prospects of research. NJAS Wagening. J. Life Sci., 2011, 2011(58), 103-109.
[http://dx.doi.org/10.1016/j.njas.2011.01.004]
[70]
Zhang, Y.J.; Tanaka, T.; Iwamoto, Y.; Yang, C.R.; Kouno, I. Novel sesquiterpenoids from the roots of Phyllanthus emblica. J. Nat. Prod., 2001, 64(7), 870-873.
[http://dx.doi.org/10.1021/np010059z] [PMID: 11473414]
[71]
Han, S.P.; Tang, Y.H.; Smith, R. Functional diversity of the hnRNPs: past, present and perspectives. Biochem. J., 2010, 430(3), 379-392.
[http://dx.doi.org/10.1042/BJ20100396] [PMID: 20795951]
[72]
Kenyon, C. The plasticity of aging: Insights from long-lived mutants. Cell, 2005, 120(4), 449-460.
[http://dx.doi.org/10.1016/j.cell.2005.02.002] [PMID: 15734678]
[73]
Liu, X.; Lin, X.; Mi, Y.; Li, J.; Zhang, C. Grape seed proanthocyanidin extract prevents ovarian aging by inhibiting oxidative stress in the Hens. Oxid. Med. Cell. Longev., 2018, 2018, 9390810
[http://dx.doi.org/10.1155/2018/9390810] [PMID: 29541349]
[74]
Li, J.; Zhang, C.X.; Liu, Y.M.; Chen, K.L.; Chen, G. A comparative study of anti-aging properties and mechanism: resveratrol and caloric restriction. Oncotarget, 2017, 8(39), 65717-65729.
[http://dx.doi.org/10.18632/oncotarget.20084] [PMID: 29029466]
[75]
Kim, C.K.; Park, J.K.; Lee, J.S.; Park, S.K. Increased resistance to stress and an anti-aging effect due to Acanthopanax sessiliflorus roots in Caenorhabditis elegans. Food Sci. Biotechnol., 2014, 23(5), 1653-1659.
[http://dx.doi.org/10.1007/s10068-014-0225-y]
[76]
Park, J.K.; Kim, C.K.; Gong, S.K.; Yu, A.R.; Lee, M.Y.; Park, S.K. Acanthopanax sessiliflorus stem confers increased resistance to environmental stresses and lifespan extension in Caenorhabditis elegans. Nutr. Res. Pract., 2014, 8(5), 526-532.
[http://dx.doi.org/10.4162/nrp.2014.8.5.526] [PMID: 25324932]
[77]
Jafari, M.; Zarban, A.; Pham, S.; Wang, T. Rosa damascena decreased mortality in adult Drosophila. J. Med. Food, 2008, 11(1), 9-13.
[http://dx.doi.org/10.1089/jmf.2007.546] [PMID: 18361732]
[78]
Rangsinth, P.; Prasansuklab, A.; Duangjan, C.; Gu, X.; Meemon, K.; Wink, M.; Tencomnao, T. Leaf extract of Caesalpinia mimosoides enhances oxidative stress resistance and prolongs lifespan in Caenorhabditis elegans. BMC Complement. Altern. Med., 2019, 19(1), 164.
[http://dx.doi.org/10.1186/s12906-019-2578-5] [PMID: 31286949]
[79]
Chen, C.; Song, J.; Chen, M.; Li, Z.; Tong, X.; Hu, H.; Xiang, Z.; Lu, C.; Dai, F. Rhodiola rosea extends lifespan and improves stress tolerance in silkworm, Bombyx mori. Biogerontology, 2016, 17(2), 373-381.
[http://dx.doi.org/10.1007/s10522-015-9622-8] [PMID: 26497336]
[80]
Schriner, S.E.; Abrahamyan, A.; Avanessian, A.; Bussel, I.; Maler, S.; Gazarian, M.; Holmbeck, M.A.; Jafari, M. Decreased mitochondrial superoxide levels and enhanced protection against paraquat in Drosophila melanogaster supplemented with Rhodiola rosea. Free Radic. Res., 2009, 43(9), 836-843.
[http://dx.doi.org/10.1080/10715760903089724] [PMID: 19634056]
[81]
Lee, K.S.; Lee, B.S.; Semnani, S.; Avanesian, A.; Um, C.Y.; Jeon, H.J.; Seong, K.M.; Yu, K.; Min, K.J.; Jafari, M. Curcumin extends life span, improves health span, and modulates the expression of age-associated aging genes in Drosophila melanogaster. Rejuvenation Res., 2010, 13(5), 561-570.
[http://dx.doi.org/10.1089/rej.2010.1031] [PMID: 20645870]
[82]
Schriner, S.E.; Kuramada, S.; Lopez, T.E.; Truong, S.; Pham, A.; Jafari, M. Extension of Drosophila lifespan by cinnamon through a sex-specific dependence on the insulin receptor substrate chico. Exp. Gerontol., 2014, 60, 220-230.
[http://dx.doi.org/10.1016/j.exger.2014.09.019] [PMID: 25456850]
[83]
Lin, W.S.; Chen, J.Y.; Wang, J.C.; Chen, L.Y.; Lin, C.H.; Hsieh, T.R.; Wang, M.F.; Fu, T.F.; Wang, P.Y. The anti-aging effects of Ludwigia octovalvis on Drosophila melanogaster and SAMP8 mice. Age (Dordr.), 2014, 36(2), 689-703.
[http://dx.doi.org/10.1007/s11357-013-9606-z] [PMID: 24338263]
[84]
Chandrashekara, K.T.; Shakarad, M.N. Aloe vera or resveratrol supplementation in larval diet delays adult aging in the fruit fly, Drosophila melanogaster. J. Gerontol. A Biol. Sci. Med. Sci., 2011, 66(9), 965-971.
[http://dx.doi.org/10.1093/gerona/glr103] [PMID: 21719611]
[85]
Chattopadhyay, D.; James, J.; Roy, D.; Sen, S.; Chatterjee, R.; Thirumurugan, K. Effect of semolina-jaggery diet on survival and development of Drosophila melanogaster. Fly (Austin), 2015, 9(1), 16-21.
[http://dx.doi.org/10.1080/19336934.2015.1079361 ] [PMID: 26252611]
[86]
Hamman, J.H. Composition and applications of Aloe vera leaf gel. Molecules, 2008, 13(8), 1599-1616.
[http://dx.doi.org/10.3390/molecules13081599PMID: 18794775]
[87]
Mahboubi, M. Rosa damascena as holy ancient herb with novel applications. J. Tradit. Complement. Med., 2015, 6(1), 10-16.
[http://dx.doi.org/10.1016/j.jtcme.2015.09.005] [PMID: 26870673]
[88]
Sung, B.; Chung, J.W.; Bae, H.R.; Choi, J.S.; Kim, C.M.I.N.; Kim, N.D. Humulus japonicus extract exhibits antioxidative and antiaging effects via modulation of the AMPK-SIRT1 pathway. Exp. Ther. Med., 2015, 9(5), 1819-1826.
[http://dx.doi.org/10.3892/etm.2015.2302] [PMID: 26136899]
[89]
Hawley, S.A.; Boudeau, J.; Reid, J.L.; Mustard, K.J.; Udd, L.; Mäkelä, T.P.; Alessi, D.R.; Hardie, D.G. Complexes between the LKB1 tumor suppressor, STRAD α/beta and MO25 α/beta are upstream kinases in the AMP-activated protein kinase cascade. J. Biol., 2003, 2(4), 28.
[http://dx.doi.org/10.1186/1475-4924-2-28] [PMID: 14511394]
[90]
Woods, A.; Dickerson, K.; Heath, R.; Hong, S.P.; Momcilovic, M.; Johnstone, S.R.; Carlson, M.; Carling, D. Ca2+/calmodulin dependent protein kinase kinase-β acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab., 2005, 2(1), 21-33.
[http://dx.doi.org/10.1016/j.cmet.2005.06.005] [PMID: 16054096]
[91]
Momcilovic, M.; Hong, S.P.; Carlson, M. Mammalian TAK1 activates Snf1 protein kinase in yeast and phosphorylates AMP activated protein kinase in vitro. J. Biol. Chem., 2006, 281(35), 25336-25343.
[http://dx.doi.org/10.1074/jbc.M604399200] [PMID: 16835226]
[92]
Hardie, D.G. AMP-activated protein kinase: maintaining energy homeostasis at the cellular and whole-body levels. Annu. Rev. Nutr., 2014, 34, 31-55.
[http://dx.doi.org/10.1146/annurev-nutr-071812-161148 ] [PMID: 24850385]
[93]
Li, X.N.; Song, J.; Zhang, L.; LeMaire, S.A.; Hou, X.; Zhang, C.; Coselli, J.S.; Chen, L.; Wang, X.L.; Zhang, Y.; Shen, Y.H. Activation of the AMPK-FOXO3 pathway reduces fatty acid-induced increase in intracellular reactive oxygen species by upregulating thioredoxin. Diabetes, 2009, 58(10), 2246-2257.
[http://dx.doi.org/10.2337/db08-1512] [PMID: 19592618]
[94]
Klotz, L.; Sánchez-ramos, C.; Prieto-arroyo, I.; Urbánek, P.; Steinbrenner, H.; Monsalve, M. Redox biology redox regulation of foxo transcription factors. Redox Biol., 2015, 2015(6), 51-72.
[http://dx.doi.org/10.1016/j.redox.2015.06.019]
[95]
Nguyen, T.M.D.; Seigneurin, F.; Froment, P.; Combarnous, Y.; Blesbois, E. The 5′-AMP-Activated Protein Kinase (AMPK) is involved in the augmentation of antioxidant defenses in cryopreserved chicken sperm. PLoS One, 2015, 10(7) e0134420
[http://dx.doi.org/10.1371/journal.pone.0134420] [PMID: 26222070]
[96]
Liu, Z.; Castrillon, D.H.; Zhou, W.; Richards, J.S. FOXO1/3 depletion in granulosa cells alters follicle growth, death and regulation of pituitary FSH. Mol. Endocrinol., 2013, 27(2), 238-252.
[http://dx.doi.org/10.1210/me.2012-1296] [PMID: 23322722]
[97]
Tartarin, P.; Guibert, E.; Touré, A.; Ouiste, C.; Leclerc, J.; Sanz, N.; Brière, S.; Dacheux, J.L.; Delaleu, B.; McNeilly, J.R.; McNeilly, A.S.; Brillard, J.P.; Dupont, J.; Foretz, M.; Viollet, B.; Froment, P. Inactivation of AMPKα1 induces asthenozoospermia and alters spermatozoa morphology. Endocrinology, 2012, 153(7), 3468-3481.
[http://dx.doi.org/10.1210/en.2011-1911] [PMID: 22581459]
[98]
Galardo, M.N.; Riera, M.F.; Pellizzari, E.H.; Cigorraga, S.B.; Meroni, S.B. The AMP-activated protein kinase activator, 5- aminoimidazole-4-carboxamide-1-b-D-ribonucleoside, regulates lactate production in rat Sertoli cells. J. Mol. Endocrinol., 2007, 39(4), 279-288.
[http://dx.doi.org/10.1677/JME-07-0054] [PMID: 17909267]
[99]
Lamming, D.W. Diminished mTOR signaling: A common mode of action for endocrine longevity factors. Springerplus, 2014, 3(735), 735.
[http://dx.doi.org/10.1186/2193-1801-3-735] [PMID: 25674466]
[100]
Santos, J.; Leitão-Correia, F.; Sousa, M.J.; Leão, C. Dietary restriction and nutrient balance in aging. Oxid. Med. Cell. Longev., 2016, 2016 4010357
[http://dx.doi.org/10.1155/2016/4010357] [PMID: 26682004]
[101]
Tatar, M.; Tatar, M.; Kopelman, A.; Epstein, D.; Tu, M.; Yin, C. A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science, 2001, 292, 107-109.
[http://dx.doi.org/10.1126/science.1057987]
[102]
Cantó, C.; Gerhart-Hines, Z.; Feige, J.N.; Lagouge, M.; Noriega, L.; Milne, J.C.; Elliott, P.J.; Puigserver, P.; Auwerx, J. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature, 2009, 458(7241), 1056-1060.
[http://dx.doi.org/10.1038/nature07813] [PMID: 19262508]
[103]
Fontana, L.; Partridge, L.; Longo, V.D. Extending healthy life span— From yeast to humans. Science, 2010, 328, 321-326.
[http://dx.doi.org/10.1126/science.1172539] [PMID: 20395504]
[104]
Wei, M.; Fabrizio, P.; Madia, F.; Hu, J.; Ge, H.; Li, L.M.; Longo, V.D. Tor1/Sch9-regulated carbon source substitution is as effective as calorie restriction in life span extension. PLoS Genet., 2009, 5(5) e1000467
[http://dx.doi.org/10.1371/journal.pgen.1000467] [PMID: 19424415]
[105]
Guo, Z.; Yu, Q. Role of mTOR signaling in female reproduction. Front. Endocrinol. (Lausanne), 2019, 10, 692.
[http://dx.doi.org/10.3389/fendo.2019.00692] [PMID: 31649622]
[106]
Economist Intelligence Unit. Reinventing Biopharma: Strategies for an Evolving Marketplace 2012, 1-18.http://docplayer.net/55247315-Reinventing-biopharma-strategies-for-an-evolving-marketplace-the-patient-led-r-d-strategy.html
[107]
Lee, J.A.; Berg, E.L. Neoclassic drug discovery: The case for lead generation using phenotypic and functional approaches. J. Biomol. Screen., 2013, 18(10), 1143-1155.
[http://dx.doi.org/10.1177/1087057113506118] [PMID: 24080259]
[108]
Dwyer, J.T.; Coates, P.M.; Smith, M.J. Dietary supplements: Regulatory challenges and research resources. Nutrients, 2018, 10(1), 1-24.
[http://dx.doi.org/10.3390/nu10010041] [PMID: 29300341]
[109]
Paul, S.M.; Mytelka, D.S.; Dunwiddie, C.T.; Persinger, C.C.; Munos, B.H.; Lindborg, S.R.; Schacht, A.L. How to improve R&D productivity: The pharmaceutical industry’s grand challenge. Nat. Rev. Drug Discov., 2010, 9(3), 203-214.
[http://dx.doi.org/10.1038/nrd3078] [PMID: 20168317]
[110]
Morgan, S.; Grootendorst, P.; Lexchin, J.; Cunningham, C.; Greyson, D. The cost of drug development: A systematic review. Health Policy, 2011, 100(1), 4-17.
[http://dx.doi.org/10.1016/j.healthpol.2010.12.002] [PMID: 21256615]
[111]
Larrosa, M.; García-Conesa, M.T.; Espín, J.C.; Tomás-Barberán, F.A. Ellagitannins, ellagic acid and vascular health. Mol. Aspects Med., 2010, 31(6), 513-539.
[http://dx.doi.org/10.1016/j.mam.2010.09.005] [PMID: 20837052]
[112]
Martínez-Ballesta, M.; Gil-Izquierdo, Á.; García-Viguera, C. Domínguez- Perles, R. Nanoparticles and controlled delivery for bioactive compounds: outlining challenges for new “smart-foods” for health. Foods, 2018, 7(5), 1-29.
[http://dx.doi.org/10.3390/foods7050072] [PMID: 29735897]
[113]
Bae, E.A.; Yook, C.S.; Oh, O-J.; Chang, S.Y.; Nohara, T.; Kim, D.H. Metabolism of chiisanoside from Acanthopanax divaricatus var. albeofructus by human intestinal bacteria and its relation to some biological activities. Biol. Pharm. Bull., 2001, 24(5), 582-585.
[http://dx.doi.org/10.1248/bpb.24.582] [PMID: 11379786]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy