Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

General Review Article

Recent Development of Machine Learning Methods in Microbial Phosphorylation Sites

Author(s): Md. Mamunur Rashid, Swakkhar Shatabda , Md. Mehedi Hasan* and Hiroyuki Kurata*

Volume 21, Issue 3, 2020

Page: [194 - 203] Pages: 10

DOI: 10.2174/1389202921666200427210833

Price: $65

Abstract

A variety of protein post-translational modifications has been identified that control many cellular functions. Phosphorylation studies in mycobacterial organisms have shown critical importance in diverse biological processes, such as intercellular communication and cell division. Recent technical advances in high-precision mass spectrometry have determined a large number of microbial phosphorylated proteins and phosphorylation sites throughout the proteome analysis. Identification of phosphorylated proteins with specific modified residues through experimentation is often laborintensive, costly and time-consuming. All these limitations could be overcome through the application of machine learning (ML) approaches. However, only a limited number of computational phosphorylation site prediction tools have been developed so far. This work aims to present a complete survey of the existing ML-predictors for microbial phosphorylation. We cover a variety of important aspects for developing a successful predictor, including operating ML algorithms, feature selection methods, window size, and software utility. Initially, we review the currently available phosphorylation site databases of the microbiome, the state-of-the-art ML approaches, working principles, and their performances. Lastly, we discuss the limitations and future directions of the computational ML methods for the prediction of phosphorylation.

Keywords: Microbial phosphorylation, post-translational modifications, feature encoding, machine learning, mycobacterial organisms, proteome analysis.

Graphical Abstract
[1]
Lai, S.J.; Tu, I.F.; Wu, W.L.; Yang, J.T.; Luk, L.Y.P.; Lai, M.C.; Tsai, Y.H.; Wu, S.H. Site-specific His/Asp phosphoproteomic analysis of prokaryotes reveals putative targets for drug resistance. BMC Microbiol., 2017, 17(1), 123.
[http://dx.doi.org/10.1186/s12866-017-1034-2] [PMID: 28545444]
[2]
Chao, J.D.; Wong, D.; Av-Gay, Y. Microbial protein-tyrosine kinases. J. Biol. Chem., 2014, 289(14), 9463-9472.
[http://dx.doi.org/10.1074/jbc.R113.520015] [PMID: 24554699]
[3]
Trost, B.; Kusalik, A. Computational prediction of eukaryotic phosphorylation sites. Bioinformatics, 2011, 27(21), 2927-2935.
[http://dx.doi.org/10.1093/bioinformatics/btr525] [PMID: 21926126]
[4]
Cohen, P. The role of protein phosphorylation in neural and hormonal control of cellular activity. Nature, 1982, 296(5858), 613-620.
[http://dx.doi.org/10.1038/296613a0] [PMID: 6280056]
[5]
Wood, C.D.; Thornton, T.M.; Sabio, G.; Davis, R.A.; Rincon, M. Nuclear localization of p38 MAPK in response to DNA damage. Int. J. Biol. Sci., 2009, 5(5), 428-437.
[http://dx.doi.org/10.7150/ijbs.5.428] [PMID: 19564926]
[6]
Uddin, S.; Lekmine, F.; Sassano, A.; Rui, H.; Fish, E.N.; Platanias, L.C. Role of Stat5 in type I interferon-signaling and transcriptional regulation. Biochem. Biophys. Res. Commun., 2003, 308(2), 325-330.
[http://dx.doi.org/10.1016/S0006-291X(03)01382-2] [PMID: 12901872]
[7]
Obenauer, J.C.; Cantley, L.C.; Yaffe, M.B. Scansite 2.0: Proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res., 2003, 31(13), 3635-3641.
[http://dx.doi.org/10.1093/nar/gkg584] [PMID: 12824383]
[8]
Lian, I.; Kim, J.; Okazawa, H.; Zhao, J.; Zhao, B.; Yu, J.; Chinnaiyan, A.; Israel, M.A.; Goldstein, L.S.; Abujarour, R.; Ding, S.; Guan, K.L. The role of YAP transcription coactivator in regulating stem cell self-renewal and differentiation. Genes Dev., 2010, 24(11), 1106-1118.
[http://dx.doi.org/10.1101/gad.1903310] [PMID: 20516196]
[9]
Bu, Y-H.; He, Y-L.; Zhou, H-D.; Liu, W.; Peng, D.; Tang, A-G.; Tang, L-L.; Xie, H.; Huang, Q-X.; Luo, X-H.; Liao, E.Y. Insulin receptor substrate 1 regulates the cellular differentiation and the matrix metallopeptidase expression of preosteoblastic cells. J. Endocrinol., 2010, 206(3), 271-277.
[http://dx.doi.org/10.1677/JOE-10-0064] [PMID: 20525764]
[10]
Cohen, P. Protein kinases--the major drug targets of the twenty-first century? Nat. Rev. Drug Discov., 2002, 1(4), 309-315.
[http://dx.doi.org/10.1038/nrd773] [PMID: 12120282]
[11]
Roskoski, R., Jr A historical overview of protein kinases and their targeted small molecule inhibitors. Pharmacol. Res., 2015, 100, 1-23.
[http://dx.doi.org/10.1016/j.phrs.2015.07.010] [PMID: 26207888]
[12]
Chen, Y.A.; Eschrich, S.A. Computational methods and opportunities for phosphorylation network medicine. Transl. Cancer Res., 2014, 3(3), 266-278.
[PMID: 25530950]
[13]
Loughery, J.; Meek, D. Switching on p53: an essential role for protein phosphorylation? Biodiscovery, 2013, 8, e8946
[http://dx.doi.org/10.7750/BioDiscovery.2013.8.1]
[14]
Pawson, T.; Scott, J.D. Protein phosphorylation in signaling--50 years and counting. Trends Biochem. Sci., 2005, 30(6), 286-290.
[http://dx.doi.org/10.1016/j.tibs.2005.04.013] [PMID: 15950870]
[15]
Pan, Z.; Wang, B.; Zhang, Y.; Wang, Y.; Ullah, S.; Jian, R.; Liu, Z.; Xue, Y. dbPSP: a curated database for protein phosphorylation sites in prokaryotes. Database, 2015, 2015, bav031
[16]
Hasan, M.M.; Rashid, M.M.; Khatun, M.S.; Kurata, H. Computational identification of microbial phosphorylation sites by the enhanced characteristics of sequence information. Sci. Rep., 2019, 9(1), 8258.
[http://dx.doi.org/10.1038/s41598-019-44548-x] [PMID: 31164681]
[17]
Dworkin, J. Ser/Thr phosphorylation as a regulatory mechanism in bacteria. Curr. Opin. Microbiol., 2015, 24, 47-52.
[http://dx.doi.org/10.1016/j.mib.2015.01.005] [PMID: 25625314]
[18]
Mijakovic, I.; Macek, B. Impact of phosphoproteomics on studies of bacterial physiology. FEMS Microbiol. Rev., 2012, 36(4), 877-892.
[http://dx.doi.org/10.1111/j.1574-6976.2011.00314.x] [PMID: 22091997]
[19]
Hutchings, M.I.; Hong, H.J.; Buttner, M.J. The vancomycin resistance VanRS two-component signal transduction system of Streptomyces coelicolor. Mol. Microbiol., 2006, 59(3), 923-935.
[http://dx.doi.org/10.1111/j.1365-2958.2005.04953.x] [PMID: 16420361]
[20]
Ohlsen, K.; Donat, S. The impact of serine/threonine phosphorylation in Staphylococcus aureus. Int. J. Med. Microbiol., 2010, 300(2-3), 137-141.
[http://dx.doi.org/10.1016/j.ijmm.2009.08.016] [PMID: 19783479]
[21]
Meier, R.; Alessi, D.R.; Cron, P.; Andjelković, M.; Hemmings, B.A. Mitogenic activation, phosphorylation, and nuclear translocation of protein kinase Bbeta. J. Biol. Chem., 1997, 272(48), 30491-30497.
[http://dx.doi.org/10.1074/jbc.272.48.30491] [PMID: 9374542]
[22]
Huttlin, E.L.; Jedrychowski, M.P.; Elias, J.E.; Goswami, T.; Rad, R.; Beausoleil, S.A.; Villén, J.; Haas, W.; Sowa, M.E.; Gygi, S.P. A tissue-specific atlas of mouse protein phosphorylation and expression. Cell, 2010, 143(7), 1174-1189.
[http://dx.doi.org/10.1016/j.cell.2010.12.001] [PMID: 21183079]
[23]
Boersema, P.J.; Mohammed, S.; Heck, A.J. Phosphopeptide fragmentation and analysis by mass spectrometry. J. Mass Spectrom., 2009, 44(6), 861-878.
[http://dx.doi.org/10.1002/jms.1599] [PMID: 19504542]
[24]
Li, Z.; Wu, P.; Zhao, Y.; Liu, Z.; Zhao, W. Prediction of serine/threonine phosphorylation sites in bacteria proteins. Advance in Structural Bioinformatics; Springer, 2015, pp. 275-285.
[http://dx.doi.org/10.1007/978-94-017-9245-5_16]
[25]
Zhang, Q.B.; Yu, K.; Liu, Z.; Wang, D.; Zhao, Y.; Yin, S.; Liu, Z. Prediction of prkC-mediated protein serine/threonine phosphorylation sites for bacteria. PLoS One, 2018, 13(10) e0203840
[http://dx.doi.org/10.1371/journal.pone.0203840] [PMID: 30278050]
[26]
Miller, M.L.; Soufi, B.; Jers, C.; Blom, N.; Macek, B.; Mijakovic, I. NetPhosBac - a predictor for Ser/Thr phosphorylation sites in bacterial proteins. Proteomics, 2009, 9(1), 116-125.
[http://dx.doi.org/10.1002/pmic.200800285] [PMID: 19053140]
[27]
Xue, Y.; Gao, X.; Cao, J.; Liu, Z.; Jin, C.; Wen, L.; Yao, X.; Ren, J. A summary of computational resources for protein phosphorylation. Curr. Protein Pept. Sci., 2010, 11(6), 485-496.
[http://dx.doi.org/10.2174/138920310791824138] [PMID: 20491621]
[28]
Chen, X.; Shi, S.P.; Suo, S.B.; Xu, H.D.; Qiu, J.D. Proteomic analysis and prediction of human phosphorylation sites in subcellular level reveal subcellular specificity. Bioinformatics, 2015, 31(2), 194-200.
[http://dx.doi.org/10.1093/bioinformatics/btu598] [PMID: 25236462]
[29]
Wurgler-Murphy, S.M.; King, D.M.; Kennelly, P.J. The Phosphorylation Site Database: A guide to the serine-, threonine-, and/or tyrosine-phosphorylated proteins in prokaryotic organisms. Proteomics, 2004, 4(6), 1562-1570.
[http://dx.doi.org/10.1002/pmic.200300711] [PMID: 15174126]
[30]
Lee, T.-Y; Huang, H.-D; Hung, J.-H; Huang, H.-Y; Yang, Y.-S; Wang, T.-H. dbPTM: an information repository of protein posttranslational modification. Nucleic Acids Res., 2006, 34(suppl_1), D622-D627.
[31]
Gnad, F; Gunawardena, J; Mann, M. PHOSIDA 2011: the posttranslational modification database. Nucleic Acids Res., 2010, 39(suppl_1), D253-D260.
[32]
Huang, Y.; Niu, B.; Gao, Y.; Fu, L.; Li, W. CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics, 2010, 26(5), 680-682.
[http://dx.doi.org/10.1093/bioinformatics/btq003] [PMID: 20053844]
[33]
Li, J.; Jia, J.; Li, H.; Yu, J.; Sun, H.; He, Y.; Lv, D.; Yang, X.; Glocker, M.O.; Ma, L. SysPTM 2.0: an updated systematic resource for post-translational modification. Database, 2014.2014, bau025.
[http://dx.doi.org/10.1093/database/bau025.Print 2014]
[34]
Chou, K.C. Some remarks on protein attribute prediction and pseudo amino acid composition. J. Theor. Biol., 2011, 273(1), 236-247.
[http://dx.doi.org/10.1016/j.jtbi.2010.12.024] [PMID: 21168420]
[35]
Liu, Y.; Wang, M.; Xi, J.; Luo, F.; Li, A. PTM-ssMP: a web server for predicting different types of post-translational modification sites using novel site-specific modification profile. Int. J. Biol. Sci., 2018, 14(8), 946-956.
[http://dx.doi.org/10.7150/ijbs.24121] [PMID: 29989096]
[36]
Hasan, M.M.; Khatun, M.S. Recent progress and challenges for protein pupylation sites prediction. EC Proteom. Bioinformatics, 2017, 2(1), 36-45.
[37]
Basith, S.; Manavalan, B.; Hwan Shin, T.; Lee, G. Machine intelligence in peptide therapeutics: A next-generation tool for rapid disease screening. Med. Res. Rev., 2020.
[http://dx.doi.org/10.1002/med.21658] [PMID: 31922268]
[38]
Song, J.; Wang, H.; Wang, J.; Leier, A.; Marquez-Lago, T.; Yang, B.; Zhang, Z.; Akutsu, T.; Webb, G.I.; Daly, R.J. PhosphoPredict: A bioinformatics tool for prediction of human kinase-specific phosphorylation substrates and sites by integrating heterogeneous feature selection. Sci. Rep., 2017, 7(1), 6862.
[http://dx.doi.org/10.1038/s41598-017-07199-4] [PMID: 28761071]
[39]
Hasan, M.M.; Khatun, M.S.; Kurata, H. A comprehensive review of in silico analysis for protein s-sulfenylation sites. Protein Pept. Lett., 2018, 25(9), 815-821.
[http://dx.doi.org/10.2174/0929866525666180905110619] [PMID: 30182830]
[40]
Hasan, M.M.; Zhou, Y.; Lu, X.; Li, J.; Song, J.; Zhang, Z. Computational identification of protein pupylation sites by using profile-based composition of k-spaced amino acid pairs. PLoS One, 2015, 10(6) e0129635
[http://dx.doi.org/10.1371/journal.pone.0129635] [PMID: 26080082]
[41]
Hasan, M.M.; Khatun, M.S. Prediction of protein Post- Translational Modification sites: an overview Ann. Proteom. Bioinform., 2018, 2, 049-055.
[42]
Xu, Z.-C.; Feng, P.-M.; Yang, H.; Qiu, W.-R.; Chen, W.; Lin, H. iRNAD: a computational tool for identifying D modification sites in RNA sequence. Bioinformatics, 2019, 35(23), 4922-4929.
[http://dx.doi.org/10.1093/bioinformatics/btz358] [PMID: 31077296]
[43]
Chen, Z.; Liu, X.; Li, F.; Li, C.; Marquez-Lago, T.; Leier, A.; Akutsu, T.; Webb, G.I.; Xu, D.; Smith, A.I. Large-scale comparative assessment of computational predictors for lysine post-translational modification sites. Brief. Bioinform., 2018, 20(6), 2267-2290.
[PMID: 30285084]
[44]
Cousin, C.; Derouiche, A.; Shi, L.; Pagot, Y.; Poncet, S.; Mijakovic, I. Protein-serine/threonine/tyrosine kinases in bacterial signaling and regulation. FEMS Microbiol. Lett., 2013, 346(1), 11-19.
[http://dx.doi.org/10.1111/1574-6968.12189] [PMID: 23731382]
[45]
Madec, E.; Laszkiewicz, A.; Iwanicki, A.; Obuchowski, M.; Séror, S. Characterization of a membrane-linked Ser/Thr protein kinase in Bacillus subtilis, implicated in developmental processes. Mol. Microbiol., 2002, 46(2), 571-586.
[http://dx.doi.org/10.1046/j.1365-2958.2002.03178.x] [PMID: 12406230]
[46]
Pereira, S.F.; Goss, L.; Dworkin, J. Eukaryote-like serine/threonine kinases and phosphatases in bacteria. Microbiol. Mol. Biol. Rev., 2011, 75(1), 192-212.
[http://dx.doi.org/10.1128/MMBR.00042-10] [PMID: 21372323]
[47]
Kristich, C.J.; Wells, C.L.; Dunny, G.M. A eukaryotic-type Ser/Thr kinase in Enterococcus faecalis mediates antimicrobial resistance and intestinal persistence. Proc. Natl. Acad. Sci. USA, 2007, 104(9), 3508-3513.
[http://dx.doi.org/10.1073/pnas.0608742104] [PMID: 17360674]
[48]
Squeglia, F.; Marchetti, R.; Ruggiero, A.; Lanzetta, R.; Marasco, D.; Dworkin, J.; Petoukhov, M.; Molinaro, A.; Berisio, R.; Silipo, A. Chemical basis of peptidoglycan discrimination by PrkC, a key kinase involved in bacterial resuscitation from dormancy. J. Am. Chem. Soc., 2011, 133(51), 20676-20679.
[http://dx.doi.org/10.1021/ja208080r] [PMID: 22111897]
[49]
Page, C.A.; Krause, D.C. Protein kinase/phosphatase function correlates with gliding motility in Mycoplasma pneumoniae. J. Bacteriol., 2013, 195(8), 1750-1757.
[http://dx.doi.org/10.1128/JB.02277-12] [PMID: 23396910]
[50]
Xue, Y.; Li, A.; Wang, L.; Feng, H.; Yao, X. PPSP: prediction of PK-specific phosphorylation site with Bayesian decision theory. BMC Bioinformatics, 2006, 7, 163.
[http://dx.doi.org/10.1186/1471-2105-7-163] [PMID: 16549034]
[51]
Zou, L.; Wang, M.; Shen, Y.; Liao, J.; Li, A.; Wang, M. PKIS: computational identification of protein kinases for experimentally discovered protein phosphorylation sites. BMC Bioinformatics, 2013, 14, 247.
[http://dx.doi.org/10.1186/1471-2105-14-247] [PMID: 23941207]
[52]
Xue, Y.; Ren, J.; Gao, X.; Jin, C.; Wen, L.; Yao, X. GPS 2.0, a tool to predict kinase-specific phosphorylation sites in hierarchy. Mol. Cell. Proteomics, 2008, 7(9), 1598-1608.
[http://dx.doi.org/10.1074/mcp.M700574-MCP200] [PMID: 18463090]
[53]
Khatun, M.S.; Hasan, M.M.; Mollah, M.N.H.; Kurata, H. sipma:a systematic identification of protein-protein interactions in zea mays using autocorrelation features in a machine-learning framework. 2018 IEEE 18th International Conference on Bioinformatics and Bioengineering (BIBE), Taichung, Taiwan,, 2018, pp. 122-125.
[54]
Cawley, G.C.; Talbot, N.L. On over-fitting in model selection and subsequent selection bias in performance evaluation. J. Mach. Learn. Res., 2010, 11(Jul), 2079-2107.
[55]
Leung, A.; Bader, G.D.; Reimand, J. HyperModules: identifying clinically and phenotypically significant network modules with disease mutations for biomarker discovery. Bioinformatics, 2014, 30(15), 2230-2232.
[http://dx.doi.org/10.1093/bioinformatics/btu172] [PMID: 24713437]
[56]
Xu, Y.; Wen, X.; Wen, L.-S.; Wu, L.-Y.; Deng, N.-Y.; Chou, K.-C. iNitro-Tyr: prediction of nitrotyrosine sites in proteins with general pseudo amino acid composition. PLoS One, 2014, 9(8) e105018
[http://dx.doi.org/10.1371/journal.pone.0105018] [PMID: 25121969]
[57]
Su, R.; Hu, J.; Zou, Q.; Manavalan, B.; Wei, L. Empirical comparison and analysis of web-based cell-penetrating peptide prediction tools. Brief. Bioinform., 2019, 21(2), 408-420.
[PMID: 30649170]
[58]
Manavalan, B.; Basith, S.; Shin, T.H.; Wei, L.; Lee, G. Meta-4mCpred: a sequence-based meta-predictor for accurate DNA 4mC site prediction using effective feature representation. Mol. Ther. Nucleic Acids, 2019, 16, 733-744.
[http://dx.doi.org/10.1016/j.omtn.2019.04.019] [PMID: 31146255]
[59]
Boopathi, V.; Subramaniyam, S.; Malik, A.; Lee, G.; Manavalan, B.; Yang, D.C. mACPpred: a support vector machine-based meta-predictor for identification of anticancer peptides. Int. J. Mol. Sci., 2019, 20(8) E1964
[http://dx.doi.org/10.3390/ijms20081964] [PMID: 31013619]
[60]
Hasan,, M.M.; Kurata,, H. Prediction of integral membrane protein type by collocated hydrophobic amino acid pairs. J. Comput. Chem., 2018, 30(1),pp. , 163-172.
[61]
Chen, K.; Jiang, Y.; Du, L.; Kurgan, L. Prediction of integral membrane protein type by collocated hydrophobic amino acid pairs. J. Comput. Chem., 2009, 30(1), 163-172.
[http://dx.doi.org/10.1002/jcc.21053] [PMID: 18567007]
[62]
Wang, J.; Yang, B.; Revote, J.; Leier, A.; Marquez-Lago, T.T.; Webb, G.; Song, J.; Chou, K.C.; Lithgow, T. POSSUM: a bioinformatics toolkit for generating numerical sequence feature descriptors based on PSSM profiles. Bioinformatics, 2017, 33(17), 2756-2758.
[http://dx.doi.org/10.1093/bioinformatics/btx302] [PMID: 28903538]
[63]
Hasan, M.M.; Khatun, M.S.; Kurata, H. Computational modeling of lysine post-translational modification: an overview. Curr. Synthetic Systems Biol., 2018, 6, 137.
[http://dx.doi.org/10.4172/2332-0737.1000137]
[64]
Hasan, M.M.; Manavalan, B.; Khatun, M.S.; Kurata, H. Prediction of S-nitrosylation sites by integrating support vector machines and random forest. Mol Omics, 2019, 15(6), 451-458.
[http://dx.doi.org/10.1039/C9MO00098D]
[65]
Shatabda, S.; Saha, S.; Sharma, A.; Dehzangi, A. iPHLoc-ES: Identification of bacteriophage protein locations using evolutionary and structural features. J. Theor. Biol., 2017, 435, 229-237.
[http://dx.doi.org/10.1016/j.jtbi.2017.09.022] [PMID: 28943403]
[66]
Fu, H.; Yang, Y.; Wang, X.; Wang, H.; Xu, Y. DeepUbi: a deep learning framework for prediction of ubiquitination sites in proteins. BMC Bioinformatics, 2019, 20(1), 86.
[http://dx.doi.org/10.1186/s12859-019-2677-9] [PMID: 30777029]
[67]
Hasan, M.M.; Kurata, H. GPSuc: Global Prediction of Generic and Species-specific Succinylation Sites by aggregating multiple sequence features. PLoS One, 2018, 13(10) e0200283
[http://dx.doi.org/10.1371/journal.pone.0200283] [PMID: 30312302]
[68]
Khatun, S.; Hasan, M.; Kurata, H. Efficient computational model for identification of antitubercular peptides by integrating amino acid patterns and properties. FEBS Lett., 2019, 593(21), 3029-3039.
[http://dx.doi.org/10.1002/1873-3468.13536] [PMID: 31297788]
[69]
Mosharaf, M.P.; Hassan, M.M.; Ahmed, F.F.; Khatun, M.S.; Moni, M.A.; Mollah, M.N.H. Computational prediction of protein ubiquitination sites mapping on Arabidopsis thaliana. Comput. Biol. Chem., 2020, 85, 107238
[http://dx.doi.org/10.1016/j.compbiolchem.2020.107238] [PMID: 32114285]
[70]
López, Y.; Sharma, A.; Dehzangi, A.; Lal, S.P.; Taherzadeh, G.; Sattar, A.; Tsunoda, T. Success: evolutionary and structural properties of amino acids prove effective for succinylation site prediction. BMC Genomics, 2018, 19(Suppl. 1), 923.
[http://dx.doi.org/10.1186/s12864-017-4336-8] [PMID: 29363424]
[71]
Chowdhury, S.Y.; Shatabda, S.; Dehzangi, A. iDNAProt-ES: identification of dna-binding proteins using evolutionary and structural features. Sci. Rep., 2017, 7(1), 14938.
[http://dx.doi.org/10.1038/s41598-017-14945-1] [PMID: 29097781]
[72]
Shatabda, S.; Newton, M.A.; Rashid, M.A.; Pham, D.N.; Sattar, A. The road not taken: retreat and diverge in local search for simplified protein structure prediction. BMC Bioinformatics, 2013, 14(Suppl. 2), S19.
[http://dx.doi.org/10.1186/1471-2105-14-S2-S19] [PMID: 23368768]
[73]
Manavalan, B.; Govindaraj, R.G.; Shin, T.H.; Kim, M.O.; Lee, G. iBCE-EL: a new ensemble learning framework for improved linear B-cell epitope prediction. Front. Immunol., 2018, 9, 1695.
[http://dx.doi.org/10.3389/fimmu.2018.01695] [PMID: 30100904]
[74]
Vapnik, V. The nature of statistical learning theory, Springer: Science & Business media,. 2013.
[75]
Vapnik, V.N. An overview of statistical learning theory. IEEE Trans. Neural Netw., 1999, 10(5), 988-999.
[http://dx.doi.org/10.1109/72.788640] [PMID: 18252602]
[76]
Chen, Z.; Chen, Y.-Z.; Wang, X.-F.; Wang, C.; Yan, R.-X.; Zhang, Z. Prediction of ubiquitination sites by using the composition of k-spaced amino acid pairs. PLoS One, 2011, 6(7) e22930
[http://dx.doi.org/10.1371/journal.pone.0022930] [PMID: 21829559]
[77]
Chen, Z.; Zhou, Y.; Song, J.; Zhang, Z. hCKSAAP_UbSite: improved prediction of human ubiquitination sites by exploiting amino acid pattern and properties. Biochim. Biophys. Acta, 2013, 1834(8), 1461-1467.
[http://dx.doi.org/10.1016/j.bbapap.2013.04.006] [PMID: 23603789]
[78]
Li, W.; Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics, 2006, 22(13), 1658-1659.
[http://dx.doi.org/10.1093/bioinformatics/btl158] [PMID: 16731699]
[79]
Breiman, L. Random forests. Mach. Learn., 2001, 45(1), 5-32.
[http://dx.doi.org/10.1023/A:1010933404324]
[80]
Qiang, X.; Zhou, C.; Ye, X. Du, P.-f; Su, R; Wei, L. A predictor for CPP identification. Brief. Bioinform., 2018.
[81]
Manavalan, B.; Lee, J.; Lee, J. Random forest-based protein model quality assessment (RFMQA) using structural features and potential energy terms. PLoS One, 2014, 9(9) e106542
[http://dx.doi.org/10.1371/journal.pone.0106542] [PMID: 25222008]
[82]
Manavalan, B.; Shin, T.H.; Kim, M.O.; Lee, G. AIPpred: sequence-based prediction of anti-inflammatory peptides using random forest. Front. Pharmacol., 2018, 9, 276.
[http://dx.doi.org/10.3389/fphar.2018.00276] [PMID: 29636690]
[83]
Manavalan, B.; Subramaniyam, S.; Shin, T.H.; Kim, M.O.; Lee, G. Machine-learning-based prediction of cell-penetrating peptides and their uptake efficiency with improved accuracy. J. Proteome Res., 2018, 17(8), 2715-2726.
[http://dx.doi.org/10.1021/acs.jproteome.8b00148] [PMID: 29893128]
[84]
Hasan, M.M.; Khatun, M.S.; Mollah, M.N.H.; Yong, C.; Dianjing, G. NTyroSite: computational identification of protein nitrotyrosine sites using sequence evolutionary features. Molecules, 2018, 23(7), 1667.
[http://dx.doi.org/10.3390/molecules23071667] [PMID: 29987232]
[85]
Khatun, M.S.; Hasan, M.M.; Kurata, H. PreAIP: computational prediction of anti-inflammatory peptides by integrating multiple complementary features. Front. Genet., 2019, 10, 129.
[http://dx.doi.org/10.3389/fgene.2019.00129] [PMID: 30891059]
[86]
Hasan, M.M.; Guo, D.; Kurata, H. Computational identification of protein S-sulfenylation sites by incorporating the multiple sequence features information. Mol. Biosyst., 2017, 13(12), 2545-2550.
[http://dx.doi.org/10.1039/C7MB00491E] [PMID: 28990628]
[87]
Jia, J.; Liu, Z.; Xiao, X.; Liu, B.; Chou, K.-C. iSuc-PseOpt: Identifying lysine succinylation sites in proteins by incorporating sequence-coupling effects into pseudo components and optimizing imbalanced training dataset. Anal. Biochem., 2016, 497, 48-56.
[http://dx.doi.org/10.1016/j.ab.2015.12.009] [PMID: 26723495]
[88]
Shoombuatong, W.; Schaduangrat, N.; Pratiwi, R.; Nantasenamat, C. THPep: A machine learning-based approach for predicting tumor homing peptides. Comput. Biol. Chem., 2019, 80, 441-451.
[http://dx.doi.org/10.1016/j.compbiolchem.2019.05.008] [PMID: 31151025]
[89]
Jia, J.; Liu, Z.; Xiao, X.; Liu, B.; Chou, K.-C. pSuc-Lys: Predict lysine succinylation sites in proteins with PseAAC and ensemble random forest approach. J. Theor. Biol., 2016, 394, 223-230.
[http://dx.doi.org/10.1016/j.jtbi.2016.01.020] [PMID: 26807806]
[90]
Hasan, M.M.; Khatun, M.S.; Mollah, M.N.H.; Yong, C.; Guo, D. A systematic identification of species-specific protein succinylation sites using joint element features information. Int. J. Nanomedicine, 2017, 12, 6303-6315.
[http://dx.doi.org/10.2147/IJN.S140875] [PMID: 28894368]
[91]
Tang, Y.-R.; Chen, Y.-Z.; Canchaya, C.A.; Zhang, Z. GANNPhos: a new phosphorylation site predictor based on a genetic algorithm integrated neural network. Protein Eng. Des. Sel., 2007, 20(8), 405-412.
[http://dx.doi.org/10.1093/protein/gzm035] [PMID: 17652129]
[92]
Blom, N.; Sicheritz-Pontén, T.; Gupta, R.; Gammeltoft, S.; Brunak, S. Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics, 2004, 4(6), 1633-1649.
[http://dx.doi.org/10.1002/pmic.200300771] [PMID: 15174133]
[93]
Dehouck, Y.; Grosfils, A.; Folch, B.; Gilis, D.; Bogaerts, P.; Rooman, M. Fast and accurate predictions of protein stability changes upon mutations using statistical potentials and neural networks: PoPMuSiC-2.0. Bioinformatics, 2009, 25(19), 2537-2543.
[http://dx.doi.org/10.1093/bioinformatics/btp445] [PMID: 19654118]
[94]
McGuffin, L.J.; Bryson, K.; Jones, D.T. The PSIPRED protein structure prediction server. Bioinformatics, 2000, 16(4), 404-405.
[http://dx.doi.org/10.1093/bioinformatics/16.4.404] [PMID: 10869041]
[95]
Johansen, M.B.; Kiemer, L.; Brunak, S. Analysis and prediction of mammalian protein glycation. Glycobiology, 2006, 16(9), 844-853.
[http://dx.doi.org/10.1093/glycob/cwl009] [PMID: 16762979]
[96]
Zhang, J.; Zhao, X.; Sun, P.; Ma, Z. PSNO: predicting cysteine S-nitrosylation sites by incorporating various sequence-derived features into the general form of Chou’s PseAAC. Int. J. Mol. Sci., 2014, 15(7), 11204-11219.
[http://dx.doi.org/10.3390/ijms150711204] [PMID: 24968264]
[97]
Blom, N.; Gammeltoft, S.; Brunak, S. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J. Mol. Biol., 1999, 294(5), 1351-1362.
[http://dx.doi.org/10.1006/jmbi.1999.3310] [PMID: 10600390]
[98]
Kavuncuoglu, H.; Kavuncuoglu, E.; Karatas, S.M.; Benli, B.; Sagdic, O.; Yalcin, H. Prediction of the antimicrobial activity of walnut (Juglans regia L.) kernel aqueous extracts using artificial neural network and multiple linear regression. J. Microbiol. Methods, 2018, 148, 78-86.
[http://dx.doi.org/10.1016/j.mimet.2018.04.003] [PMID: 29649523]
[99]
Wu, K.; Wei, G.-W. Quantitative toxicity prediction using topology based multitask deep neural networks. J. Chem. Inf. Model., 2018, 58(2), 520-531.
[http://dx.doi.org/10.1021/acs.jcim.7b00558] [PMID: 29314829]
[100]
Peters, B.; Brenner, S.E.; Wang, E.; Slonim, D.; Kann, M.G. Putting benchmarks in their rightful place: The heart of computational biology; Public Library of Science, 2018.
[101]
Berezikov, E.; Guryev, V.; Plasterk, R.H.; Cuppen, E. CONREAL: conserved regulatory elements anchored alignment algorithm for identification of transcription factor binding sites by phylogenetic footprinting. Genome Res., 2004, 14(1), 170-178.
[http://dx.doi.org/10.1101/gr.1642804] [PMID: 14672977]
[102]
Biswas, A.K.; Noman, N.; Sikder, A.R. Machine learning approach to predict protein phosphorylation sites by incorporating evolutionary information. BMC Bioinformatics, 2010, 11, 273.
[http://dx.doi.org/10.1186/1471-2105-11-273] [PMID: 20492656]
[103]
Macek, B.; Gnad, F.; Soufi, B.; Kumar, C.; Olsen, J.V.; Mijakovic, I.; Mann, M. Phosphoproteome analysis of E. coli reveals evolutionary conservation of bacterial Ser/Thr/Tyr phosphorylation. Mol. Cell. Proteomics, 2008, 7(2), 299-307.
[http://dx.doi.org/10.1074/mcp.M700311-MCP200] [PMID: 17938405]
[104]
Manavalan, B.; Shin, T.H.; Lee, G. PVP-SVM: sequence-based prediction of phage virion proteins using a support vector machine. Front. Microbiol., 2018, 9, 476.
[http://dx.doi.org/10.3389/fmicb.2018.00476] [PMID: 29616000]
[105]
Basith, S.; Manavalan, B.; Shin, T.H.; Lee, G. iGHBP: Computational identification of growth hormone binding proteins from sequences using extremely randomised tree. Comput. Struct. Biotechnol. J., 2018, 16, 412-420.
[http://dx.doi.org/10.1016/j.csbj.2018.10.007] [PMID: 30425802]
[106]
Charoenkwan, P.; Nantasenamat, C.; Hasan, M.M.; Shoombuatong, W. iTTCA-Hybrid: Improved and robust identification of tumor T cell antigens by utilizing hybrid feature representation. Anal. Biochem., 2020, 599, 113747
[http://dx.doi.org/10.1016/j.ab.2020.113747] [PMID: 32333902]
[107]
Gnad, F.; Ren, S.; Cox, J.; Olsen, J.V.; Macek, B.; Oroshi, M.; Mann, M. PHOSIDA (phosphorylation site database): management, structural and evolutionary investigation, and prediction of phosphosites. Genome Biol., 2007, 8(11), R250.
[http://dx.doi.org/10.1186/gb-2007-8-11-r250] [PMID: 18039369]
[108]
Hasan, M.M.; Yang, S.; Zhou, Y.; Mollah, M.N. SuccinSite: a computational tool for the prediction of protein succinylation sites by exploiting the amino acid patterns and properties. Mol. Biosyst., 2016, 12(3), 786-795.
[http://dx.doi.org/10.1039/C5MB00853K] [PMID: 26739209]
[109]
Ward, P.; Equinet, L.; Packer, J.; Doerig, C. Protein kinases of the human malaria parasite Plasmodium falciparum: the kinome of a divergent eukaryote. BMC Genomics, 2004, 5(1), 79.
[http://dx.doi.org/10.1186/1471-2164-5-79] [PMID: 15479470]
[110]
Charoenkwan, P.; Yana, J.; Schaduangrat, N.; Nantasenamat, C.; Hasan, M.M.; Shoombuatong, W. iBitter-SCM: Identification and characterization of bitter peptides using a scoring card method with propensity scores of dipeptides. Genomics, 2020, 112(4), 2813-2822.
[http://dx.doi.org/10.1016/j.ygeno.2020.03.019] [PMID: 32234434]
[111]
Hasan, M.M.; Manavalan, B.; Shoombuatong, W.; Khatun, M.S.; Kurata, H. i4mC-Mouse: Improved identification of DNA N4-methylcytosine sites in the mouse genome using multiple encoding schemes. Comput. Struct. Biotechnol. J., 2020, 18, 906-912.
[http://dx.doi.org/10.1016/j.csbj.2020.04.001] [PMID: 32322372]
[112]
Chen, W.; Song, X.; Lv, H.; Lin, H. iRNA-m2G: identifying N2-methylguanosine sites based on sequence-derived information. Mol. Ther. Nucleic Acids, 2019, 18, 253-258.
[http://dx.doi.org/10.1016/j.omtn.2019.08.023] [PMID: 31581049]
[113]
Lai, H.-Y.; Zhang, Z.-Y.; Su, Z.-D.; Su, W.; Ding, H.; Chen, W.; Lin, H. iProEP: a computational predictor for predicting promoter. Mol. Ther. Nucleic Acids, 2019, 17, 337-346.
[http://dx.doi.org/10.1016/j.omtn.2019.05.028] [PMID: 31299595]
[114]
Lv, H.; Zhang, Z.-M.; Li, S.-H.; Tan, J.-X.; Chen, W.; Lin, H. Evaluation of different computational methods on 5-methylcytosine sites identification. Brief. Bioinform., 2019, 21(3), 982-995.
[PMID: 31157855]
[115]
Govindaraj, R.G.; Subramaniyam, S.; Manavalan, B. Extremely-randomized-tree-based prediction of N6-methyladenosine sites in Saccharomyces cerevisiae. Curr. Genomics, 2020, 21(1), 26-33.
[116]
Chen, X.; Huang, L.; Xie, D.; Zhao, Q. EGBMMDA: extreme gradient boosting machine for MiRNA-disease association prediction. Cell Death Dis., 2018, 9(1), 3.
[http://dx.doi.org/10.1038/s41419-017-0003-x] [PMID: 29305594]
[117]
Li, F.; Chen, J.; Leier, A.; Marquez-Lago, T.; Liu, Q.; Wang, Y.; Revote, J.; Smith, A.I.; Akutsu, T.; Webb, G.I. DeepCleave: a deep learning predictor for caspase and matrix metalloprotease substrates and cleavage sites. Bioinformatics, 2019, 36(4), 1057-1065.
[http://dx.doi.org/10.1093/bioinformatics/btz721] [PMID: 31566664]
[118]
Manavalan, B.; Basith, S.; Shin, T.H.; Wei, L.; Lee, G. AtbPpred: a robust sequence-based prediction of anti-tubercular peptides using extremely randomized trees. Comput. Struct. Biotechnol. J., 2019, 17, 972-981.
[http://dx.doi.org/10.1016/j.csbj.2019.06.024] [PMID: 31372196]
[119]
Hasan, M.M.; Schaduangrat, N.; Basith, S.; Lee, G.; Shoombuatong, W.; Manavalan, B. HLPpred-Fuse: improved and robust prediction of hemolytic peptide and its activity by fusing multiple feature representation. Bioinformatics, 2020, 36(11), 3350-3356.
[http://dx.doi.org/10.1093/bioinformatics/btaa160]
[120]
Hasan, M.M.; Manavalan, B.; Shoombuatong, W.; Khatun, M.S.; Kurata, H. i6mA-Fuse: improved and robust prediction of DNA 6 mA sites in the Rosaceae genome by fusing multiple feature representation. Plant Mol. Biol., 2020, 103(1-2), 225-234.
[http://dx.doi.org/10.1007/s11103-020-00988-y] [PMID: 32140819]
[121]
Hasan, MM; Manavalan, B; Khatun, MS; Kurata, H i4mC-ROSE,a bioinformatics tool for the identification of DNA N4- methylcytosine sites in the Rosaceae genome. Int. J. Biol. Macromol., 2019, S0141-8130(19) 38547-2.
[122]
Hasan, M.M.; Khatun, M.S.; Kurata, H. Large-scale assessment of bioinformatics tools for lysine succinylation sites. Cells, 2019, 8(2) E95
[http://dx.doi.org/10.3390/cells8020095] [PMID: 30696115]
[123]
Radovic, M.; Ghalwash, M.; Filipovic, N.; Obradovic, Z. Minimum redundancy maximum relevance feature selection approach for temporal gene expression data. BMC Bioinformatics, 2017, 18(1), 9.
[http://dx.doi.org/10.1186/s12859-016-1423-9] [PMID: 28049413]
[124]
Gayatri, N.; Nickolas, S.; Reddy, A. anova discriminant analysis for features selected through decision tree induction method. International Conference on Computing and Communication Systems, 2011, pp. 61-70.
[125]
Zou, Q.; Wan, S.; Ju, Y.; Tang, J.; Zeng, X. Pretata: predicting TATA binding proteins with novel features and dimensionality reduction strategy. BMC Syst. Biol., 2016, 10(Suppl. 4), 114.
[http://dx.doi.org/10.1186/s12918-016-0353-5] [PMID: 28155714]
[126]
Zou, Q.; Zeng, J.; Cao, L.; Ji, R. A novel features ranking metric with application to scalable visual and bioinformatics data classification. Neurocomputing, 2016, 173, 346-354.
[http://dx.doi.org/10.1016/j.neucom.2014.12.123]
[127]
Cheng, X.; Lin, W.Z.; Xiao, X.; Chou, K.C. pLoc_bal-mAnimal: predict subcellular localization of animal proteins by balancing training dataset and PseAAC. Bioinformatics, 2019, 35(3), 398-406.
[http://dx.doi.org/10.1093/bioinformatics/bty628] [PMID: 30010789]
[128]
Chou, K.C. Structural bioinformatics and its impact to biomedical science. Curr. Med. Chem., 2004, 11(16), 2105-2134.
[http://dx.doi.org/10.2174/0929867043364667] [PMID: 15279552]
[129]
Chou, K.C.; Cai, Y.D. Prediction and classification of protein subcellular location-sequence-order effect and pseudo amino acid composition. J. Cell. Biochem., 2003, 90(6), 1250-1260.
[http://dx.doi.org/10.1002/jcb.10719] [PMID: 14635197]
[130]
Chen, W.; Tang, H.; Ye, J.; Lin, H.; Chou, K.C. iRNA-PseU: Identifying RNA pseudouridine sites. Mol. Ther. Nucleic Acids, 2016, 5, e332
[PMID: 28427142]
[131]
Liu, B.; Liu, F.; Wang, X.; Chen, J.; Fang, L.; Chou, K.C. Pse-in-One: a web server for generating various modes of pseudo components of DNA, RNA, and protein sequences. Nucleic Acids Res., 2015, 43(W1), W65-W71.
[http://dx.doi.org/10.1093/nar/gkv458] [PMID: 25958395]
[132]
Basith Mail, S.; Manavalan, B.; Shin, T.H.; Lee, D.; Lee, G. Evolution of machine learning algorithms in the prediction and design of anticancer peptides. Curr. Protein Pept. Sci., 2020.
[http://dx.doi.org/10.2174/1389203721666200117171403] [PMID: 31957610]
[133]
Charoenkwan, P.; Kanthawong, S.; Schaduangrat, N.; Yana, J.; Shoombuatong, W. PVPred-SCM: improved prediction and analysis of phage virion proteins using a scoring card method. Cells, 2020, 9(2) E353
[http://dx.doi.org/10.3390/cells9020353] [PMID: 32028709]
[134]
Schaduangrat, N.; Nantasenamat, C.; Prachayasittikul, V.; Shoombuatong, W. Meta-iAVP: a sequence-based meta-predictor for improving the prediction of antiviral peptides using effective feature representation. Int. J. Mol. Sci., 2019, 20(22) E5743
[http://dx.doi.org/10.3390/ijms20225743] [PMID: 31731751]
[135]
Shoombuatong, W.; Schaduangrat, N.; Nantasenamat, C. Unraveling the bioactivity of anticancer peptides as deduced from machine learning. EXCLI J., 2018, 17, 734-752.
[PMID: 30190664]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy