Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Understanding the Pathogenesis, Therapeutic Targets/Drug Action and Pharmacogenetics of Type 2 Diabetes: Is there a Future for Personalised Medicine?

Author(s): Godwill Azeh Engwa*, Friday Nwalo Nweke, Gilbert Nfor Karngong, Celestine Azubuike Afiukwa and Kingsley Ekene Nwagu

Volume 20, Issue 10, 2020

Page: [1569 - 1589] Pages: 21

DOI: 10.2174/1871530320666200425202312

Price: $65

Abstract

Type 2 diabetes (T2D) is a chronic non-communicable disease that is of major health concern with a steadily rising prevalence across the globe. It is a metabolic disorder characterized by high blood glucose level either as a result of impaired insulin secretion and/or insulin action usually termed insulin resistance. This disease is influenced by lifestyle/feeding habit changes and genetic factors that cause physiological changes in glucose and lipid metabolism. As such, antidiabetic treatments have targeted specific enzymes, receptors, transport proteins, hormones, transcription factors, etc. that are related to glucose metabolism, fat metabolism, insulin secretion and insulin signalization. Genetic variations due to mutations in certain target genes have been shown to influence the pathogenesis of T2D but also these polymorphisms have been observed to alter the therapeutic efficacy of drugs as well as their safety. Pharmacogenetic studies have been able to identify specific genetic variants of target genes that affect the metabolism, therapeutic response and adverse effects of antidiabetic drugs with the aim to translate the research findings to clinical practice. However, pharmacogenetic studies have not fully been able to identify distinct genetic markers that can serve as biomarkers for genetic screening, thus, limiting personalised medicine. As we advocate personalised medicine for the management of T2D in the future, pharmacogenetic studies should lay emphasis on addressing challenges of genetic screening and its translation to personalised therapy.

Keywords: Type 2 diabetes, genetic factor, polymorphism, pharmacogenetics, antidiabetic drugs, personalized medicine.

Graphical Abstract
[1]
WHO. Global report on diabetes; WHO Press, World Health Organization: 20 Avenue Appia, 1211 Geneva 27, Switzerland , 2016.
[2]
IDF. International Working Group on the Diabetic Foot., 2016. Available at: http://www.idf.org/webdata/docs/background_info_AFR.pdf (Accessed on January 1, 2019)
[3]
Dawed, A.Y.; Zhou, K.; Pearson, E.R. Pharmacogenetics in type 2 diabetes: influence on response to oral hypoglycemic agents. Pharm. Genomics Pers. Med., 2016, 9, 17-29.
[PMID: 27103840]
[4]
Bösenberg, L.H.; Zyl, D.G. The mechanism of action of oral antidiabetic drugs: A review of recent Literature. J. Endocrinol. Metab. Diabetes South Africa, 2008, 13(3), 80-88.
[http://dx.doi.org/10.1080/22201009.2008.10872177]
[5]
Matthaei, S.; Bierwirth, R.; Fritsche, A.; Gallwitz, B.; Häring, H.U.; Joost, H.G.; Kellerer, M.; Kloos, Ch.; Kunt, T.; Nauck, M.; Schernthaner, G.; Siegel, E.; Thienel, F. German diabetes association. Medical antihyperglycaemic treatment of type 2 diabetes mellitus: update of the evidence-based guideline of the German Diabetes Association. Exp. Clin. Endocrinol. Diabetes, 2009, 117(9), 522-557.
[http://dx.doi.org/10.1055/s-0029-1239559] [PMID: 19876795]
[6]
Freeman, H.; Cox, R.D. Type-2 diabetes: A cocktail of genetic discovery. Hum. Mol. Genet., 2006, 15(Spec No 2), R202-R209.
[http://dx.doi.org/10.1093/hmg/ddl191] [PMID: 16987885]
[7]
Bi, Y.; Wang, T.; Xu, M.; Xu, Y.; Li, M.; Lu, J.; Zhu, X.; Ning, G. Advanced research on risk factors of type 2 diabetes. Diabetes Metab. Res. Rev., 2012, 28(Suppl. 2), 32-39.
[http://dx.doi.org/10.1002/dmrr.2352] [PMID: 23280864]
[8]
Unger, R.H.; Dobbs, R.E.; Orci, L. Insulin, glucagon, and somatostatin secretion in the regulation of metabolism. Annu. Rev. Physiol., 1978, 40(1), 307-343.
[http://dx.doi.org/10.1146/annurev.ph.40.030178.001515] [PMID: 205166]
[9]
Drucker, D.J.; Nauck, M.A. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet, 2006, 368(9548), 1696-1705.
[http://dx.doi.org/10.1016/S0140-6736(06)69705-5] [PMID: 17098089]
[10]
Yi, F.; Brubaker, P.L.; Jin, T. TCF-4 mediates cell type-specific regulation of proglucagon gene expression by beta-catenin and glycogen synthase kinase-3beta. J. Biol. Chem., 2005, 280(2), 1457-1464.
[http://dx.doi.org/10.1074/jbc.M411487200] [PMID: 15525634]
[11]
Pratley, R.E.; Salsali, A. Inhibition of DPP-4: A new therapeutic approach for the treatment of type 2 diabetes. Curr. Med. Res. Opin., 2007, 23(4), 919-931.
[http://dx.doi.org/10.1185/030079906X162746] [PMID: 17407649]
[12]
Aguilar-Bryan, L.; Nichols, C.G.; Wechsler, S.W.; Clement, J.P., IV; Boyd, A.E., III; González, G.; Herrera-Sosa, H.; Nguy, K.; Bryan, J.; Nelson, D.A. Cloning of the beta cell high-affinity sulfonylurea receptor: a regulator of insulin secretion. Science, 1995, 268(5209), 423-426.
[http://dx.doi.org/10.1126/science.7716547] [PMID: 7716547]
[13]
Siddle, K. Signalling by insulin and IGF receptors: supporting acts and new players. J. Mol. Endocrinol., 2011, 47(1), R1-R10.
[http://dx.doi.org/10.1530/JME-11-0022] [PMID: 21498522]
[14]
Bryant, N.J.; Govers, R.; James, D.E. Regulated transport of the glucose transporter GLUT4. Nat. Rev. Mol. Cell Biol., 2002, 3(4), 267-277.
[http://dx.doi.org/10.1038/nrm782] [PMID: 11994746]
[15]
Forde, J.E.; Dale, T.C. Glycogen synthase kinase 3: A key regulator of cellular fate. Cell. Mol. Life Sci., 2007, 64(15), 1930-1944.
[http://dx.doi.org/10.1007/s00018-007-7045-7] [PMID: 17530463]
[16]
Sutherland, C.; Leighton, I.A.; Cohen, P. Inactivation of glycogen synthase kinase-3 beta by phosphorylation: new kinase connections in insulin and growth-factor signalling. Biochem. J., 1993, 296(Pt 1), 15-19.
[http://dx.doi.org/10.1042/bj2960015] [PMID: 8250835]
[17]
Dentin, R.; Girard, J.; Postic, C. Carbohydrate responsive element binding protein (ChREBP) and sterol regulatory element binding protein-1c (SREBP-1c): Two key regulators of glucose metabolism and lipid synthesis in liver. Biochimie, 2005, 87(1), 81-86.
[http://dx.doi.org/10.1016/j.biochi.2004.11.008] [PMID: 15733741]
[18]
Postic, C.; Dentin, R.; Denechaud, P.D.; Girard, J. ChREBP, a transcriptional regulator of glucose and lipid metabolism. Annu. Rev. Nutr., 2007, 27, 179-192.
[http://dx.doi.org/10.1146/annurev.nutr.27.061406.093618] [PMID: 17428181]
[19]
Desvergne, B.; Wahli, W. Peroxisome proliferator-activated receptors: Nuclear control of metabolism. Endocr. Rev., 1999, 20(5), 649-688.
[PMID: 10529898]
[20]
Chawla, A.; Schwarz, E.J.; Dimaculangan, D.D.; Lazar, M.A. Peroxisome proliferator-activated receptor (PPAR) gamma: Adipose-predominant expression and induction early in adipocyte differentiation. Endocrinology, 1994, 135(2), 798-800.
[http://dx.doi.org/10.1210/endo.135.2.8033830] [PMID: 8033830]
[21]
Proud, C.G. Regulation of protein synthesis by insulin. Biochem. Soc. Trans., 2006, 34(Pt 2), 213-216.
[http://dx.doi.org/10.1042/BST0340213] [PMID: 16545079]
[22]
Le Roith, D.; Zick, Y. Recent advances in our understanding of insulin action and insulin resistance. Diabetes Care, 2001, 24(3), 588-597.
[http://dx.doi.org/10.2337/diacare.24.3.588] [PMID: 11289486]
[23]
Mauvais-Jarvis, F.; Kulkarni, R.N.; Kahn, C.R. Knockout models are useful tools to dissect the pathophysiology and genetics of insulin resistance. Clin. Endocrinol. (Oxf.), 2002, 57(1), 1-9.
[http://dx.doi.org/10.1046/j.1365-2265.2002.01563.x] [PMID: 12100063]
[24]
Shulman, G.I. Cellular mechanisms of insulin resistance. J. Clin. Invest., 2000, 106(2), 171-176.
[http://dx.doi.org/10.1172/JCI10583] [PMID: 10903330]
[25]
Saltiel, A.R.; Kahn, C.R. Insulin signalling and the regulation of glucose and lipid metabolism. Nature, 2001, 414(6865), 799-806.
[http://dx.doi.org/10.1038/414799a] [PMID: 11742412]
[26]
Olokoba, A.B.; Obateru, O.A.; Olokoba, L.B. Type 2 diabetes mellitus: A review of current trends. Oman Med. J., 2012, 27(4), 269-273.
[http://dx.doi.org/10.5001/omj.2012.68] [PMID: 23071876]
[27]
Collier, C.A.; Bruce, C.R.; Smith, A.C.; Lopaschuk, G.; Dyck, D.J. Metformin counters the insulin-induced suppression of fatty acid oxidation and stimulation of triacylglycerol storage in rodent skeletal muscle. Am. J. Physiol. Endocrinol. Metab., 2006, 291(1), E182-E189.
[http://dx.doi.org/10.1152/ajpendo.00272.2005] [PMID: 16478780]
[28]
Krentz, A.J.; Bailey, C.J. Oral antidiabetic agents: Current role in type 2 diabetes mellitus. Drugs, 2005, 65(3), 385-411.
[http://dx.doi.org/10.2165/00003495-200565030-00005] [PMID: 15669880]
[29]
Pernicova, I.; Korbonits, M. Metformin--mode of action and clinical implications for diabetes and cancer. Nat. Rev. Endocrinol., 2014, 10(3), 143-156.
[http://dx.doi.org/10.1038/nrendo.2013.256] [PMID: 24393785]
[30]
Foretz, M.; Hébrard, S.; Leclerc, J.; Zarrinpashneh, E.; Soty, M.; Mithieux, G.; Sakamoto, K.; Andreelli, F.; Viollet, B. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J. Clin. Invest., 2010, 120(7), 2355-2369.
[http://dx.doi.org/10.1172/JCI40671] [PMID: 20577053]
[31]
Miller, R.A.; Chu, Q.; Xie, J.; Foretz, M.; Viollet, B.; Birnbaum, M.J. Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP. Nature, 2013, 494(7436), 256-260.
[http://dx.doi.org/10.1038/nature11808] [PMID: 23292513]
[32]
Müller, J.; Lips, K.S.; Metzner, L.; Neubert, R.H.; Koepsell, H.; Brandsch, M. Drug specificity and intestinal membrane localization of human organic cation transporters (OCT). Biochem. Pharmacol., 2005, 70(12), 1851-1860.
[http://dx.doi.org/10.1016/j.bcp.2005.09.011] [PMID: 16263091]
[33]
Graham, G.G.; Punt, J.; Arora, M.; Day, R.O.; Doogue, M.P.; Duong, J.K.; Furlong, T.J.; Greenfield, J.R.; Greenup, L.C.; Kirkpatrick, C.M.; Ray, J.E.; Timmins, P.; Williams, K.M. Clinical pharmacokinetics of metformin. Clin. Pharmacokinet., 2011, 50(2), 81-98.
[http://dx.doi.org/10.2165/11534750-000000000-00000] [PMID: 21241070]
[34]
Shyng, S.; Nichols, C.G. Octameric stoichiometry of the KATP channel complex. J. Gen. Physiol., 1997, 110(6), 655-664.
[http://dx.doi.org/10.1085/jgp.110.6.655] [PMID: 9382894]
[35]
Panten, U.; Schwanstecher, M.; Schwanstecher, C. Sulfonylurea receptors and mechanism of sulfonylurea action. Exp. Clin. Endocrinol. Diabetes, 1996, 104(1), 1-9.
[http://dx.doi.org/10.1055/s-0029-1211414] [PMID: 8750563]
[36]
Fuhlendorff, J.; Rorsman, P.; Kofod, H.; Brand, C.L.; Rolin, B.; MacKay, P.; Shymko, R.; Carr, R.D. Stimulation of insulin release by repaglinide and glibenclamide involves both common and distinct processes. Diabetes, 1998, 47(3), 345-351.
[http://dx.doi.org/10.2337/diabetes.47.3.345] [PMID: 9519738]
[37]
Bachmakov, I.; Glaeser, H.; Fromm, M.F.; König, J. Interaction of oral antidiabetic drugs with hepatic uptake transporters: focus on organic anion transporting polypeptides and organic cation transporter 1. Diabetes, 2008, 57(6), 1463-1469.
[http://dx.doi.org/10.2337/db07-1515] [PMID: 18314419]
[38]
Kirchheiner, J.; Roots, I.; Goldammer, M.; Rosenkranz, B.; Brockmöller, J. Effect of genetic polymorphisms in cytochrome p450 (CYP) 2C9 and CYP2C8 on the pharmacokinetics of oral antidiabetic drugs: clinical relevance. Clin. Pharmacokinet., 2005, 44(12), 1209-1225.
[http://dx.doi.org/10.2165/00003088-200544120-00002] [PMID: 16372821]
[39]
Yki-Järvinen, H. Thiazolidinediones. N. Engl. J. Med., 2004, 351(11), 1106-1118.
[http://dx.doi.org/10.1056/NEJMra041001] [PMID: 15356308]
[40]
Yoon, K.H.; Lee, J.H.; Kim, J.W.; Cho, J.H.; Choi, Y.H.; Ko, S.H.; Zimmet, P.; Son, H.Y. Epidemic obesity and type 2 diabetes in Asia. Lancet, 2006, 368(9548), 1681-1688.
[http://dx.doi.org/10.1016/S0140-6736(06)69703-1] [PMID: 17098087]
[41]
Kalliokoski, A.; Neuvonen, P.J.; Niemi, M. SLCO1B1 polymorphism and oral antidiabetic drugs. Basic Clin. Pharmacol. Toxicol., 2010, 107(4), 775-781.
[http://dx.doi.org/10.1111/j.1742-7843.2010.00581.x] [PMID: 20406215]
[42]
Kawamori, R.; Tajima, N.; Iwamoto, Y.; Kashiwagi, A.; Shimamoto, K.; Kaku, K. Voglibose Ph-3 Study Group. Voglibose for prevention of type 2 diabetes mellitus: A randomised, double-blind trial in Japanese individuals with impaired glucose tolerance. Lancet, 2009, 373(9675), 1607-1614.
[http://dx.doi.org/10.1016/S0140-6736(09)60222-1] [PMID: 19395079]
[43]
Chiniwala, N.; Jabbour, S. Management of diabetes mellitus in the elderly. Curr. Opin. Endocrinol. Diabetes Obes., 2011, 18(2), 148-152.
[http://dx.doi.org/10.1097/MED.0b013e3283444ba0] [PMID: 21522002]
[44]
Matthaei, S.; Bierwirth, R.; Fritsche, A. Medical antihyperglycaemic treatment of diabetes. Exp. Clin. Endocrinol. Diabetes, 2009, 117, 522-557.
[http://dx.doi.org/10.1055/s-0029-1239559] [PMID: 19876795]
[45]
Singh, S.; Usman, K.; Banerjee, M. Pharmacogenetic studies update in type 2 diabetes mellitus. World J. Diabetes, 2016, 7(15), 302-315.
[http://dx.doi.org/10.4239/wjd.v7.i15.302] [PMID: 27555891]
[46]
Kruger, D.F.; Gloster, M.A. Pramlintide for the treatment of insulin-requiring diabetes mellitus: Rationale and review of clinical data. Drugs, 2004, 64(13), 1419-1432.
[http://dx.doi.org/10.2165/00003495-200464130-00003] [PMID: 15212559]
[47]
Tahrani, A.A.; Bailey, C.J.; Del Prato, S.; Barnett, A.H. Management of type 2 diabetes: new and future developments in treatment. Lancet, 2011, 378(9786), 182-197.
[http://dx.doi.org/10.1016/S0140-6736(11)60207-9] [PMID: 21705062]
[48]
Bailey, C.J.; Tahrani, A.A.; Barnett, A.H. Future glucose-lowering drugs for type 2 diabetes. Lancet Diabetes Endocrinol., 2016, 4(4), 350-359.
[http://dx.doi.org/10.1016/S2213-8587(15)00462-3] [PMID: 26809680]
[49]
Bonadonna, R.C.; Heise, T.; Arbet-Engels, C.; Kapitza, C.; Avogaro, A.; Grimsby, J.; Zhi, J.; Grippo, J.F.; Balena, R. Piragliatin (RO4389620), a novel glucokinase activator, lowers plasma glucose both in the postabsorptive state and after a glucose challenge in patients with type 2 diabetes mellitus: a mechanistic study. J. Clin. Endocrinol. Metab., 2010, 95(11), 5028-5036.
[http://dx.doi.org/10.1210/jc.2010-1041] [PMID: 20739378]
[50]
Pal, M. Recent advances in glucokinase activators for the treatment of type 2 diabetes. Drug Discov. Today, 2009, 14(15-16), 784-792.
[http://dx.doi.org/10.1016/j.drudis.2009.05.013] [PMID: 19520181]
[51]
Claus, T.H.; Pan, C.Q.; Buxton, J.M.; Yang, L.; Reynolds, J.C.; Barucci, N.; Burns, M.; Ortiz, A.A.; Roczniak, S.; Livingston, J.N.; Clairmont, K.B.; Whelan, J.P. Dual-acting peptide with prolonged glucagon-like peptide-1 receptor agonist and glucagon receptor antagonist activity for the treatment of type 2 diabetes. J. Endocrinol., 2007, 192(2), 371-380.
[http://dx.doi.org/10.1677/JOE-06-0018] [PMID: 17283237]
[52]
Pocai, A.; Carrington, P.E.; Adams, J.R.; Wright, M.; Eiermann, G.; Zhu, L.; Du, X.; Petrov, A.; Lassman, M.E.; Jiang, G.; Liu, F.; Miller, C.; Tota, L.M.; Zhou, G.; Zhang, X.; Sountis, M.M.; Santoprete, A.; Capito’, E.; Chicchi, G.G.; Thornberry, N.; Bianchi, E.; Pessi, A.; Marsh, D.J. SinhaRoy, R. Glucagon-like peptide 1/glucagon receptor dual agonism reverses obesity in mice. Diabetes, 2009, 58(10), 2258-2266.
[http://dx.doi.org/10.2337/db09-0278] [PMID: 19602537]
[53]
Zhang, B.; Salituro, G.; Szalkowski, D.; Li, Z.; Zhang, Y.; Royo, I.; Vilella, D.; Díez, M.T.; Pelaez, F.; Ruby, C.; Kendall, R.L.; Mao, X.; Griffin, P.; Calaycay, J.; Zierath, J.R.; Heck, J.V.; Smith, R.G.; Moller, D.E. Discovery of a small molecule insulin mimetic with antidiabetic activity in mice. Science, 1999, 284(5416), 974-977.
[http://dx.doi.org/10.1126/science.284.5416.974] [PMID: 10320380]
[54]
Tsai, H.J.; Chou, S.Y. A novel hydroxyfuroic acid compound as an insulin receptor activator. Structure and activity relationship of a prenylindole moiety to insulin receptor activation. J. Biomed. Sci., 2009, 16(68), 68.
[http://dx.doi.org/10.1186/1423-0127-16-68] [PMID: 19642985]
[55]
Bailey, C.J. Treating insulin resistance: Future prospects. Diab. Vasc. Dis. Res., 2007, 4(1), 20-31.
[http://dx.doi.org/10.3132/dvdr.2007.002] [PMID: 17469040]
[56]
Gerich, J.E. Role of the kidney in normal glucose homeostasis and in the hyperglycaemia of diabetes mellitus: Therapeutic implications. Diabet. Med., 2010, 27(2), 136-142.
[http://dx.doi.org/10.1111/j.1464-5491.2009.02894.x] [PMID: 20546255]
[57]
Chao, E.C.; Henry, R.R. SGLT2 inhibition--a novel strategy for diabetes treatment. Nat. Rev. Drug Discov., 2010, 9(7), 551-559.
[http://dx.doi.org/10.1038/nrd3180] [PMID: 20508640]
[58]
Baggio, L.L.; Drucker, D.J. Biology of incretins: GLP-1 and GIP. Gastroenterology, 2007, 132(6), 2131-2157.
[http://dx.doi.org/10.1053/j.gastro.2007.03.054] [PMID: 17498508]
[59]
Flatt, P.R.; Bailey, C.J.; Green, B.D. Recent advances in antidiabetic drug therapies targeting the enteroinsular axis. Curr. Drug Metab., 2009, 10(2), 125-137.
[http://dx.doi.org/10.2174/138920009787522124] [PMID: 19275548]
[60]
Cincotta, A.H.; Meier, A.H.; Cincotta, M., Jr Bromocriptine improves glycaemic control and serum lipid profile in obese Type 2 diabetic subjects: a new approach in the treatment of diabetes. Expert Opin. Investig. Drugs, 1999, 8(10), 1683-1707.
[http://dx.doi.org/10.1517/13543784.8.10.1683] [PMID: 11139820]
[61]
Diamant, M.; Van Gaal, L.; Stranks, S.; Northrup, J.; Cao, D.; Taylor, K.; Trautmann, M. Once weekly exenatide compared with insulin glargine titrated to target in patients with type 2 diabetes (DURATION-3): an open-label randomised trial. Lancet, 2010, 375(9733), 2234-2243.
[http://dx.doi.org/10.1016/S0140-6736(10)60406-0] [PMID: 20609969]
[62]
Stumvoll, M.; Goldstein, B.J.; van Haeften, T.W. Type 2 diabetes: principles of pathogenesis and therapy. Lancet, 2005, 365(9467), 1333-1346.
[http://dx.doi.org/10.1016/S0140-6736(05)61032-X] [PMID: 15823385]
[63]
Carr, D.F.; Alfirevic, A.; Pirmohamed, M. Pharmacogenomics: Current State-of-the-Art. Genes (Basel), 2014, 5(2), 430-443.
[http://dx.doi.org/10.3390/genes5020430] [PMID: 24865298]
[64]
Goldstein, D.B.; Tate, S.K.; Sisodiya, S.M. Pharmacogenetics goes genomic. Nat. Rev. Genet., 2003, 4(12), 937-947.
[http://dx.doi.org/10.1038/nrg1229] [PMID: 14631354]
[65]
Palmer, N.D.; McDonough, C.W.; Hicks, P.J.; Roh, B.H.; Wing, M.R.; An, S.S.; Hester, J.M.; Cooke, J.N.; Bostrom, M.A.; Rudock, M.E.; Talbert, M.E.; Lewis, J.P.; Ferrara, A.; Lu, L.; Ziegler, J.T.; Sale, M.M.; Divers, J.; Shriner, D.; Adeyemo, A.; Rotimi, C.N.; Ng, M.C.; Langefeld, C.D.; Freedman, B.I.; Bowden, D.W.; Voight, B.F.; Scott, L.J.; Steinthorsdottir, V.; Morris, A.P.; Dina, C.; Welch, R.P.; Zeggini, E.; Huth, C.; Aulchenko, Y.S.; Thorleifsson, G.; McCulloch, L.J.; Ferreira, T.; Grallert, H.; Amin, N.; Wu, G.; Willer, C.J.; Raychaudhuri, S.; McCarroll, S.A.; Langenberg, C.; Hofmann, O.M.; Dupuis, J.; Qi, L.; Segrè, A.V.; van Hoek, M.; Navarro, P.; Ardlie, K.; Balkau, B.; Benediktsson, R.; Bennett, A.J.; Blagieva, R.; Boerwinkle, E.; Bonnycastle, L.L.; Boström, K.B.; Bravenboer, B.; Bumpstead, S.; Burtt, N.P.; Charpentier, G.; Chines, P.S.; Cornelis, M.; Couper, D.J.; Crawford, G.; Doney, A.S.; Elliott, K.S.; Elliott, A.L.; Erdos, M.R.; Fox, C.S.; Franklin, C.S.; Ganser, M.; Gieger, C.; Grarup, N.; Green, T.; Griffin, S.; Groves, C.J.; Guiducci, C.; Hadjadj, S.; Hassanali, N.; Herder, C.; Isomaa, B.; Jackson, A.U.; Johnson, P.R.; Jørgensen, T.; Kao, W.H.; Klopp, N.; Kong, A.; Kraft, P.; Kuusisto, J.; Lauritzen, T.; Li, M.; Lieverse, A.; Lindgren, C.M.; Lyssenko, V.; Marre, M.; Meitinger, T.; Midthjell, K.; Morken, M.A.; Narisu, N.; Nilsson, P.; Owen, K.R.; Payne, F.; Perry, J.R.; Petersen, A.K.; Platou, C.; Proença, C.; Prokopenko, I.; Rathmann, W.; Rayner, N.W.; Robertson, N.R.; Rocheleau, G.; Roden, M.; Sampson, M.J.; Saxena, R.; Shields, B.M.; Shrader, P.; Sigurdsson, G.; Sparsø, T.; Strassburger, K.; Stringham, H.M.; Sun, Q.; Swift, A.J.; Thorand, B.; Tichet, J.; Tuomi, T.; van Dam, R.M.; van Haeften, T.W.; van Herpt, T.; van Vliet-Ostaptchouk, J.V.; Walters, G.B.; Weedon, M.N.; Wijmenga, C.; Witteman, J.; Bergman, R.N.; Cauchi, S.; Collins, F.S.; Gloyn, A.L.; Gyllensten, U.; Hansen, T.; Hide, W.A.; Hitman, G.A.; Hofman, A.; Hunter, D.J.; Hveem, K.; Laakso, M.; Mohlke, K.L.; Morris, A.D.; Palmer, C.N.; Pramstaller, P.P.; Rudan, I.; Sijbrands, E.; Stein, L.D.; Tuomilehto, J.; Uitterlinden, A.; Walker, M.; Wareham, N.J.; Watanabe, R.M.; Abecasis, G.R.; Boehm, B.O.; Campbell, H.; Daly, M.J.; Hattersley, A.T.; Hu, F.B.; Meigs, J.B.; Pankow, J.S.; Pedersen, O.; Wichmann, H.E.; Barroso, I.; Florez, J.C.; Frayling, T.M.; Groop, L.; Sladek, R.; Thorsteinsdottir, U.; Wilson, J.F.; Illig, T.; Froguel, P.; van Duijn, C.M.; Stefansson, K.; Altshuler, D.; Boehnke, M.; McCarthy, M.I.; Soranzo, N.; Wheeler, E.; Glazer, N.L.; Bouatia-Naji, N.; Mägi, R.; Randall, J.; Johnson, T.; Elliott, P.; Rybin, D.; Henneman, P.; Dehghan, A.; Hottenga, J.J.; Song, K.; Goel, A.; Egan, J.M.; Lajunen, T.; Doney, A.; Kanoni, S.; Cavalcanti-Proença, C.; Kumari, M.; Timpson, N.J.; Zabena, C.; Ingelsson, E.; An, P.; O’Connell, J.; Luan, J.; Elliott, A.; McCarroll, S.A.; Roccasecca, R.M.; Pattou, F.; Sethupathy, P.; Ariyurek, Y.; Barter, P.; Beilby, J.P.; Ben-Shlomo, Y.; Bergmann, S.; Bochud, M.; Bonnefond, A.; Borch-Johnsen, K.; Böttcher, Y.; Brunner, E.; Bumpstead, S.J.; Chen, Y.D.; Chines, P.; Clarke, R.; Coin, L.J.; Cooper, M.N.; Crisponi, L.; Day, I.N.; de Geus, E.J.; Delplanque, J.; Fedson, A.C.; Fischer-Rosinsky, A.; Forouhi, N.G.; Frants, R.; Franzosi, M.G.; Galan, P.; Goodarzi, M.O.; Graessler, J.; Grundy, S.; Gwilliam, R.; Hallmans, G.; Hammond, N.; Han, X.; Hartikainen, A.L.; Hayward, C.; Heath, S.C.; Hercberg, S.; Hicks, A.A.; Hillman, D.R.; Hingorani, A.D.; Hui, J.; Hung, J.; Jula, A.; Kaakinen, M.; Kaprio, J.; Kesaniemi, Y.A.; Kivimaki, M.; Knight, B.; Koskinen, S.; Kovacs, P.; Kyvik, K.O.; Lathrop, G.M.; Lawlor, D.A.; Le Bacquer, O.; Lecoeur, C.; Li, Y.; Mahley, R.; Mangino, M.; Manning, A.K.; Martínez-Larrad, M.T.; McAteer, J.B.; McPherson, R.; Meisinger, C.; Melzer, D.; Meyre, D.; Mitchell, B.D.; Mukherjee, S.; Naitza, S.; Neville, M.J.; Oostra, B.A.; Orrù, M.; Pakyz, R.; Paolisso, G.; Pattaro, C.; Pearson, D.; Peden, J.F.; Pedersen, N.L.; Perola, M.; Pfeiffer, A.F.; Pichler, I.; Polasek, O.; Posthuma, D.; Potter, S.C.; Pouta, A.; Province, M.A.; Psaty, B.M.; Rayner, N.W.; Rice, K.; Ripatti, S.; Rivadeneira, F.; Rolandsson, O.; Sandbaek, A.; Sandhu, M.; Sanna, S.; Sayer, A.A.; Scheet, P.; Seedorf, U.; Sharp, S.J.; Shields, B.; Sijbrands, E.J.; Silveira, A.; Simpson, L.; Singleton, A.; Smith, N.L.; Sovio, U.; Swift, A.; Syddall, H.; Syvänen, A.C.; Tanaka, T.; Tönjes, A.; Uitterlinden, A.G.; van Dijk, K.W.; Varma, D.; Visvikis-Siest, S.; Vitart, V.; Vogelzangs, N.; Waeber, G.; Wagner, P.J.; Walley, A.; Ward, K.L.; Watkins, H.; Wild, S.H.; Willemsen, G.; Witteman, J.C.; Yarnell, J.W.; Zelenika, D.; Zethelius, B.; Zhai, G.; Zhao, J.H.; Zillikens, M.C.; Borecki, I.B.; Loos, R.J.; Meneton, P.; Magnusson, P.K.; Nathan, D.M.; Williams, G.H.; Silander, K.; Salomaa, V.; Smith, G.D.; Bornstein, S.R.; Schwarz, P.; Spranger, J.; Karpe, F.; Shuldiner, A.R.; Cooper, C.; Dedoussis, G.V.; Serrano-Ríos, M.; Lind, L.; Palmer, L.J.; Franks, P.W.; Ebrahim, S.; Marmot, M.; Kao, W.H.; Pramstaller, P.P.; Wright, A.F.; Stumvoll, M.; Hamsten, A.; Buchanan, T.A.; Valle, T.T.; Rotter, J.I.; Siscovick, D.S.; Penninx, B.W.; Boomsma, D.I.; Deloukas, P.; Spector, T.D.; Ferrucci, L.; Cao, A.; Scuteri, A.; Schlessinger, D.; Uda, M.; Ruokonen, A.; Jarvelin, M.R.; Waterworth, D.M.; Vollenweider, P.; Peltonen, L.; Mooser, V.; Sladek, R. DIAGRAM Consortium; MAGIC Investigators. A genome-wide association search for type 2 diabetes genes in African Americans. PLoS One, 2012, 7(1)e29202
[http://dx.doi.org/10.1371/journal.pone.0029202] [PMID: 22238593]
[66]
Sesti, G.; Federici, M.; Hribal, M.L.; Lauro, D.; Sbraccia, P.; Lauro, R. Defects of the insulin receptor substrate (IRS) system in human metabolic disorders. FASEB J., 2001, 15(12), 2099-2111.
[http://dx.doi.org/10.1096/fj.01-0009rev] [PMID: 11641236]
[67]
Sesti, G. Insulin receptor substrate polymorphisms and type 2 diabetes mellitus. Pharmacogenomics, 2000, 1(3), 343-357.
[http://dx.doi.org/10.1517/14622416.1.3.343] [PMID: 11256583]
[68]
Prudente, S.; Morini, E.; Lucchesi, D.; Lamacchia, O.; Bailetti, D.; Mercuri, L.; Alberico, F.; Copetti, M.; Pucci, L.; Fariello, S.; Giusti, L.; Cignarelli, M.; Penno, G.; De Cosmo, S.; Trischitta, V. IRS1 G972R missense polymorphism is associated with failure to oral antidiabetes drugs in white patients with type 2 diabetes from Italy. Diabetes, 2014, 63(9), 3135-3140.
[http://dx.doi.org/10.2337/db13-1966] [PMID: 24947357]
[69]
Prudente, S.; Di Paola, R.; Pezzilli, S. Pharmacogenetics of oral antidiabetes drugs: evidence for diverse signals at the IRS1 locus. Pharmacogenomics J., 2017.
[http://dx.doi.org/10.1038/tpj.2017.32] [PMID: 28696414]
[70]
Arimany-Nardi, C.; Koepsell, H.; Pastor-Anglada, M. Role of SLC22A1 polymorphic variants in drug disposition, therapeutic responses, and drug-drug interactions. Pharmacogenomics J., 2015, 15(6), 473-487.
[http://dx.doi.org/10.1038/tpj.2015.78] [PMID: 26526073]
[71]
Klen, J.; Goričar, K.; Janež, A.; Dolžan, V. The role of genetic factors and kidney and liver function in glycemic control in type 2 diabetes patients on long-term metformin and sulphonylurea cotreatment. BioMed Res. Int., 2014.2014934729
[http://dx.doi.org/10.1155/2014/934729] [PMID: 25025077]
[72]
Tarasova, L.; Kalnina, I.; Geldnere, K.; Bumbure, A.; Ritenberga, R.; Nikitina-Zake, L.; Fridmanis, D.; Vaivade, I.; Pirags, V.; Klovins, J. Association of genetic variation in the organic cation transporters OCT1, OCT2 and multidrug and toxin extrusion 1 transporter protein genes with the gastrointestinal side effects and lower BMI in metformin-treated type 2 diabetes patients. Pharmacogenet. Genomics, 2012, 22(9), 659-666.
[http://dx.doi.org/10.1097/FPC.0b013e3283561666] [PMID: 22735389]
[73]
Becker, M.L.; Visser, L.E.; van Schaik, R.H.N.; Hofman, A.; Uitterlinden, A.G.; Stricker, B.H. Genetic variation in the organic cation transporter 1 is associated with metformin response in patients with diabetes mellitus. Pharmacogenomics J., 2009, 9(4), 242-247.
[http://dx.doi.org/10.1038/tpj.2009.15] [PMID: 19381165]
[74]
Umamaheswaran, G.; Praveen, R.G.; Damodaran, S.E.; Das, A.K.; Adithan, C. Influence of SLC22A1 rs622342 genetic polymorphism on metformin response in South Indian type 2 diabetes mellitus patients. Clin. Exp. Med., 2015, 15(4), 511-517.
[http://dx.doi.org/10.1007/s10238-014-0322-5] [PMID: 25492374]
[75]
Shu, Y.; Sheardown, S.A.; Brown, C.; Owen, R.P.; Zhang, S.; Castro, R.A.; Ianculescu, A.G.; Yue, L.; Lo, J.C.; Burchard, E.G.; Brett, C.M.; Giacomini, K.M. Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action. J. Clin. Invest., 2007, 117(5), 1422-1431.
[http://dx.doi.org/10.1172/JCI30558] [PMID: 17476361]
[76]
Shu, Y.; Brown, C.; Castro, R.A.; Shi, R.J.; Lin, E.T.; Owen, R.P.; Sheardown, S.A.; Yue, L.; Burchard, E.G.; Brett, C.M.; Giacomini, K.M. Effect of genetic variation in the organic cation transporter 1, OCT1, on metformin pharmacokinetics. Clin. Pharmacol. Ther., 2008, 83(2), 273-280.
[http://dx.doi.org/10.1038/sj.clpt.6100275] [PMID: 17609683]
[77]
Tzvetkov, M.V.; Vormfelde, S.V.; Balen, D.; Meineke, I.; Schmidt, T.; Sehrt, D.; Sabolić, I.; Koepsell, H.; Brockmöller, J. The effects of genetic polymorphisms in the organic cation transporters OCT1, OCT2, and OCT3 on the renal clearance of metformin. Clin. Pharmacol. Ther., 2009, 86(3), 299-306.
[http://dx.doi.org/10.1038/clpt.2009.92] [PMID: 19536068]
[78]
Zhou, Y.; Ye, W.; Wang, Y.; Jiang, Z.; Meng, X.; Xiao, Q.; Zhao, Q.; Yan, J. Genetic variants of OCT1 influence glycemic response to metformin in Han Chinese patients with type-2 diabetes mellitus in Shanghai. Int. J. Clin. Exp. Pathol., 2015, 8(8), 9533-9542.
[PMID: 26464716]
[79]
Dujic, T.; Causevic, A.; Bego, T. Organic cation transporter 1 variants and gastrointestinal side effects of metformin in patients with Type 2 diabetes. Diabet Med. J. Br Diabet Assoc., 2016, 33(4), 511-514.
[http://dx.doi.org/10.1111/dme.13040]
[80]
Zhou, K.; Donnelly, L.A.; Kimber, C.H.; Donnan, P.T.; Doney, A.S.; Leese, G.; Hattersley, A.T.; McCarthy, M.I.; Morris, A.D.; Palmer, C.N.; Pearson, E.R. Reduced-function SLC22A1 polymorphisms encoding organic cation transporter 1 and glycemic response to metformin: A GoDARTS study. Diabetes, 2009, 58(6), 1434-1439.
[http://dx.doi.org/10.2337/db08-0896] [PMID: 19336679]
[81]
Dujic, T.; Zhou, K.; Yee, S.W. Variants in Pharmacokinetic Transporters and Glycaemic Response to Metformin: A MetGen Meta-Analysis. Clin. Pharmacol. Ther., 2017, 101(6), 763-772.
[http://dx.doi.org/10.1002/cpt.567] [PMID: 27859023]
[82]
Kimura, N.; Masuda, S.; Tanihara, Y.; Ueo, H.; Okuda, M.; Katsura, T.; Inui, K. Metformin is a superior substrate for renal organic cation transporter OCT2 rather than hepatic OCT1. Drug Metab. Pharmacokinet., 2005, 20(5), 379-386.
[http://dx.doi.org/10.2133/dmpk.20.379] [PMID: 16272756]
[83]
Yoon, H.; Cho, H.Y.; Yoo, H.D.; Kim, S.M.; Lee, Y.B. Influences of organic cation transporter polymorphisms on the population pharmacokinetics of metformin in healthy subjects. AAPS J., 2013, 15(2), 571-580.
[http://dx.doi.org/10.1208/s12248-013-9460-z] [PMID: 23417334]
[84]
Song, I.S.; Shin, H.J.; Shim, E.J.; Jung, I.S.; Kim, W.Y.; Shon, J.H.; Shin, J.G. Genetic variants of the organic cation transporter 2 influence the disposition of metformin. Clin. Pharmacol. Ther., 2008, 84(5), 559-562.
[http://dx.doi.org/10.1038/clpt.2008.61] [PMID: 18401339]
[85]
Hou, W.; Zhang, D.; Lu, W.; Zheng, T.; Wan, L.; Li, Q.; Bao, Y.; Liu, F.; Jia, W. Polymorphism of organic cation transporter 2 improves glucose-lowering effect of metformin via influencing its pharmacokinetics in Chinese type 2 diabetic patients. Mol. Diagn. Ther., 2015, 19(1), 25-33.
[http://dx.doi.org/10.1007/s40291-014-0126-z] [PMID: 25573751]
[86]
Kashi, Z.; Masoumi, P.; Mahrooz, A.; Hashemi-Soteh, M.B.; Bahar, A.; Alizadeh, A. The variant organic cation transporter 2 (OCT2)-T201M contribute to changes in insulin resistance in patients with type 2 diabetes treated with metformin. Diabetes Res. Clin. Pract., 2015, 108(1), 78-83.
[http://dx.doi.org/10.1016/j.diabres.2015.01.024] [PMID: 25662675]
[87]
Cho, S.K.; Chung, J-Y. The MATE1 rs2289669 polymorphism affects the renal clearance of metformin following ranitidine treatment. Int. J. Clin. Pharmacol. Ther., 2016, 54(4), 253-262.
[http://dx.doi.org/10.5414/CP202473] [PMID: 26784938]
[88]
Zaharenko, L.; Kalnina, I.; Geldnere, K.; Konrade, I.; Grinberga, S.; Židzik, J.; Javorský, M.; Lejnieks, A.; Nikitina-Zake, L.; Fridmanis, D.; Peculis, R.; Radovica-Spalvina, I.; Hartmane, D.; Pugovics, O.; Tkáč, I.; Klimčáková, L.; Pīrāgs, V.; Klovins, J. Single nucleotide polymorphisms in the intergenic region between metformin transporter OCT2 and OCT3 coding genes are associated with short-term response to metformin monotherapy in type 2 diabetes mellitus patients. Eur. J. Endocrinol., 2016, 175(6), 531-540.
[http://dx.doi.org/10.1530/EJE-16-0347] [PMID: 27609360]
[89]
Becker, M.L.; Visser, L.E.; van Schaik, R.H.N.; Hofman, A.; Uitterlinden, A.G.; Stricker, B.H. Genetic variation in the multidrug and toxin extrusion 1 transporter protein influences the glucose-lowering effect of metformin in patients with diabetes: A preliminary study. Diabetes, 2009, 58(3), 745-749.
[http://dx.doi.org/10.2337/db08-1028] [PMID: 19228809]
[90]
Christensen, M.M.H.; Pedersen, R.S.; Stage, T.B.; Brasch-Andersen, C.; Nielsen, F.; Damkier, P.; Beck-Nielsen, H.; Brøsen, K. A gene-gene interaction between polymorphisms in the OCT2 and MATE1 genes influences the renal clearance of metformin. Pharmacogenet. Genomics, 2013, 23(10), 526-534.
[http://dx.doi.org/10.1097/FPC.0b013e328364a57d] [PMID: 23873119]
[91]
Stocker, S.L.; Morrissey, K.M.; Yee, S.W.; Castro, R.A.; Xu, L.; Dahlin, A.; Ramirez, A.H.; Roden, D.M.; Wilke, R.A.; McCarty, C.A.; Davis, R.L.; Brett, C.M.; Giacomini, K.M. The effect of novel promoter variants in MATE1 and MATE2 on the pharmacokinetics and pharmacodynamics of metformin. Clin. Pharmacol. Ther., 2013, 93(2), 186-194.
[http://dx.doi.org/10.1038/clpt.2012.210] [PMID: 23267855]
[92]
Choi, J.H.; Yee, S.W.; Ramirez, A.H.; Morrissey, K.M.; Jang, G.H.; Joski, P.J.; Mefford, J.A.; Hesselson, S.E.; Schlessinger, A.; Jenkins, G.; Castro, R.A.; Johns, S.J.; Stryke, D.; Sali, A.; Ferrin, T.E.; Witte, J.S.; Kwok, P.Y.; Roden, D.M.; Wilke, R.A.; McCarty, C.A.; Davis, R.L.; Giacomini, K.M. A common 5′-UTR variant in MATE2-K is associated with poor response to metformin. Clin. Pharmacol. Ther., 2011, 90(5), 674-684.
[http://dx.doi.org/10.1038/clpt.2011.165] [PMID: 21956618]
[93]
Christensen, M.M.H.; Brasch-Andersen, C.; Green, H.; Nielsen, F.; Damkier, P.; Beck-Nielsen, H.; Brosen, K. The pharmacogenetics of metformin and its impact on plasma metformin steady-state levels and glycosylated hemoglobin A1c. Pharmacogenet. Genomics, 2011, 21(12), 837-850.
[http://dx.doi.org/10.1097/FPC.0b013e32834c0010] [PMID: 21989078]
[94]
Toyama, K.; Yonezawa, A.; Tsuda, M.; Masuda, S.; Yano, I.; Terada, T.; Osawa, R.; Katsura, T.; Hosokawa, M.; Fujimoto, S.; Inagaki, N.; Inui, K. Heterozygous variants of multidrug and toxin extrusions (MATE1 and MATE2-K) have little influence on the disposition of metformin in diabetic patients. Pharmacogenet. Genomics, 2010, 20(2), 135-138.
[http://dx.doi.org/10.1097/FPC.0b013e328335639f] [PMID: 20016398]
[95]
Chung, J-Y.; Cho, S.K.; Kim, T.H.; Kim, K.H.; Jang, G.H.; Kim, C.O.; Park, E.M.; Cho, J.Y.; Jang, I.J.; Choi, J.H. Functional characterization of MATE2-K genetic variants and their effects on metformin pharmacokinetics. Pharmacogenet. Genomics, 2013, 23(7), 365-373.
[http://dx.doi.org/10.1097/FPC.0b013e3283622037] [PMID: 23652408]
[96]
Zhou, K.; Yee, S.W.; Seiser, E.L.; van Leeuwen, N.; Tavendale, R.; Bennett, A.J.; Groves, C.J.; Coleman, R.L.; van der Heijden, A.A.; Beulens, J.W.; de Keyser, C.E.; Zaharenko, L.; Rotroff, D.M.; Out, M.; Jablonski, K.A.; Chen, L.; Javorský, M.; Židzik, J.; Levin, A.M.; Williams, L.K.; Dujic, T.; Semiz, S.; Kubo, M.; Chien, H.C.; Maeda, S.; Witte, J.S.; Wu, L.; Tkáč, I.; Kooy, A.; van Schaik, R.H.N.; Stehouwer, C.D.A.; Logie, L.; Sutherland, C.; Klovins, J.; Pirags, V.; Hofman, A.; Stricker, B.H.; Motsinger-Reif, A.A.; Wagner, M.J.; Innocenti, F.; ’t Hart, L.M.; Holman, R.R.; McCarthy, M.I.; Hedderson, M.M.; Palmer, C.N.A.; Florez, J.C.; Giacomini, K.M.; Pearson, E.R. MetGen Investigators; DPP Investigators; ACCORD Investigators. Variation in the glucose transporter gene SLC2A2 is associated with glycemic response to metformin. Nat. Genet., 2016, 48(9), 1055-1059.
[http://dx.doi.org/10.1038/ng.3632] [PMID: 27500523]
[97]
Niemi, M.; Backman, J.T.; Kajosaari, L.I.; Leathart, J.B.; Neuvonen, M.; Daly, A.K.; Eichelbaum, M.; Kivistö, K.T.; Neuvonen, P.J. Polymorphic organic anion transporting polypeptide 1B1 is a major determinant of repaglinide pharmacokinetics. Clin. Pharmacol. Ther., 2005, 77(6), 468-478.
[http://dx.doi.org/10.1016/j.clpt.2005.01.018] [PMID: 15961978]
[98]
Zhang, W.; He, Y-J.; Han, C-T.; Liu, Z.Q.; Li, Q.; Fan, L.; Tan, Z.R.; Zhang, W.X.; Yu, B.N.; Wang, D.; Hu, D.L.; Zhou, H.H. Effect of SLCO1B1 genetic polymorphism on the pharmacokinetics of nateglinide. Br. J. Clin. Pharmacol., 2006, 62(5), 567-572.
[http://dx.doi.org/10.1111/j.1365-2125.2006.02686.x] [PMID: 16796707]
[99]
Engwa, G.A.; Nwalo, F.N.; Chikezie, C.C.; Onyia, C.O.; Ojo, O.O.; Mbacham, W.F.; Ubi, B.E. Possible association between ABCC8 C49620T polymorphism and type 2 diabetes in a Nigerian population. BMC Med. Genet., 2018, 19(1), 78.
[http://dx.doi.org/10.1186/s12881-018-0601-1] [PMID: 29751826]
[100]
Molęda, P.; Bińczak-Kuleta, A.; Homa, K.; Safranow, K.; Celewicz, Z.; Syrenicz, A.; Stefański, A.; Fronczyk, A.; Majkowska, L. The common C49620T polymorphism in the sulfonylurea receptor gene SUR1 (ABCC8) in patients with gestational diabetes and subsequent glucose metabolism abnormalities. Exp. Diabetes Res., 2012.2012712617
[http://dx.doi.org/10.1155/2012/712617] [PMID: 22927833]
[101]
Elbein, S.C.; Sun, J.; Scroggin, E.; Teng, K.; Hasstedt, S.J. Role of common sequence variants in insulin secretion in familial type 2 diabetic kindreds: the sulfonylurea receptor, glucokinase, and hepatocyte nuclear factor 1alpha genes. Diabetes Care, 2001, 24(3), 472-478.
[http://dx.doi.org/10.2337/diacare.24.3.472] [PMID: 11289470]
[102]
He, Y.Y.; Zhang, R.; Shao, X.Y.; Hu, C.; Wang, C.R.; Lu, J.X.; Bao, Y.Q.; Jia, W.P.; Xiang, K.S. Association of KCNJ11 and ABCC8 genetic polymorphisms with response to repaglinide in Chinese diabetic patients. Acta Pharmacol. Sin., 2008, 29(8), 983-989.
[http://dx.doi.org/10.1111/j.1745-7254.2008.00840.x] [PMID: 18664331]
[103]
Zychma, M.J.; Gumprecht, J.; Strojek, K.; Grzeszczak, W.; Moczulski, D.; Trautsolt, W.; Karasek, D. Sulfonylurea receptor gene 16-3 polymorphism - association with sulfonylurea or insulin treatment in type 2 diabetic subjects. Med. Sci. Monit., 2002, 8(7), CR512-CR515.
[PMID: 12118200]
[104]
Nikolac, N.; Simundic, A-M.; Katalinic, D.; Topic, E.; Cipak, A.; Zjacic Rotkvic, V. Metabolic control in type 2 diabetes is associated with sulfonylurea receptor-1 (SUR-1) but not with KCNJ11 polymorphisms. Arch. Med. Res., 2009, 40(5), 387-392.
[http://dx.doi.org/10.1016/j.arcmed.2009.06.006] [PMID: 19766903]
[105]
Liu, Z.; Zhang, Y.W.; Feng, Q.P.; Li, Y.F.; Wu, G.D.; Zuo, J.; Xiao, X.H.; Fang, F.D. Association analysis of 30 type 2 diabetes candidate genes in Chinese Han population. Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 2006, 28(2), 124-128.
[PMID: 16733889]
[106]
Feng, Y.; Mao, G.; Ren, X.; Xing, H.; Tang, G.; Li, Q.; Li, X.; Sun, L.; Yang, J.; Ma, W.; Wang, X.; Xu, X. Ser1369Ala variant in sulfonylurea receptor gene ABCC8 is associated with antidiabetic efficacy of gliclazide in Chinese type 2 diabetic patients. Diabetes Care, 2008, 31(10), 1939-1944.
[http://dx.doi.org/10.2337/dc07-2248] [PMID: 18599530]
[107]
Lang, V.Y.; Fatehi, M.; Light, P.E. Pharmacogenomic analysis of ATP-sensitive potassium channels coexpressing the common type 2 diabetes risk variants E23K and S1369A. Pharmacogenet. Genomics, 2012, 22(3), 206-214.
[http://dx.doi.org/10.1097/FPC.0b013e32835001e7] [PMID: 22209866]
[108]
Hamming, K.S.C.; Soliman, D.; Matemisz, L.C.; Niazi, O.; Lang, Y.; Gloyn, A.L.; Light, P.E. Coexpression of the type 2 diabetes susceptibility gene variants KCNJ11 E23K and ABCC8 S1369A alter the ATP and sulfonylurea sensitivities of the ATP-sensitive K(+) channel. Diabetes, 2009, 58(10), 2419-2424.
[http://dx.doi.org/10.2337/db09-0143] [PMID: 19587354]
[109]
Florez, J.C.; Jablonski, K.A.; Kahn, S.E.; Franks, P.W.; Dabelea, D.; Hamman, R.F.; Knowler, W.C.; Nathan, D.M.; Altshuler, D. Type 2 diabetes-associated missense polymorphisms KCNJ11 E23K and ABCC8 A1369S influence progression to diabetes and response to interventions in the Diabetes Prevention Program. Diabetes, 2007, 56(2), 531-536.
[http://dx.doi.org/10.2337/db06-0966] [PMID: 17259403]
[110]
Hani, E.H.; Boutin, P.; Durand, E.; Inoue, H.; Permutt, M.A.; Velho, G.; Froguel, P. Missense mutations in the pancreatic islet beta cell inwardly rectifying K+ channel gene (KIR6.2/BIR): a meta-analysis suggests a role in the polygenic basis of Type II diabetes mellitus in Caucasians. Diabetologia, 1998, 41(12), 1511-1515.
[http://dx.doi.org/10.1007/s001250051098] [PMID: 9867219]
[111]
Nielsen, E-M.D.; Hansen, L.; Carstensen, B.; Echwald, S.M.; Drivsholm, T.; Glümer, C.; Thorsteinsson, B.; Borch-Johnsen, K.; Hansen, T.; Pedersen, O. The E23K variant of Kir6.2 associates with impaired post-OGTT serum insulin response and increased risk of type 2 diabetes. Diabetes, 2003, 52(2), 573-577.
[http://dx.doi.org/10.2337/diabetes.52.2.573] [PMID: 12540638]
[112]
Engwa, A.G.; Nwalo, N.F.; Obi, C.E. Predominance of the A allele but no association of the KCNJ11 rs5219 E23K polymorphism with Type 2 Diabetes in a Nigerian population. Genet. Mol. Res., 2018, 17(1), 1-8.
[http://dx.doi.org/10.4238/gmr16039889]
[113]
Souza, S.W.; Alcazar, L.P.; Arakaki, P.A.; Santos-Weiss, I.C.; Alberton, D.; Picheth, G.; Rego, F.G. Polymorphism E23K (rs5219) in the KCNJ11 gene in Euro-Brazilian subjects with type 1 and 2 diabetes. Genet. Mol. Res., 2017, 16(2), 1-9.
[http://dx.doi.org/10.4238/gmr16029543] [PMID: 28387875]
[114]
Zhang, H.; Liu, X.; Kuang, H.; Yi, R.; Xing, H. Association of sulfonylurea receptor 1 genotype with therapeutic response to gliclazide in type 2 diabetes. Diabetes Res. Clin. Pract., 2007, 77(1), 58-61.
[http://dx.doi.org/10.1016/j.diabres.2006.10.021] [PMID: 17118480]
[115]
Holstein, A.; Hahn, M.; Stumvoll, M.; Kovacs, P. The E23K variant of KCNJ11 and the risk for severe sulfonylurea-induced hypoglycemia in patients with type 2 diabetes. Horm. Metab. Res., 2009, 41(5), 387-390.
[http://dx.doi.org/10.1055/s-0029-1192019] [PMID: 19214942]
[116]
Shimajiri, Y.; Yamana, A.; Morita, S.; Furuta, H.; Furuta, M.; Sanke, T. Kir6.2 E23K polymorphism is related to secondary failure of sulfonylureas in non-obese patients with type 2 diabetes. J. Diabetes Investig., 2013, 4(5), 445-449.
[http://dx.doi.org/10.1111/jdi.12070] [PMID: 24843693]
[117]
El-Sisi, A.E.; Hegazy, S.K.; Metwally, S.S.; Wafa, A.M.; Dawood, N.A. Effect of genetic polymorphisms on the development of secondary failure to sulfonylurea in egyptian patients with type 2 diabetes. Ther. Adv. Endocrinol. Metab., 2011, 2(4), 155-164.
[http://dx.doi.org/10.1177/2042018811415985] [PMID: 23148181]
[118]
Javorsky, M.; Klimcakova, L.; Schroner, Z.; Zidzik, J.; Babjakova, E.; Fabianova, M.; Kozarova, M.; Tkacova, R.; Salagovic, J.; Tkac, I. KCNJ11 gene E23K variant and therapeutic response to sulfonylureas. Eur. J. Intern. Med., 2012, 23(3), 245-249.
[http://dx.doi.org/10.1016/j.ejim.2011.10.018] [PMID: 22385882]
[119]
Jonsson, A.; Isomaa, B.; Tuomi, T.; Taneera, J.; Salehi, A.; Nilsson, P.; Groop, L.; Lyssenko, V. A variant in the KCNQ1 gene predicts future type 2 diabetes and mediates impaired insulin secretion. Diabetes, 2009, 58(10), 2409-2413.
[http://dx.doi.org/10.2337/db09-0246] [PMID: 19584308]
[120]
Unoki, H.; Takahashi, A.; Kawaguchi, T.; Hara, K.; Horikoshi, M.; Andersen, G.; Ng, D.P.; Holmkvist, J.; Borch-Johnsen, K.; Jørgensen, T.; Sandbaek, A.; Lauritzen, T.; Hansen, T.; Nurbaya, S.; Tsunoda, T.; Kubo, M.; Babazono, T.; Hirose, H.; Hayashi, M.; Iwamoto, Y.; Kashiwagi, A.; Kaku, K.; Kawamori, R.; Tai, E.S.; Pedersen, O.; Kamatani, N.; Kadowaki, T.; Kikkawa, R.; Nakamura, Y.; Maeda, S. SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations. Nat. Genet., 2008, 40(9), 1098-1102.
[http://dx.doi.org/10.1038/ng.208] [PMID: 18711366]
[121]
Dai, X-P.; Huang, Q.; Yin, J-Y.; Guo, Y.; Gong, Z.C.; Lei, M.X.; Jiang, T.J.; Zhou, H.H.; Liu, Z.Q. KCNQ1 gene polymorphisms are associated with the therapeutic efficacy of repaglinide in Chinese type 2 diabetic patients. Clin. Exp. Pharmacol. Physiol., 2012, 39(5), 462-468.
[http://dx.doi.org/10.1111/j.1440-1681.2012.05701.x] [PMID: 22414228]
[122]
Schroner, Z.; Dobrikova, M.; Klimcakova, L.; Javorsky, M.; Zidzik, J.; Kozarova, M.; Hudakova, T.; Tkacova, R.; Salagovic, J.; Tkac, I. Variation in KCNQ1 is associated with therapeutic response to sulphonylureas. Med. Sci. Monit., 2011, 17(7), CR392-CR396.
[http://dx.doi.org/10.12659/MSM.881850] [PMID: 21709633]
[123]
Becker, M.L.; Aarnoudse, A-J.; Newton-Cheh, C.; Hofman, A.; Witteman, J.C.; Uitterlinden, A.G.; Visser, L.E.; Stricker, B.H. Common variation in the NOS1AP gene is associated with reduced glucose-lowering effect and with increased mortality in users of sulfonylurea. Pharmacogenet. Genomics, 2008, 18(7), 591-597.
[http://dx.doi.org/10.1097/FPC.0b013e328300e8c5] [PMID: 18551039]
[124]
Qin, W.; Zhang, R.; Hu, C.; Wang, C.R.; Lu, J.Y.; Yu, W.H.; Bao, Y.Q.; Xiang, K.S.; Jia, W.P. International Type 2 Diabetes 1q Consortium. A variation in NOS1AP gene is associated with repaglinide efficacy on insulin resistance in type 2 diabetes of Chinese. Acta Pharmacol. Sin., 2010, 31(4), 450-454.
[http://dx.doi.org/10.1038/aps.2010.25] [PMID: 20305679]
[125]
Cho, H-J.; Lee, S-Y.; Kim, Y-G.; Oh, S.Y.; Kim, J.W.; Huh, W.; Ko, J.W.; Kim, H.G. Effect of genetic polymorphisms on the pharmacokinetics and efficacy of glimepiride in a Korean population. Clin. Chim. Acta, 2011, 412(19-20), 1831-1834.
[http://dx.doi.org/10.1016/j.cca.2011.06.014] [PMID: 21704609]
[126]
Hu, C.; Wang, C.; Zhang, R.; Ng, M.C.; Bao, Y.; Wang, C.; So, W.Y.; Ma, R.C.; Ma, X.; Chan, J.C.; Xiang, K.; Jia, W. Association of genetic variants of NOS1AP with type 2 diabetes in a Chinese population. Diabetologia, 2010, 53(2), 290-298.
[http://dx.doi.org/10.1007/s00125-009-1594-2] [PMID: 19937226]
[127]
Wang, T.; Wang, Y.; Lv, D-M.; Song, J.F.; Lu, Q.; Gao, X.; Zhang, F.; Guo, H.; Li, W.; Yin, X.X. Effects of NOS1AP rs12742393 polymorphism on repaglinide response in Chinese patients with type 2 diabetes mellitus. Pharmacotherapy, 2014, 34(2), 131-139.
[http://dx.doi.org/10.1002/phar.1379] [PMID: 24338736]
[128]
Grant, S.F.A.; Thorleifsson, G.; Reynisdottir, I.; Benediktsson, R.; Manolescu, A.; Sainz, J.; Helgason, A.; Stefansson, H.; Emilsson, V.; Helgadottir, A.; Styrkarsdottir, U.; Magnusson, K.P.; Walters, G.B.; Palsdottir, E.; Jonsdottir, T.; Gudmundsdottir, T.; Gylfason, A.; Saemundsdottir, J.; Wilensky, R.L.; Reilly, M.P.; Rader, D.J.; Bagger, Y.; Christiansen, C.; Gudnason, V.; Sigurdsson, G.; Thorsteinsdottir, U.; Gulcher, J.R.; Kong, A.; Stefansson, K. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat. Genet., 2006, 38(3), 320-323.
[http://dx.doi.org/10.1038/ng1732] [PMID: 16415884]
[129]
Tong, Y.; Lin, Y.; Zhang, Y.; Yang, J.; Zhang, Y.; Liu, H.; Zhang, B. Association between TCF7L2 gene polymorphisms and susceptibility to type 2 diabetes mellitus: A large Human Genome Epidemiology (HuGE) review and meta-analysis. BMC Med. Genet., 2009, 10, 15.
[http://dx.doi.org/10.1186/1471-2350-10-15] [PMID: 19228405]
[130]
Pearson, E.R.; Donnelly, L.A.; Kimber, C.; Whitley, A.; Doney, A.S.; McCarthy, M.I.; Hattersley, A.T.; Morris, A.D.; Palmer, C.N. Variation in TCF7L2 influences therapeutic response to sulfonylureas: a GoDARTs study. Diabetes, 2007, 56(8), 2178-2182.
[http://dx.doi.org/10.2337/db07-0440] [PMID: 17519421]
[131]
Holstein, A.; Hahn, M.; Körner, A.; Stumvoll, M.; Kovacs, P. TCF7L2 and therapeutic response to sulfonylureas in patients with type 2 diabetes. BMC Med. Genet., 2011, 12, 30.
[http://dx.doi.org/10.1186/1471-2350-12-30] [PMID: 21349175]
[132]
Yu, M.; Xu, X-J.; Yin, J-Y.; Wu, J.; Chen, X.; Gong, Z.C.; Ren, H.Y.; Huang, Q.; Sheng, F.F.; Zhou, H.H.; Liu, Z.Q. KCNJ11 Lys23Glu and TCF7L2 rs290487(C/T) polymorphisms affect therapeutic efficacy of repaglinide in Chinese patients with type 2 diabetes. Clin. Pharmacol. Ther., 2010, 87(3), 330-335.
[http://dx.doi.org/10.1038/clpt.2009.242] [PMID: 20054294]
[133]
Sesti, G.; Marini, M.A.; Cardellini, M.; Sciacqua, A.; Frontoni, S.; Andreozzi, F.; Irace, C.; Lauro, D.; Gnasso, A.; Federici, M.; Perticone, F.; Lauro, R. The Arg972 variant in insulin receptor substrate-1 is associated with an increased risk of secondary failure to sulfonylurea in patients with type 2 diabetes. Diabetes Care, 2004, 27(6), 1394-1398.
[http://dx.doi.org/10.2337/diacare.27.6.1394] [PMID: 15161794]
[134]
Seeringer, A.; Parmar, S.; Fischer, A.; Altissimo, B.; Zondler, L.; Lebedeva, E.; Pitterle, K.; Roots, I.; Kirchheiner, J. Genetic variants of the insulin receptor substrate-1 are influencing the therapeutic efficacy of oral antidiabetics. Diabetes Obes. Metab., 2010, 12(12), 1106-1112.
[http://dx.doi.org/10.1111/j.1463-1326.2010.01301.x] [PMID: 20977583]
[135]
Niemi, M.; Leathart, J.B.; Neuvonen, M.; Backman, J.T.; Daly, A.K.; Neuvonen, P.J. Polymorphism in CYP2C8 is associated with reduced plasma concentrations of repaglinide. Clin. Pharmacol. Ther., 2003, 74(4), 380-387.
[http://dx.doi.org/10.1016/S0009-9236(03)00228-5] [PMID: 14534525]
[136]
Swen, J.J.; Wessels, J.A.M.; Krabben, A.; Assendelft, W.J.; Guchelaar, H.J. Effect of CYP2C9 polymorphisms on prescribed dose and time-to-stable dose of sulfonylureas in primary care patients with Type 2 diabetes mellitus. Pharmacogenomics, 2010, 11(11), 1517-1523.
[http://dx.doi.org/10.2217/pgs.10.121] [PMID: 21121772]
[137]
Becker, M.L.; Visser, L.E.; Trienekens, P.H.; Hofman, A.; van Schaik, R.H.; Stricker, B.H. Cytochrome P450 2C9 *2 and *3 polymorphisms and the dose and effect of sulfonylurea in type II diabetes mellitus. Clin. Pharmacol. Ther., 2008, 83(2), 288-292.
[http://dx.doi.org/10.1038/sj.clpt.6100273] [PMID: 17597710]
[138]
Holstein, A.; Plaschke, A.; Ptak, M.; Egberts, E.H.; El-Din, J.; Brockmöller, J.; Kirchheiner, J. Association between CYP2C9 slow metabolizer genotypes and severe hypoglycaemia on medication with sulphonylurea hypoglycaemic agents. Br. J. Clin. Pharmacol., 2005, 60(1), 103-106.
[http://dx.doi.org/10.1111/j.1365-2125.2005.02379.x] [PMID: 15963101]
[139]
Ragia, G.; Petridis, I.; Tavridou, A.; Christakidis, D.; Manolopoulos, V.G. Presence of CYP2C9*3 allele increases risk for hypoglycemia in Type 2 diabetic patients treated with sulfonylureas. Pharmacogenomics, 2009, 10(11), 1781-1787.
[http://dx.doi.org/10.2217/pgs.09.96] [PMID: 19891554]
[140]
Surendiran, A.; Pradhan, S.C.; Agrawal, A.; Subrahmanyam, D.K.; Rajan, S.; Anichavezhi, D.; Adithan, C. Influence of CYP2C9 gene polymorphisms on response to glibenclamide in type 2 diabetes mellitus patients. Eur. J. Clin. Pharmacol., 2011, 67(8), 797-801.
[http://dx.doi.org/10.1007/s00228-011-1013-8] [PMID: 21336994]
[141]
Kirchheiner, J.; Meineke, I.; Müller, G.; Bauer, S.; Rohde, W.; Meisel, C.; Roots, I.; Brockmöller, J. Influence of CYP2C9 and CYP2D6 polymorphisms on the pharmacokinetics of nateglinide in genotyped healthy volunteers. Clin. Pharmacokinet., 2004, 43(4), 267-278.
[http://dx.doi.org/10.2165/00003088-200443040-00005] [PMID: 15005635]
[142]
Lehmann, J.M.; Moore, L.B.; Smith-Oliver, T.A.; Wilkison, W.O.; Willson, T.M.; Kliewer, S.A. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J. Biol. Chem., 1995, 270(22), 12953-12956.
[http://dx.doi.org/10.1074/jbc.270.22.12953] [PMID: 7768881]
[143]
Altshuler, D.; Hirschhorn, J.N.; Klannemark, M.; Lindgren, C.M.; Vohl, M.C.; Nemesh, J.; Lane, C.R.; Schaffner, S.F.; Bolk, S.; Brewer, C.; Tuomi, T.; Gaudet, D.; Hudson, T.J.; Daly, M.; Groop, L.; Lander, E.S. The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat. Genet., 2000, 26(1), 76-80.
[http://dx.doi.org/10.1038/79216] [PMID: 10973253]
[144]
Gouda, H.N.; Sagoo, G.S.; Harding, A-H.; Yates, J.; Sandhu, M.S.; Higgins, J.P.T. The association between the peroxisome proliferator-activated receptor-gamma2 (PPARG2) Pro12Ala gene variant and type 2 diabetes mellitus: A HuGE review and meta-analysis. Am. J. Epidemiol., 2010, 171(6), 645-655.
[http://dx.doi.org/10.1093/aje/kwp450] [PMID: 20179158]
[145]
Engwa, G.A.; Nwalo, F.N.; Chiezey, V.O.; Unachukwu, M.N.; Ojo, O.O.; Ubi, B.E. Assessment of the Pro12Ala polymorphism in the PPAR-γ2 gene among Type 2 diabetes patients in a Nigerian population. J. Clin. Med., 2018, 7(4), 69.
[http://dx.doi.org/10.3390/jcm7040069] [PMID: 29621178]
[146]
Mato, E.P.M.; Pokam-Fosso, P.E.; Atogho-Tiedeu, B.; Noubiap, J.J.N.; Evehe, M.S.; Djokam-Dadjeu, R.; Donfack, O.S.; Ngwa, E.N.; Guewo-Fokeng, M.; Mbacham, W.F.; Sobngwi, E.; Mbanya, J.C. The Pro12Ala polymorphism in the PPAR-γ2 gene is not associated to obesity and type 2 diabetes mellitus in a Cameroonian population. BMC Obes., 2016, 3, 26.
[http://dx.doi.org/10.1186/s40608-016-0104-6] [PMID: 27239321]
[147]
Danquah, I.; Othmer, T.; Frank, L.K.; Bedu-Addo, G.; Schulze, M.B.; Mockenhaupt, F.P. The TCF7L2 rs7903146 (T) allele is associated with type 2 diabetes in urban Ghana: a hospital-based case-control study. BMC Med. Genet., 2013, 14, 96.
[http://dx.doi.org/10.1186/1471-2350-14-96] [PMID: 24059590]
[148]
Hsieh, M-C.; Lin, K-D.; Tien, K-J.; Tu, S.T.; Hsiao, J.Y.; Chang, S.J.; Lin, S.R.; Shing, S.J.; Chen, H.C. Common polymorphisms of the peroxisome proliferator-activated receptor-gamma (Pro12Ala) and peroxisome proliferator-activated receptor-gamma coactivator-1 (Gly482Ser) and the response to pioglitazone in Chinese patients with type 2 diabetes mellitus. Metabolism, 2010, 59(8), 1139-1144.
[http://dx.doi.org/10.1016/j.metabol.2009.10.030] [PMID: 20045142]
[149]
Pei, Q.; Huang, Q.; Yang, G-P.; Zhao, Y.C.; Yin, J.Y.; Song, M.; Zheng, Y.; Mo, Z.H.; Zhou, H.H.; Liu, Z.Q. PPAR-γ2 and PTPRD gene polymorphisms influence type 2 diabetes patients’ response to pioglitazone in China. Acta Pharmacol. Sin., 2013, 34(2), 255-261.
[http://dx.doi.org/10.1038/aps.2012.144] [PMID: 23147557]
[150]
Blüher, M.; Lübben, G.; Paschke, R. Analysis of the relationship between the Pro12Ala variant in the PPAR-gamma2 gene and the response rate to therapy with pioglitazone in patients with type 2 diabetes. Diabetes Care, 2003, 26(3), 825-831.
[http://dx.doi.org/10.2337/diacare.26.3.825] [PMID: 12610044]
[151]
Namvaran, F.; Azarpira, N.; Rahimi-Moghaddam, P.; Dabbaghmanesh, M.H. Polymorphism of peroxisome proliferator-activated receptor γ (PPARγ) Pro12Ala in the Iranian population: relation with insulin resistance and response to treatment with pioglitazone in type 2 diabetes. Eur. J. Pharmacol., 2011, 671(1-3), 1-6.
[http://dx.doi.org/10.1016/j.ejphar.2011.09.158] [PMID: 21968139]
[152]
Ramírez-Salazar, M.; Pérez-Luque, E.; Fajardo-Araujo, M.; Garza, S.M.; Malacara, J.M. Effect of the Pro12Ala polymorphism of the PPAR gamma 2 gene on response to pioglitazone treatment in menopausal women. Menopause, 2008, 15(6), 1151-1156.
[http://dx.doi.org/10.1097/gme.0b013e31816d5b2d] [PMID: 18551086]
[153]
Kang, E.S.; Park, S.Y.; Kim, H.J.; Kim, C.S.; Ahn, C.W.; Cha, B.S.; Lim, S.K.; Nam, C.M.; Lee, H.C. Effects of Pro12Ala polymorphism of peroxisome proliferator-activated receptor gamma2 gene on rosiglitazone response in type 2 diabetes. Clin. Pharmacol. Ther., 2005, 78(2), 202-208.
[http://dx.doi.org/10.1016/j.clpt.2005.04.013] [PMID: 16084854]
[154]
Li, Z.; Peng, X.; Wu, Y.; Xia, Y.; Liu, X.; Zhang, Q. The influence of adiponectin gene polymorphism on the pioglitazone response in the Chinese with type 2 diabetes. Diabetes Obes. Metab., 2008, 10(9), 794-802.
[http://dx.doi.org/10.1111/j.1463-1326.2008.00905.x] [PMID: 18494805]
[155]
Sun, H.; Gong, Z-C.; Yin, J-Y.; Liu, H.L.; Liu, Y.Z.; Guo, Z.W.; Zhou, H.H.; Wu, J.; Liu, Z.Q. The association of adiponectin allele 45T/G and -11377C/G polymorphisms with Type 2 diabetes and rosiglitazone response in Chinese patients. Br. J. Clin. Pharmacol., 2008, 65(6), 917-926.
[http://dx.doi.org/10.1111/j.1365-2125.2008.03145.x] [PMID: 18429970]
[156]
Yang, H.; Ye, E.; Si, G.; Chen, L.; Cai, L.; Ye, C.; Zhang, C.; Lu, X. Adiponectin gene polymorphism rs2241766 T/G is associated with response to pioglitazone treatment in type 2 diabetic patients from southern China. PLoS One, 2014, 9(11)e112480
[http://dx.doi.org/10.1371/journal.pone.0112480] [PMID: 25405601]
[157]
Namvaran, F.; Rahimi-Moghaddam, P.; Azarpira, N.; Dabbaghmanesh, M.H. Polymorphism of adiponectin (45T/G) and adiponectin receptor-2 (795G/A) in an Iranian population: relation with insulin resistance and response to treatment with pioglitazone in patients with type 2 diabetes mellitus. Mol. Biol. Rep., 2012, 39(5), 5511-5518.
[http://dx.doi.org/10.1007/s11033-011-1354-5] [PMID: 22187345]
[158]
Kang, E.S.; Park, S.Y.; Kim, H.J.; Ahn, C.W.; Nam, M.; Cha, B.S.; Lim, S.K.; Kim, K.R.; Lee, H.C. The influence of adiponectin gene polymorphism on the rosiglitazone response in patients with type 2 diabetes. Diabetes Care, 2005, 28(5), 1139-1144.
[http://dx.doi.org/10.2337/diacare.28.5.1139] [PMID: 15855579]
[159]
Dawed, A.Y.; Donnelly, L.; Tavendale, R.; Carr, F.; Leese, G.; Palmer, C.N.; Pearson, E.R.; Zhou, K. CYP2C8 and SLCO1B1 variants and therapeutic response to thiazolidinediones in patients with type 2 diabetes. Diabetes Care, 2016, 39(11), 1902-1908.
[http://dx.doi.org/10.2337/dc15-2464] [PMID: 27271184]
[160]
Kirchheiner, J.; Thomas, S.; Bauer, S.; Tomalik-Scharte, D.; Hering, U.; Doroshyenko, O.; Jetter, A.; Stehle, S.; Tsahuridu, M.; Meineke, I.; Brockmöller, J.; Fuhr, U. Pharmacokinetics and pharmacodynamics of rosiglitazone in relation to CYP2C8 genotype. Clin. Pharmacol. Ther., 2006, 80(6), 657-667.
[http://dx.doi.org/10.1016/j.clpt.2006.09.008] [PMID: 17178266]
[161]
Yeo, C-W.; Lee, S-J.; Lee, S.S.; Bae, S.K.; Kim, E.Y.; Shon, J.H.; Rhee, B.D.; Shin, J.G. Discovery of a novel allelic variant of CYP2C8, CYP2C8*11, in Asian populations and its clinical effect on the rosiglitazone disposition in vivo. Drug Metab. Dispos., 2011, 39(4), 711-716.
[http://dx.doi.org/10.1124/dmd.110.035899] [PMID: 21245287]
[162]
Aquilante, C.L.; Wempe, M.F.; Spencer, S.H.; Kosmiski, L.A.; Predhomme, J.A.; Sidhom, M.S. Influence of CYP2C8*2 on the pharmacokinetics of pioglitazone in healthy African-American volunteers. Pharmacotherapy, 2013, 33(9), 1000-1007.
[http://dx.doi.org/10.1002/phar.1292] [PMID: 23712614]
[163]
Goldstein, B.J.; Feinglos, M.N.; Lunceford, J.K.; Johnson, J.; Williams-Herman, D.E. Sitagliptin 036 Study Group. Effect of initial combination therapy with sitagliptin, a dipeptidyl peptidase-4 inhibitor, and metformin on glycemic control in patients with type 2 diabetes. Diabetes Care, 2007, 30(8), 1979-1987.
[http://dx.doi.org/10.2337/dc07-0627] [PMID: 17485570]
[164]
Fortin, J-P.; Schroeder, J.C.; Zhu, Y.; Beinborn, M.; Kopin, A.S. Pharmacological characterization of human incretin receptor missense variants. J. Pharmacol. Exp. Ther., 2010, 332(1), 274-280.
[http://dx.doi.org/10.1124/jpet.109.160531] [PMID: 19841474]
[165]
Koole, C.; Wootten, D.; Simms, J.; Miller, L.J.; Christopoulos, A.; Sexton, P.M. Differential impact of amino acid substitutions on critical residues of the human glucagon-like peptide-1 receptor involved in peptide activity and small-molecule allostery. J. Pharmacol. Exp. Ther., 2015, 353(1), 52-63.
[http://dx.doi.org/10.1124/jpet.114.220913] [PMID: 25630467]
[166]
Sathananthan, A.; Man, C.D.; Micheletto, F.; Zinsmeister, A.R.; Camilleri, M.; Giesler, P.D.; Laugen, J.M.; Toffolo, G.; Rizza, R.A.; Cobelli, C.; Vella, A. Common genetic variation in GLP1R and insulin secretion in response to exogenous GLP-1 in nondiabetic subjects: a pilot study. Diabetes Care, 2010, 33(9), 2074-2076.
[http://dx.doi.org/10.2337/dc10-0200] [PMID: 20805279]
[167]
Javorský, M.; Gotthardová, I.; Klimčáková, L.; Kvapil, M.; Židzik, J.; Schroner, Z.; Doubravová, P.; Gala, I.; Dravecká, I.; Tkáč, I. A missense variant in GLP1R gene is associated with the glycaemic response to treatment with gliptins. Diabetes Obes. Metab., 2016, 18(9), 941-944.
[http://dx.doi.org/10.1111/dom.12682] [PMID: 27160388]
[168]
Hyltén-Cavallius, L.; Iepsen, E.W.; Wewer Albrechtsen, N.J.; Svendstrup, M.; Lubberding, A.F.; Hartmann, B.; Jespersen, T.; Linneberg, A.; Christiansen, M.; Vestergaard, H.; Pedersen, O.; Holst, J.J.; Kanters, J.K.; Hansen, T.; Torekov, S.S. Patients with long-qt syndrome caused by impaired hERG-Encoded Kv11.1 potassium channel have exaggerated endocrine pancreatic and incretin function associated with reactive hypoglycemia. Circulation, 2017, 135(18), 1705-1719.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.024279] [PMID: 28235848]
[169]
Gotthardová, I.; Javorský, M.; Klimčáková, L.; Kvapil, M.; Schroner, Z.; Kozárová, M.; Malachovská, Z.; Ürgeová, A.; Židzik, J.; Tkáč, I. KCNQ1 gene polymorphism is associated with glycaemic response to treatment with DPP-4 inhibitors. Diabetes Res. Clin. Pract., 2017, 130, 142-147.
[http://dx.doi.org/10.1016/j.diabres.2017.05.018] [PMID: 28624668]
[170]
Smushkin, G.; Sathananthan, M.; Sathananthan, A.; Dalla Man, C.; Micheletto, F.; Zinsmeister, A.R.; Cobelli, C.; Vella, A. Diabetes-associated common genetic variation and its association with GLP-1 concentrations and response to exogenous GLP-1. Diabetes, 2012, 61(5), 1082-1089.
[http://dx.doi.org/10.2337/db11-1732] [PMID: 22461567]
[171]
Schäfer, S.A.; Tschritter, O.; Machicao, F.; Thamer, C.; Stefan, N.; Gallwitz, B.; Holst, J.J.; Dekker, J.M.; ’t Hart, L.M.; Nijpels, G.; van Haeften, T.W.; Häring, H.U.; Fritsche, A. Impaired glucagon-like peptide-1-induced insulin secretion in carriers of transcription factor 7-like 2 (TCF7L2) gene polymorphisms. Diabetologia, 2007, 50(12), 2443-2450.
[http://dx.doi.org/10.1007/s00125-007-0753-6] [PMID: 17661009]
[172]
Zimdahl, H.; Ittrich, C.; Graefe-Mody, U.; Boehm, B.O.; Mark, M.; Woerle, H.J.; Dugi, K.A. Influence of TCF7L2 gene variants on the therapeutic response to the dipeptidylpeptidase-4 inhibitor linagliptin. Diabetologia, 2014, 57(9), 1869-1875.
[http://dx.doi.org/10.1007/s00125-014-3276-y] [PMID: 24906949]
[173]
Scheen, A.J. Pharmacokinetics, pharmacodynamics and clinical use of SGLT2 inhibitors in patients with type 2 diabetes mellitus and chronic kidney disease. Clin. Pharmacokinet., 2015, 54(7), 691-708.
[http://dx.doi.org/10.1007/s40262-015-0264-4] [PMID: 25805666]
[174]
Francke, S.; Mamidi, R.N.; Solanki, B.; Scheers, E.; Jadwin, A.; Favis, R.; Devineni, D. In vitro metabolism of canagliflozin in human liver, kidney, intestine microsomes, and recombinant uridine diphosphate glucuronosyltransferases (UGT) and the effect of genetic variability of UGT enzymes on the pharmacokinetics of canagliflozin in humans. J. Clin. Pharmacol., 2015, 55(9), 1061-1072.
[http://dx.doi.org/10.1002/jcph.506] [PMID: 25827774]
[175]
Scheen, A.J. Pharmacodynamics, efficacy and safety of sodium-glucose co-transporter type 2 (SGLT2) inhibitors for the treatment of type 2 diabetes mellitus. Drugs, 2015, 75(1), 33-59.
[http://dx.doi.org/10.1007/s40265-014-0337-y] [PMID: 25488697]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy