Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Mini-Review Article

Bibliometrics and Visualization of the Mechanisms of Parkinson's Diseases Based on Animal Models

Author(s): Yan-Qiu Wang , Yi-Bing Chen, Dong Xu and Yuan-Lu Cui*

Volume 20, Issue 10, 2020

Page: [1560 - 1568] Pages: 9

DOI: 10.2174/1871530320666200421103429

Price: $65

Abstract

Objective: Energy metabolism disorder is one of the causes of Parkinson's disease (PD). Rodents, such as rats and mice are often used to establish animal models of PD. This paper used a bibliometric method to analyze the studies of rat and mouse PD models published between 2009 and 2018 in the Web of Science (WOS) database using CiteSpace V software. In addition, we conducted a literature review on the development status and research hotspots in this field in the past ten years.

Methods: The related articles on rat and mouse PD models were retrieved from the WOS database, and an analysis of the keywords in these articles was conducted using CiteSpace V. A timeline graph was developed by the software in order to show the focus of researchers in the PD field.

Results: A total of 8,636 articles were obtained. Results of the cluster analysis in the PD field such as neuroinflammation, oxidative stress, and autophagy, contributed to the systematic review about the pathogenesis of PD. At the same time, based on the property of the model drug, this review has summarized and compared different administration techniques and mechanisms of 6-hydroxydopamine (6- OHDA), 1-methyl-4-phenyl-1, 2, 4, 5-tetrahydropyridine (MPTP), paraquat and rotenone.

Conclusion: According to the bibliometric analysis, studies on PD were focused on the mechanisms of oxidative stress, neuroinflammation, and autophagy. Activated microglia releases inflammatory cytokines; mitochondrial dysfunction is caused by oxidative damage of mitochondrial protein; abnormal autophagy-lysosome pathway can lead to abnormal protein deposition in dopaminergic neurons. In addition, although many animal models of PD have been established, there are some limitations of such models. Therefore, it is necessary to develop models that accurately mimic human PD.

Keywords: Parkinson's disease, animal models, bibliometrics, pathogenesis, 6-OHDA, MPTP, paraquat, rotenone.

Graphical Abstract
[1]
Barone, M.C.; Sykiotis, G.P.; Bohmann, D. Genetic activation of Nrf2 signaling is sufficient to ameliorate neurodegenerative phenotypes in a Drosophila model of Parkinson’s disease. Dis. Model. Mech., 2011, 4(5), 701-707.
[http://dx.doi.org/10.1242/dmm.007575] [PMID: 21719443]
[2]
Błaszczyk, J.W. The emerging role of energy metabolism and neuroprotective strategies in Parkinson’s disease. Front. Aging Neurosci., 2018, 10, 301.
[http://dx.doi.org/10.3389/fnagi.2018.00301] [PMID: 30344487]
[3]
Yue, P.; Miao, W.; Gao, L.; Zhao, X.; Teng, J. Ultrasound-triggered effects of the microbubbles coupled to gdnf plasmid-loaded pegylated liposomes in a rat model of Parkinson’s disease. Front. Neurosci., 2018, 12, 222.
[http://dx.doi.org/10.3389/fnins.2018.00222] [PMID: 29686604]
[4]
Ebrahimi-Fakhari, D.; Van Karnebeek, C.; Münchau, A. Movement disorders in treatable inborn errors of metabolism. Mov. Disord., 2018.
[PMID: 30557456]
[5]
Le, W.; Sayana, P.; Jankovic, J. Animal models of Parkinson’s disease: A gateway to therapeutics? Neurotherapeutics, 2014, 11(1), 92-110.
[http://dx.doi.org/10.1007/s13311-013-0234-1] [PMID: 24158912]
[6]
Bezard, E.; Przedborski, S. A tale on animal models of Parkinson’s disease. Mov. Disord., 2011, 26(6), 993-1002.
[http://dx.doi.org/10.1002/mds.23696] [PMID: 21626544]
[7]
Jurado-Coronel, J.C.; Avila-Rodriguez, M.; Capani, F.; Gonzalez, J.; Moran, V.E.; Barreto, G.E. Targeting the nicotinic acetylcholine receptors (nAChRs) in astrocytes as a potential therapeutic target in Parkinson’s disease. Curr. Pharm. Des., 2016, 22(10), 1305-1311.
[http://dx.doi.org/10.2174/138161282210160304112133] [PMID: 26972289]
[8]
Cóppola-Segovia, V.; Cavarsan, C.; Maia, F.G.; Ferraz, A.C.; Nakao, L.S.; Lima, M.M.; Zanata, S.M. ER Stress Induced by tunicamycin triggers α-synuclein oligomerization, dopaminergic neurons death and locomotor impairment: A new model of Parkinson’s disease. Mol. Neurobiol., 2017, 54(8), 5798-5806.
[http://dx.doi.org/10.1007/s12035-016-0114-x] [PMID: 27660269]
[9]
Jenner, P. Oxidative stress in Parkinson’s disease. Ann. Neurol., 2003, 53(Suppl. 3), S26-S36.
[http://dx.doi.org/10.1002/ana.10483] [PMID: 12666096]
[10]
Wüllner, U.; Kornhuber, J.; Weller, M.; Schulz, J.B.; Löschmann, P.A.; Riederer, P.; Klockgether, T. Cell death and apoptosis regulating proteins in Parkinson’s disease--A cautionary note. Acta Neuropathol., 1999, 97(4), 408-412.
[http://dx.doi.org/10.1007/s004010051005] [PMID: 10208281]
[11]
Wu, A.D.; Petzinger, G.M.; Lin, C.H.; Kung, M.; Fisher, B. Asymmetric corticomotor excitability correlations in early Parkinson’s disease. Mov. Disord., 2007, 22(11), 1587-1593.
[http://dx.doi.org/10.1002/mds.21565] [PMID: 17523196]
[12]
Wang, W.; Wang, X.; Fujioka, H.; Hoppel, C.; Whone, A.L.; Caldwell, M.A.; Cullen, P.J.; Liu, J.; Zhu, X. Parkinson’s disease-associated mutant VPS35 causes mitochondrial dysfunction by recycling DLP1 complexes. Nat. Med., 2016, 22(1), 54-63.
[http://dx.doi.org/10.1038/nm.3983] [PMID: 26618722]
[13]
Warner, T.T.; Schapira, A.H. Genetic and environmental factors in the cause of Parkinson’s disease. Ann. Neurol., 2003, 53(Suppl. 3), S16-S23.
[http://dx.doi.org/10.1002/ana.10487] [PMID: 12666095]
[14]
Gonçalves, D.F.; Courtes, A.A.; Hartmann, D.D.; da Rosa, P.C.; Oliveira, D.M.; Soares, F.A.A.; Dalla Corte, C.L. 6-Hydroxydopamine induces different mitochondrial bioenergetics response in brain regions of rat. Neurotoxicology, 2019, 70, 1-11.
[http://dx.doi.org/10.1016/j.neuro.2018.10.005] [PMID: 30359634]
[15]
Supandi, F.; van Beek, J.H.G.M. Computational prediction of changes in brain metabolic fluxes during Parkinson’s disease from mRNA expression. PLoS One, 2018, 13(9)e0203687
[http://dx.doi.org/10.1371/journal.pone.0203687] [PMID: 30208076]
[16]
Costa, C.; Schurr, U.; Loreto, F.; Menesatti, P.; Carpentier, S. Plant phenotyping research trends, a science mapping approach. Front. Plant Sci., 2019, 9, 1933.
[http://dx.doi.org/10.3389/fpls.2018.01933] [PMID: 30666264]
[17]
Synnestvedt, M.B.; Chen, C.; Holmes, J.H. CiteSpace II: Visualization and knowledge discovery in bibliographic databases. AMIA Annu. Symp. Proc., 2005, 724-728.
[PMID: 16779135]
[18]
Chen, Y.B.; Tong, X.F.; Ren, J.G.; Yu, C.Q.; Cui, Y.L. Current research trends in traditional chinese medicine formula: A bibliometric review from 2000 to 2016 eCAM, 2019 Article ID 3961395, 13 pages.
[http://dx.doi.org/10.1155/2019/3961395]
[19]
Sharma, N.; Rao, S.P.; Kalivendi, S.V. The deglycase activity of DJ-1 mitigates α-synuclein glycation and aggregation in dopaminergic cells: Role of oxidative stress mediated downregulation of DJ-1 in Parkinson’s disease. Free Radic. Biol. Med., 2019, 135, 28-37.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.02.014] [PMID: 30796974]
[20]
Yan, R.; Zhang, J.; Park, H.J.; Park, E.S.; Oh, S.; Zheng, H.; Junn, E.; Voronkov, M.; Stock, J.B.; Mouradian, M.M. Synergistic neuroprotection by coffee components eicosanoyl-5-hydroxytryptamide and caffeine in models of Parkinson’s disease and DLB. Proc. Natl. Acad. Sci. USA, 2018, 115(51), E12053-E12062.
[http://dx.doi.org/10.1073/pnas.1813365115] [PMID: 30509990]
[21]
Saliba, S.W.; Jauch, H.; Gargouri, B.; Keil, A.; Hurrle, T.; Volz, N.; Mohr, F.; van der Stelt, M.; Bräse, S.; Fiebich, B.L. Anti-neuroinflammatory effects of GPR55 antagonists in LPS-activated primary microglial cells. J. Neuroinflammation, 2018, 15(1), 322.
[http://dx.doi.org/10.1186/s12974-018-1362-7] [PMID: 30453998]
[22]
Mendes, M.O.; Rosa, A.I.; Carvalho, A.N.; Nunes, M.J.; Dionísio, P.; Rodrigues, E.; Costa, D.; Duarte-Silva, S.; Maciel, P.; Rodrigues, C.M.P.; Gama, M.J.; Castro-Caldas, M. Neurotoxic effects of MPTP on mouse cerebral cortex: Modulation of neuroinflammation as a neuroprotective strategy. Mol. Cell. Neurosci., 2019, 96, 1-9.
[http://dx.doi.org/10.1016/j.mcn.2019.01.003] [PMID: 30771505]
[23]
Wu, D.C.; Teismann, P.; Tieu, K.; Vila, M.; Jackson-Lewis, V.; Ischiropoulos, H.; Przedborski, S. NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. Proc. Natl. Acad. Sci. USA, 2003, 100(10), 6145-6150.
[http://dx.doi.org/10.1073/pnas.0937239100] [PMID: 12721370]
[24]
Hou, L.; Sun, F.; Huang, R.; Sun, W.; Zhang, D.; Wang, Q. Inhibition of NADPH oxidase by apocynin prevents learning and memory deficits in a mouse Parkinson’s disease model. Redox Biol., 2019.22101134
[http://dx.doi.org/10.1016/j.redox.2019.101134] [PMID: 30798073]
[25]
Sarkar, S.; Rokad, D.; Malovic, E.; Luo, J.; Harischandra, D.S.; Jin, H.; Anantharam, V.; Huang, X.; Lewis, M.; Kanthasamy, A.; Kanthasamy, A.G. Manganese activates NLRP3 inflammasome signaling and propagates exosomal release of ASC in microglial cells. Sci. Signal., 2019, 12(563)eaat9900
[http://dx.doi.org/10.1126/scisignal.aat9900] [PMID: 30622196]
[26]
Freeman, L.C.; Ting, J.P. The pathogenic role of the inflammasome in neurodegenerative diseases. J. Neurochem., 2016, 136(Suppl. 1), 29-38.
[http://dx.doi.org/10.1111/jnc.13217] [PMID: 26119245]
[27]
Cao, J.J.; Li, K.S.; Shen, Y.Q. Activated immune cells in Parkinson’s disease. J. Neuroimmune Pharmacol., 2011, 6(3), 323-329.
[http://dx.doi.org/10.1007/s11481-011-9280-9] [PMID: 21553347]
[28]
Xu, L.L.; Wu, Y.F.; Yan, F.; Li, C.C.; Dai, Z.; You, Q.D.; Jiang, Z.Y.; Di, B. 5-(3,4-Difluorophenyl)-3-(6-methylpyridin-3-yl)-1,2,4-oxadiazole (DDO-7263), a novel Nrf2 activator targeting brain tissue, protects against MPTP-induced subacute Parkinson’s disease in mice by inhibiting the NLRP3 inflammasome and protects PC12 cells against oxidative stress. Free Radic. Biol. Med., 2019, 134, 288-303.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.01.003] [PMID: 30615919]
[29]
Van Bulck, M.; Sierra-Magro, A.; Alarcon-Gil, J.; Perez-Castillo, A.; Morales-Garcia, J.A. Novel approaches for the treatment of Alzheimer’s and Parkinson’s disease. Int. J. Mol. Sci., 2019, 20(3)E719
[http://dx.doi.org/10.3390/ijms20030719] [PMID: 30743990]
[30]
Yu, Q.; Guo, P.; Li, D.; Zuo, L.; Lian, T.; Yu, S.; Hu, Y.; Liu, L.; Jin, Z.; Wang, R.; Piao, Y.; Li, L.; Wang, X.; Zhang, W. Olfactory dysfunction and its relationship with clinical symptoms of Alzheimer disease. Aging Dis., 2018, 9(6), 1084-1095.
[http://dx.doi.org/10.14336/AD.2018.0819] [PMID: 30574420]
[31]
Paasila, P.J.; Davies, D.S.; Kril, J.J.; Goldsbury, C.; Sutherland, G.T. The relationship between the morphological subtypes of microglia and Alzheimer’s disease neuropathology. Brain Pathol., 2019, 29(6), 726-740.
[http://dx.doi.org/10.1111/bpa.12717] [PMID: 30803086]
[32]
Espay, A.J.; Vizcarra, J.A.; Marsili, L.; Lang, A.E.; Simon, D.K.; Merola, A.; Josephs, K.A.; Fasano, A.; Morgante, F.; Savica, R.; Greenamyre, J.T.; Cambi, F.; Yamasaki, T.R.; Tanner, C.M.; Gan-Or, Z.; Litvan, I.; Mata, I.F.; Zabetian, C.P.; Brundin, P.; Fernandez, H.H.; Standaert, D.G.; Kauffman, M.A.; Schwarzschild, M.A.; Sardi, S.P.; Sherer, T.; Perry, G.; Leverenz, J.B. Revisiting protein aggregation as pathogenic in sporadic Parkinson and Alzheimer diseases. Neurology, 2019, 92(7), 329-337.
[http://dx.doi.org/10.1212/WNL.0000000000006926] [PMID: 30745444]
[33]
Sabens Liedhegner, E.A.; Gao, X.H.; Mieyal, J.J. Mechanisms of altered redox regulation in neurodegenerative diseases--focus on S-glutathionylation. Antioxid. Redox Signal., 2012, 16(6), 543-566.
[http://dx.doi.org/10.1089/ars.2011.4119] [PMID: 22066468]
[34]
Giordano, S.; Darley-Usmar, V.; Zhang, J. Autophagy as an essential cellular antioxidant pathway in neurodegenerative disease. Redox Biol., 2013, 2, 82-90.
[http://dx.doi.org/10.1016/j.redox.2013.12.013] [PMID: 24494187]
[35]
Ren, Z.L.; Wang, C.D.; Wang, T.; Ding, H.; Zhou, M.; Yang, N.; Liu, Y.Y.; Chan, P. Ganoderma lucidum extract ameliorates MPTP-induced parkinsonism and protects dopaminergic neurons from oxidative stress via regulating mitochondrial function, autophagy, and apoptosis. Acta Pharmacol. Sin., 2019, 40(4), 441-450.
[http://dx.doi.org/10.1038/s41401-018-0077-8] [PMID: 29991712]
[36]
Jan, A.; Jansonius, B.; Delaidelli, A.; Bhanshali, F.; An, Y.A.; Ferreira, N.; Smits, L.M.; Negri, G.L.; Schwamborn, J.C.; Jensen, P.H.; Mackenzie, I.R.; Taubert, S.; Sorensen, P.H. Activity of translation regulator eukaryotic elongation factor-2 kinase is increased in Parkinson disease brain and its inhibition reduces alpha synuclein toxicity. Acta Neuropathol. Commun., 2018, 6(1), 54.
[http://dx.doi.org/10.1186/s40478-018-0554-9] [PMID: 29961428]
[37]
Wei, Z.; Li, X.; Li, X.; Liu, Q.; Cheng, Y. Oxidative stress in Parkinson’s disease: A systematic review and meta-analysis. Front. Mol. Neurosci., 2018, 11, 236.
[http://dx.doi.org/10.3389/fnmol.2018.00236] [PMID: 30026688]
[38]
Lee, J.; Giordano, S.; Zhang, J. Autophagy, mitochondria and oxidative stress: Cross-talk and redox signalling. Biochem. J., 2012, 441(2), 523-540.
[http://dx.doi.org/10.1042/BJ20111451] [PMID: 22187934]
[39]
Macdonald, R.; Barnes, K.; Hastings, C.; Mortiboys, H. Mitochondrial abnormalities in Parkinson’s disease and Alzheimer’s disease: can mitochondria be targeted therapeutically? Biochem. Soc. Trans., 2018, 46(4), 891-909.
[http://dx.doi.org/10.1042/BST20170501] [PMID: 30026371]
[40]
Zhong, J.; Xie, J.; Xiao, J.; Li, D.; Xu, B.; Wang, X.; Wen, H.; Zhou, Z.; Cheng, Y.; Xu, J.; Wang, H. Inhibition of PDE4 by FCPR16 induces AMPK-dependent autophagy and confers neuroprotection in SH-SY5Y cells and neurons exposed to MPP+-induced oxidative insult. Free Radic. Biol. Med., 2019, 135, 87-101.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.02.027] [PMID: 30818055]
[41]
Condos, T.E.; Dunkerley, K.M.; Freeman, E.A.; Barber, K.R.; Aguirre, J.D.; Chaugule, V.K.; Xiao, Y.; Konermann, L.; Walden, H.; Shaw, G.S. Synergistic recruitment of UbcH7~Ub and phosphorylated Ubl domain triggers parkin activation. EMBO J., 2018, 37(23)e100014
[http://dx.doi.org/10.15252/embj.2018100014] [PMID: 30446597]
[42]
Liang, Z.; Liu, Z.; Sun, X.; Tao, M.; Xiao, X.; Yu, G.; Wang, X. The effect of fucoidan on cellular oxidative stress and the CatD-Bax signaling axis in MN9D cells damaged by 1-methyl-4-phenypyridinium. Front. Aging Neurosci., 2019, 10, 429.
[http://dx.doi.org/10.3389/fnagi.2018.00429 ] [PMID: 30700973]
[43]
Chiang, P.L.; Chen, H.L.; Lu, C.H.; Chen, Y.S.; Chou, K.H.; Hsu, T.W.; Chen, M.H.; Tsai, N.W.; Li, S.H.; Lin, W.C. Interaction of systemic oxidative stress and mesial temporal network degeneration in Parkinson’s disease with and without cognitive impairment. J. Neuroinflammation, 2018, 15(1), 281.
[http://dx.doi.org/10.1186/s12974-018-1317-z] [PMID: 30257698]
[44]
Umek, N.; Geršak, B.; Vintar, N.; Šoštarič, M.; Mavri, J. Dopamine autoxidation is controlled by acidic pH. Front. Mol. Neurosci., 2018, 11, 467.
[http://dx.doi.org/10.3389/fnmol.2018.00467] [PMID: 30618616]
[45]
Cabezas, R.; Baez-Jurado, E.; Hidalgo-Lanussa, O.; Echeverria, V.; Ashrad, G.M.; Sahebkar, A.; Barreto, G.E. Growth factors and neuroglobin in astrocyte protection against neurodegeneration and oxidative stress. Mol. Neurobiol., 2019, 56(4), 2339-2351.
[http://dx.doi.org/10.1007/s12035-018-1203-9] [PMID: 29982985]
[46]
Ali, S.F.; Binienda, Z.K.; Imam, S.Z. Molecular aspects of dopaminergic neurodegeneration: Gene-environment interaction in parkin dysfunction. Int. J. Environ. Res. Public Health, 2011, 8(12), 4702-4713.
[http://dx.doi.org/10.3390/ijerph8124702] [PMID: 22408597]
[47]
Seibler, P.; Graziotto, J.; Jeong, H.; Simunovic, F.; Klein, C.; Krainc, D. Mitochondrial Parkin recruitment is impaired in neurons derived from mutant PINK1 induced pluripotent stem cells. J. Neurosci., 2011, 31(16), 5970-5976.
[http://dx.doi.org/10.1523/JNEUROSCI.4441-10.2011] [PMID: 21508222]
[48]
Tabata, Y.; Imaizumi, Y.; Sugawara, M.; Andoh-Noda, T.; Banno, S.; Chai, M.; Sone, T.; Yamazaki, K.; Ito, M.; Tsukahara, K.; Saya, H.; Hattori, N.; Kohyama, J.; Okano, H. T-type calcium channels determine the vulnerability of dopaminergic neurons to mitochondrial stress in familial Parkinson disease. Stem Cell Reports, 2018, 11(5), 1171-1184.
[http://dx.doi.org/10.1016/j.stemcr.2018.09.006] [PMID: 30344006]
[49]
Beaudoin-Gobert, M.; Météreau, E.; Duperrier, S.; Thobois, S.; Tremblay, L.; Sgambato, V. Pathophysiology of levodopa-induced dyskinesia: Insights from multimodal imaging and immunohistochemistry in non-human primates. Neuroimage, 2018, 183, 132-141.
[http://dx.doi.org/10.1016/j.neuroimage.2018.08.016] [PMID: 30102999]
[50]
Divito, C.B.; Steece-Collier, K.; Case, D.T.; Williams, S.P.; Stancati, J.A.; Zhi, L.; Rubio, M.E.; Sortwell, C.E.; Collier, T.J.; Sulzer, D.; Edwards, R.H.; Zhang, H.; Seal, R.P. Loss of VGLUT3 produces circadian-dependent hyperdopaminergia and ameliorates motor dysfunction and l-dopa-mediated dyskinesias in a model of Parkinson’s disease. J. Neurosci., 2015, 35(45), 14983-14999.
[http://dx.doi.org/10.1523/JNEUROSCI.2124-15.2015] [PMID: 26558771]
[51]
Meder, D.; Herz, D.M.; Rowe, J.B.; Lehéricy, S.; Siebner, H.R. The role of dopamine in the brain - lessons learned from Parkinson's disease Neuroimage, 2018, S1053-8119(18), 32092-32095.
[52]
Huh, E.; Choi, J.G.; Sim, Y.; Oh, M.S. An integrative approach to treat Parkinson’s disease: Ukgansan complements l-dopa by ameliorating dopaminergic neuronal damage and l-dopa-induced dyskinesia in mice. Front. Aging Neurosci., 2019, 10, 431.
[http://dx.doi.org/10.3389/fnagi.2018.00431] [PMID: 30666195]
[53]
He, C.; Klionsky, D.J. Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet., 2009, 43, 67-93.
[http://dx.doi.org/10.1146/annurev-genet-102808-114910] [PMID: 19653858]
[54]
Mariño, G.; Madeo, F.; Kroemer, G. Autophagy for tissue homeostasis and neuroprotection. Curr. Opin. Cell Biol., 2011, 23(2), 198-206.
[http://dx.doi.org/10.1016/j.ceb.2010.10.001] [PMID: 21030235]
[55]
Kesidou, E.; Lagoudaki, R.; Touloumi, O.; Poulatsidou, K.N.; Simeonidou, C. Autophagy and neurodegenerative disorders. Neural Regen. Res., 2013, 8(24), 2275-2283.
[PMID: 25206537]
[56]
Thellung, S.; Corsaro, A.; Nizzari, M.; Barbieri, F.; Florio, T. Autophagy activator drugs: A new opportunity in neuroprotection from misfolded protein toxicity. Int. J. Mol. Sci., 2019, 20(4)E901
[http://dx.doi.org/10.3390/ijms20040901] [PMID: 30791416]
[57]
Zhang, J. Autophagy and mitophagy in cellular damage control. Redox Biol., 2013, 1(1), 19-23.
[http://dx.doi.org/10.1016/j.redox.2012.11.008] [PMID: 23946931]
[58]
Khuansuwan, S.; Barnhill, L.M.; Cheng, S.; Bronstein, J.M. A novel transgenic zebrafish line allows for in vivo quantification of autophagic activity in neurons. Autophagy, 2019, 15(8), 1322-1332.
[http://dx.doi.org/10.1080/15548627.2019.1580511] [PMID: 30755067]
[59]
Carmona-Gutierrez, D.; Zimmermann, A.; Kainz, K.; Pietrocola, F.; Chen, G.; Maglioni, S.; Schiavi, A.; Nah, J.; Mertel, S.; Beuschel, C.B.; Castoldi, F.; Sica, V.; Trausinger, G.; Raml, R.; Sommer, C.; Schroeder, S.; Hofer, S.J.; Bauer, M.A.; Pendl, T.; Tadic, J.; Dammbrueck, C.; Hu, Z.; Ruckenstuhl, C.; Eisenberg, T.; Durand, S.; Bossut, N.; Aprahamian, F.; Abdellatif, M.; Sedej, S.; Enot, D.P.; Wolinski, H.; Dengjel, J.; Kepp, O.; Magnes, C.; Sinner, F.; Pieber, T.R.; Sadoshima, J.; Ventura, N.; Sigrist, S.J.; Kroemer, G.; Madeo, F. The flavonoid 4,4′-dimethoxychalcone promotes autophagy-dependent longevity across species. Nat. Commun., 2019, 10(1), 651.
[http://dx.doi.org/10.1038/s41467-019-08555-w] [PMID: 30783116]
[60]
Kim, I.; Rodriguez-Enriquez, S.; Lemasters, J.J. Selective degradation of mitochondria by mitophagy. Arch. Biochem. Biophys., 2007, 462(2), 245-253.
[http://dx.doi.org/10.1016/j.abb.2007.03.034] [PMID: 17475204]
[61]
Issa, A.R.; Sun, J.; Petitgas, C.; Mesquita, A.; Dulac, A.; Robin, M.; Mollereau, B.; Jenny, A.; Chérif-Zahar, B.; Birman, S. The lysosomal membrane protein LAMP2A promotes autophagic flux and prevents SNCA-induced Parkinson disease-like symptoms in the Drosophila brain. Autophagy, 2018, 14(11), 1898-1910.
[http://dx.doi.org/10.1080/15548627.2018.1491489] [PMID: 29989488]
[62]
Khalifeh, M.; Barreto, G.E.; Sahebkar, A. Trehalose as a promising therapeutic candidate for the treatment of Parkinson’s disease. Br. J. Pharmacol., 2019, 176(9), 1173-1189.
[http://dx.doi.org/10.1111/bph.14623] [PMID: 30767205]
[63]
Ungerstedt, U. 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. Eur. J. Pharmacol., 1968, 5(1), 107-110.
[http://dx.doi.org/10.1016/0014-2999(68)90164-7] [PMID: 5718510]
[64]
Martinez, T.N.; Greenamyre, J.T. Toxin models of mitochondrial dysfunction in Parkinson’s disease. Antioxid. Redox Signal., 2012, 16(9), 920-934.
[http://dx.doi.org/10.1089/ars.2011.4033] [PMID: 21554057]
[65]
Tieu, K. A guide to neurotoxic animal models of Parkinson’s disease. Cold Spring Harb. Perspect. Med., 2011, 1(1)a009316
[http://dx.doi.org/10.1101/cshperspect.a009316] [PMID: 22229125]
[66]
Armentero, M.T.; Levandis, G.; Nappi, G.; Bazzini, E.; Blandini, F. Peripheral inflammation and neuroprotection: Systemic pretreatment with complete Freund’s adjuvant reduces 6-hydroxydopamine toxicity in a rodent model of Parkinson’s disease. Neurobiol. Dis., 2006, 24(3), 492-505.
[http://dx.doi.org/10.1016/j.nbd.2006.08.016] [PMID: 17023164]
[67]
Blandini, F.; Armentero, M.T.; Martignoni, E. The 6-hydroxydopamine model: News from the past. Parkinsonism Relat. Disord., 2008, 14(Suppl. 2), S124-S129.
[http://dx.doi.org/10.1016/j.parkreldis.2008.04.015] [PMID: 18595767]
[68]
Martins, I.K.; de Carvalho, N.R.; Macedo, G.E.; Rodrigues, N.R.; Ziech, C.C.; Vinadé, L.; Filho, V.M.B.; Menezes, I.A.; Franco, J.; Posser, T. Anacardium microcarpum promotes neuroprotection dependently of AKT and ERK phosphorylation but does not prevent mitochondrial damage by 6-OHDA. Oxid. Med. Cell. Longev., 2018, 20182131895
[http://dx.doi.org/10.1155/2018/2131895] [PMID: 30510616]
[69]
Schober, A. Classic toxin-induced animal models of Parkinson’s disease: 6-OHDA and MPTP. Cell Tissue Res., 2004, 318(1), 215-224.
[http://dx.doi.org/10.1007/s00441-004-0938-y] [PMID: 15503155]
[70]
Blandini, F.; Armentero, M.T. Animal models of Parkinson’s disease. FEBS J., 2012, 279(7), 1156-1166.
[http://dx.doi.org/10.1111/j.1742-4658.2012.08491.x] [PMID: 22251459]
[71]
Richardson, J.R.; Quan, Y.; Sherer, T.B.; Greenamyre, J.T.; Miller, G.W. Paraquat neurotoxicity is distinct from that of MPTP and rotenone. Toxicol. Sci., 2005, 88(1), 193-201.
[http://dx.doi.org/10.1093/toxsci/kfi304] [PMID: 16141438]
[72]
Ramsey, C.P.; Tansey, M.G. A survey from 2012 of evidence for the role of neuroinflammation in neurotoxin animal models of Parkinson’s disease and potential molecular targets. Exp. Neurol., 2014, 256, 126-132.
[http://dx.doi.org/10.1016/j.expneurol.2013.05.014] [PMID: 23726958]
[73]
Shimizu, K.; Ohtaki, K.; Matsubara, K.; Aoyama, K.; Uezono, T.; Saito, O.; Suno, M.; Ogawa, K.; Hayase, N.; Kimura, K.; Shiono, H. Carrier-mediated processes in blood--brain barrier penetration and neural uptake of paraquat. Brain Res., 2001, 906(1-2), 135-142.
[http://dx.doi.org/10.1016/S0006-8993(01)02577-X] [PMID: 11430870]
[74]
Duty, S.; Jenner, P. Animal models of Parkinson’s disease: A source of novel treatments and clues to the cause of the disease. Br. J. Pharmacol., 2011, 164(4), 1357-1391.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01426.x] [PMID: 21486284]
[75]
Suntres, Z.E. Exploring the potential benefit of natural product extracts in paraquat toxicity. Fitoterapia, 2018, 131, 160-167.
[http://dx.doi.org/10.1016/j.fitote.2018.10.026] [PMID: 30359726]
[76]
Bastías-Candia, S.; Zolezzi, J.M.; Inestrosa, N.C. Revisiting the paraquat-induced sporadic Parkinson’s disease-like model. Mol. Neurobiol., 2019, 56(2), 1044-1055.
[http://dx.doi.org/10.1007/s12035-018-1148-z] [PMID: 29862459]
[77]
Zhang, X.F.; Thompson, M.; Xu, Y.H. Multifactorial theory applied to the neurotoxicity of paraquat and paraquat-induced mechanisms of developing Parkinson’s disease. Lab. Invest., 2016, 96(5), 496-507.
[http://dx.doi.org/10.1038/labinvest.2015.161] [PMID: 26829122]
[78]
Erro, R.; Brigo, F.; Tamburin, S.; Zamboni, M.; Antonini, A.; Tinazzi, M. Nutritional habits, risk, and progression of Parkinson disease. J. Neurol., 2018, 265(1), 12-23.
[http://dx.doi.org/10.1007/s00415-017-8639-0] [PMID: 29018983]
[79]
Sauerbier, A.; Aris, A.; Lim, E.W.; Bhattacharya, K.; Ray, C.K. Impact of ethnicity on the natural history of Parkinson disease. Med. J. Aust., 2018, 208(9), 410-414.
[http://dx.doi.org/10.5694/mja17.01074] [PMID: 29764354]
[80]
Mahajan, A.; Balakrishnan, P.; Patel, A.; Konstantinidis, I.; Nistal, D.; Annapureddy, N.; Poojary, P.; Nadkarni, G.N.; Sidiropoulos, C. Epidemiology of inpatient stay in Parkinson’s disease in the United States: Insights from the nationwide inpatient sample. J. Clin. Neurosci., 2016, 31, 162-165.
[http://dx.doi.org/10.1016/j.jocn.2016.03.005] [PMID: 27242063]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy