Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Ligand Conjugated Targeted Nanotherapeutics for Treatment of Neurological Disorders

Author(s): Saurabh Mittal*, Muhammad U. Ashhar*, Farheen F. Qizilbash, Zufika Qamar, Jasjeet K. Narang, Shobhit Kumar, Javed Ali and Sanjula Baboota*

Volume 26, Issue 19, 2020

Page: [2291 - 2305] Pages: 15

DOI: 10.2174/1381612826666200417141600

Price: $65

Abstract

Background: Human brain is amongst the most complex organs in human body, and delivery of therapeutic agents across the brain is a tedious task. Existence of blood brain barrier (BBB) protects the brain from invasion of undesirable substances; therefore it hinders the transport of various drugs used for the treatment of different neurological diseases including glioma, Parkinson's disease, Alzheimer's disease, etc. To surmount this barrier, various approaches have been used such as the use of carrier mediated drug delivery; use of intranasal route, to avoid first pass metabolism; and use of ligands (lactoferrin, apolipoprotein) to transport the drug across the BBB. Ligands bind with proteins present on the cell and facilitate the transport of drug across the cell membrane via. receptor mediated, transporter mediated or adsorptive mediated transcytosis.

Objective: The main focus of this review article is to illustrate various studies performed using ligands for delivering drug across BBB; it also describes the procedure used by various researchers for conjugating the ligands to the formulation to achieve targeted action.

Methods: Research articles that focused on the used of ligand conjugation for brain delivery and compared the outcome with unconjugated formulation were collected from various search engines like PubMed, Science Direct and Google Scholar, using keywords like ligands, neurological disorders, conjugation, etc.

Results and Conclusion: Ligands have shown great potential in delivering drug across BBB for treatment of various diseases, yet extensive research is required so that the ligands can be used clinically for treating neurological diseases.

Keywords: Blood brain barrier, conjugation, glioma, lactoferrin, ligands, neurological disorder.

« Previous
[1]
Haque S, Md S, Sahni JK, Ali J, Baboota S. Development and evaluation of brain targeted intranasal alginate nanoparticles for treatment of depression. J Psychiatr Res 2014; 48(1): 1-12.
[http://dx.doi.org/10.1016/j.jpsychires.2013.10.011] [PMID: 24231512]
[2]
Serlin Y, Shelef I, Knyazer B, Friedman A. InSeminars in cell & developmental biology. Journal of Psychiatric Research 2015 Jan; 148(1): 1-2.
[3]
Haque S, Md S, Alam MI, Sahni JK, Ali J, Baboota S. Nanostructure-based drug delivery systems for brain targeting. Drug Dev Ind Pharm 2012; 38(4): 387-411.
[http://dx.doi.org/10.3109/03639045.2011.608191] [PMID: 21954902]
[4]
Daneman R, Prat A. The blood-brain barrier. Cold Spring Harb Perspect Biol 2015; 7(1)a020412
[http://dx.doi.org/10.1101/cshperspect.a020412] [PMID: 25561720]
[5]
Alavijeh MS, Chishty M, Qaiser MZ, Palmer AM. Drug metabolism and pharmacokinetics, the blood-brain barrier, and central nervous system drug discovery. NeuroRx 2005; 2(4): 554-71.
[http://dx.doi.org/10.1602/neurorx.2.4.554] [PMID: 16489365]
[6]
Kuhnline Sloan CD, Nandi P, Linz TH, Aldrich JV, Audus KL, Lunte SM. Analytical and biological methods for probing the blood-brain barrier. Annu Rev Anal Chem (Palo Alto, Calif) 2012; 5: 505-31.
[http://dx.doi.org/10.1146/annurev-anchem-062011-143002] [PMID: 22708905]
[7]
van Woensel M, Wauthoz N, Rosière R, et al. Formulations for intranasal delivery of pharmacological agents to combat brain disease: a new opportunity to tackle GBM? Cancers (Basel) 2013; 5(3): 1020-48.
[http://dx.doi.org/10.3390/cancers5031020] [PMID: 24202332]
[8]
Upadhyay RK. Drug delivery systems, CNS protection, and the blood brain barrier. BioMed Research International 2014; 2014.
[9]
Joseph E, Saha RN. Advances in brain targeted drug delivery: nanoparticulate systems. J Pharm Sci Technol 2013; 3(1): 1-8.
[10]
Gao Z, Chen Y, Cai X, Xu R. Predict drug permeability to blood-brain-barrier from clinical phenotypes: drug side effects and drug indications. Bioinformatics 2017; 33(6): 901-8.
[PMID: 27993785]
[11]
Begley DJ. Delivery of therapeutic agents to the central nervous system: the problems and the possibilities. Pharmacol Ther 2004; 104(1): 29-45.
[http://dx.doi.org/10.1016/j.pharmthera.2004.08.001] [PMID: 15500907]
[12]
Hawkins RA, O’Kane RL, Simpson IA, Viña JR. Structure of the blood-brain barrier and its role in the transport of amino acids. J Nutr 2006; 136(1)(Suppl.): 218S-26S.
[http://dx.doi.org/10.1093/jn/136.1.218S] [PMID: 16365086]
[13]
Hladky SB, Barrand MA. Fluid and ion transfer across the blood-brain and blood-cerebrospinal fluid barriers; a comparative account of mechanisms and roles. Fluids Barriers CNS 2016; 13(1): 19.
[http://dx.doi.org/10.1186/s12987-016-0040-3] [PMID: 27799072]
[14]
Gaillard PJ, Visser CC, de Boer M, Appeldoorn CC, Rip J. Blood-to-brain drug delivery using nanocarriersDrug delivery to the brain. New York, NY: Springer 2014; pp. 433-54.
[http://dx.doi.org/10.1007/978-1-4614-9105-7_15]
[15]
Mittal D, Ali A, Md S, Baboota S, Sahni JK, Ali J. Insights into direct nose to brain delivery: current status and future perspective. Drug Deliv 2014; 21(2): 75-86.
[http://dx.doi.org/10.3109/10717544.2013.838713] [PMID: 24102636]
[16]
Mittal D, Md S, Hasan Q, et al. Brain targeted nanoparticulate drug delivery system of rasagiline via intranasal route. Drug Deliv 2016; 23(1): 130-9.
[http://dx.doi.org/10.3109/10717544.2014.907372] [PMID: 24786489]
[17]
Md S, Khan RA, Mustafa G, et al. Bromocriptine loaded chitosan nanoparticles intended for direct nose to brain delivery: pharmacodynamic, pharmacokinetic and scintigraphy study in mice model. Eur J Pharm Sci 2013; 48(3): 393-405.
[http://dx.doi.org/10.1016/j.ejps.2012.12.007] [PMID: 23266466]
[18]
Bhavna , Md S, Ali M, et al. Donepezil nanosuspension intended for nose to brain targeting: In vitro and in vivo safety evaluation. Int J Biol Macromol 2014; 67: 418-25.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.03.022] [PMID: 24705169]
[19]
Md S, Bhattmisra SK, Zeeshan F, et al. Nano-carrier enabled drug delivery systems for nose to brain targeting for the treatment of neurodegenerative disorders. J Drug Deliv Sci Technol 2018; 43: 295-310.
[http://dx.doi.org/10.1016/j.jddst.2017.09.022]
[20]
Alam MI, Baboota S, Ahuja A, Ali M, Ali J, Sahni JK. Intranasal infusion of nanostructured lipid carriers (NLC) containing CNS acting drug and estimation in brain and blood. Drug Deliv 2013; 20(6): 247-51.
[http://dx.doi.org/10.3109/10717544.2013.822945] [PMID: 23869788]
[21]
de Wolf FA, Brett GM. Ligand-binding proteins: their potential for application in systems for controlled delivery and uptake of ligands. Pharmacol Rev 2000; 52(2): 207-36.
[PMID: 10835100]
[22]
Georgieva JV, Hoekstra D, Zuhorn IS. Smuggling drugs into the brain: an overview of ligands targeting transcytosis for drug delivery across the blood–brain barrier. Pharmaceutics 2014; 6(4): 557-83.
[http://dx.doi.org/10.3390/pharmaceutics6040557] [PMID: 25407801]
[23]
Srinivasarao M, Galliford CV, Low PS. Principles in the design of ligand-targeted cancer therapeutics and imaging agents. Nat Rev Drug Discov 2015; 14(3): 203-19.
[http://dx.doi.org/10.1038/nrd4519] [PMID: 25698644]
[24]
Trapani G, Denora N, Trapani A, Laquintana V. Recent advances in ligand targeted therapy. J Drug Target 2012; 20(1): 1-22.
[http://dx.doi.org/10.3109/1061186X.2011.611518] [PMID: 21942529]
[25]
Gabathuler R. Approaches to transport therapeutic drugs across the blood-brain barrier to treat brain diseases. Neurobiol Dis 2010; 37(1): 48-57.
[http://dx.doi.org/10.1016/j.nbd.2009.07.028] [PMID: 19664710]
[26]
Mäger I, Meyer AH, Li J, et al. Targeting blood-brain-barrier transcytosis - perspectives for drug delivery. Neuropharmacology 2017; 120: 4-7.
[http://dx.doi.org/10.1016/j.neuropharm.2016.08.025] [PMID: 27561970]
[27]
Gaillard PJ, de Boer AG. 2B-trans™ technology: targeted drug delivery across the blood-brain barrierDrug Delivery Systems. Humana Press 2008; pp. 161-75.
[http://dx.doi.org/10.1007/978-1-59745-210-6_8]
[28]
Goulatis LI, Shusta EV. Protein engineering approaches for regulating blood-brain barrier transcytosis. Curr Opin Struct Biol 2017; 45: 109-15.
[http://dx.doi.org/10.1016/j.sbi.2016.12.005] [PMID: 28040636]
[29]
Mishra V, Mahor S, Rawat A, et al. Targeted brain delivery of AZT via transferrin anchored pegylated albumin nanoparticles. J Drug Target 2006; 14(1): 45-53.
[http://dx.doi.org/10.1080/10611860600612953] [PMID: 16603451]
[30]
Song Y, Du D, Li L, Xu J, Dutta P, Lin Y. In vitro study of receptor-mediated silica nanoparticles delivery across blood–brain barrier. ACS Appl Mater Interfaces 2017; 9(24): 20410-6.
[http://dx.doi.org/10.1021/acsami.7b03504] [PMID: 28541655]
[31]
Re F, Cambianica I, Zona C, et al. Functionalization of liposomes with ApoE-derived peptides at different density affects cellular uptake and drug transport across a blood-brain barrier model. Nanomedicine (Lond) 2011; 7(5): 551-9.
[http://dx.doi.org/10.1016/j.nano.2011.05.004] [PMID: 21658472]
[32]
Fischer D, Kissel T. Histochemical characterization of primary capillary endothelial cells from porcine brains using monoclonal antibodies and fluorescein isothiocyanate-labelled lectins: implications for drug delivery. Eur J Pharm Biopharm 2001; 52(1): 1-11.
[http://dx.doi.org/10.1016/S0939-6411(01)00159-X] [PMID: 11438418]
[33]
Rip J, Chen L, Hartman R, et al. Glutathione PEGylated liposomes: pharmacokinetics and delivery of cargo across the blood-brain barrier in rats. J Drug Target 2014; 22(5): 460-7.
[http://dx.doi.org/10.3109/1061186X.2014.888070] [PMID: 24524555]
[34]
Qian ZM, Li H, Sun H, Ho K. Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacol Rev 2002; 54(4): 561-87.
[http://dx.doi.org/10.1124/pr.54.4.561] [PMID: 12429868]
[35]
Visser CC, Stevanović S, Heleen Voorwinden L, et al. Validation of the transferrin receptor for drug targeting to brain capillary endothelial cells in vitro. J Drug Target 2004; 12(3): 145-50.
[http://dx.doi.org/10.1080/10611860410001701706] [PMID: 15203893]
[36]
Bourassa P, Alata W, Tremblay C, Paris-Robidas S, Calon F. Transferrin receptor-mediated uptake at the Blood–Brain Barrier is not impaired by Alzheimer’s disease neuropathology. Mol Pharm 2019; 16(2): 583-94.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00870] [PMID: 30609376]
[37]
Cui Y, Xu Q, Chow PK, Wang D, Wang CH. Transferrin-conjugated magnetic silica PLGA nanoparticles loaded with doxorubicin and paclitaxel for brain glioma treatment. Biomaterials 2013; 34(33): 8511-20.
[http://dx.doi.org/10.1016/j.biomaterials.2013.07.075] [PMID: 23932498]
[38]
Sonali AP, Agrawal P, Singh RP, et al. Transferrin receptor-targeted vitamin E TPGS micelles for brain cancer therapy: preparation, characterization and brain distribution in rats. Drug Deliv 2016; 23(5): 1788-98.
[http://dx.doi.org/10.3109/10717544.2015.1094681] [PMID: 26431064]
[39]
Li S, Amat D, Peng Z, et al. Transferrin conjugated nontoxic carbon dots for doxorubicin delivery to target pediatric brain tumor cells. Nanoscale 2016; 8(37): 16662-9.
[http://dx.doi.org/10.1039/C6NR05055G] [PMID: 27714111]
[40]
Hájek R, Vorlicek J, Slavik M. Paclitaxel (Taxol): a review of its antitumor activity in clinical studies Minireview. Neoplasma 1996; 43(3): 141-54.
[PMID: 8841500]
[41]
Emami J, Rezazadeh M, Sadeghi H, Khadivar K. Development and optimization of transferrin-conjugated nanostructured lipid carriers for brain delivery of paclitaxel using Box-Behnken design. Pharm Dev Technol 2017; 22(3): 370-82.
[http://dx.doi.org/10.1080/10837450.2016.1189933] [PMID: 27689412]
[42]
Baker EN, Baker HM. Molecular structure, binding properties and dynamics of lactoferrin. Cell Mol Life Sci 2005; 62(22): 2531-9.
[http://dx.doi.org/10.1007/s00018-005-5368-9] [PMID: 16261257]
[43]
Baker HM, Baker EN. Lactoferrin and iron: structural and dynamic aspects of binding and release. Biometals 2004; 17(3): 209-16.
[http://dx.doi.org/10.1023/B:BIOM.0000027694.40260.70] [PMID: 15222467]
[44]
Baker HM, Baker EN. A structural perspective on lactoferrin function. Biochem Cell Biol 2012; 90(3): 320-8.
[http://dx.doi.org/10.1139/o11-071] [PMID: 22292559]
[45]
Suzuki YA, Lopez V, Lönnerdal B. Mammalian lactoferrin receptors: structure and function. Cell Mol Life Sci 2005; 62(22): 2560-75.
[http://dx.doi.org/10.1007/s00018-005-5371-1] [PMID: 16261254]
[46]
Huang RQ, Ke WL, Qu YH, Zhu JH, Pei YY, Jiang C. Characterization of lactoferrin receptor in brain endothelial capillary cells and mouse brain. J Biomed Sci 2007; 14(1): 121-8.
[http://dx.doi.org/10.1007/s11373-006-9121-7] [PMID: 17048089]
[47]
Suzuki YA, Lönnerdal B. Baculovirus expression of mouse lactoferrin receptor and tissue distribution in the mouse. Biometals 2004; 17(3): 301-9.
[http://dx.doi.org/10.1023/B:BIOM.0000027709.42733.e4] [PMID: 15222482]
[48]
Ji B, Maeda J, Higuchi M, et al. Pharmacokinetics and brain uptake of lactoferrin in rats. Life Sci 2006; 78(8): 851-5.
[http://dx.doi.org/10.1016/j.lfs.2005.05.085] [PMID: 16165165]
[49]
Huang R, Ke W, Han L, et al. Brain-targeting mechanisms of lactoferrin-modified DNA-loaded nanoparticles. J Cereb Blood Flow Metab 2009; 29(12): 1914-23.
[http://dx.doi.org/10.1038/jcbfm.2009.104] [PMID: 19654588]
[50]
Hu K, Li J, Shen Y, et al. Lactoferrin-conjugated PEG-PLA nanoparticles with improved brain delivery: in vitro and in vivo evaluations. J Control Release 2009; 134(1): 55-61.
[http://dx.doi.org/10.1016/j.jconrel.2008.10.016] [PMID: 19038299]
[51]
Singh I, Swami R, Pooja D, Jeengar MK, Khan W, Sistla R. Lactoferrin bioconjugated solid lipid nanoparticles: a new drug delivery system for potential brain targeting. J Drug Target 2016; 24(3): 212-23.
[http://dx.doi.org/10.3109/1061186X.2015.1068320] [PMID: 26219519]
[52]
Tomitaka A, Arami H, Gandhi S, Krishnan KM. Lactoferrin conjugated iron oxide nanoparticles for targeting brain glioma cells in magnetic particle imaging. Nanoscale 2015; 7(40): 16890-8.
[http://dx.doi.org/10.1039/C5NR02831K] [PMID: 26412614]
[53]
Zhang J, Xiao X, Zhu J, et al. Lactoferrin- and RGD-comodified, temozolomide and vincristine-coloaded nanostructured lipid carriers for gliomatosis cerebri combination therapy. Int J Nanomedicine 2018; 13: 3039-51.
[http://dx.doi.org/10.2147/IJN.S161163] [PMID: 29861635]
[54]
Zhao C, Zhang J, Hu H, et al. Design of lactoferrin modified lipid nano-carriers for efficient brain-targeted delivery of nimodipine. Mater Sci Eng C 2018; 92: 1031-40.
[http://dx.doi.org/10.1016/j.msec.2018.02.004] [PMID: 30184727]
[55]
Wagner S, Zensi A, Wien SL, et al. Uptake mechanism of ApoE-modified nanoparticles on brain capillary endothelial cells as a blood-brain barrier model. PLoS One 2012; 7(3)e32568
[http://dx.doi.org/10.1371/journal.pone.0032568] [PMID: 22396775]
[56]
Neves AR, Queiroz JF, Weksler B, Romero IA, Couraud PO, Reis S. Solid lipid nanoparticles as a vehicle for brain-targeted drug delivery: two new strategies of functionalization with apolipoprotein E. Nanotechnology 2015; 26(49)495103
[http://dx.doi.org/10.1088/0957-4484/26/49/495103] [PMID: 26574295]
[57]
Zensi A, Begley D, Pontikis C, et al. Albumin nanoparticles targeted with Apo E enter the CNS by transcytosis and are delivered to neurones. J Control Release 2009; 137(1): 78-86.
[http://dx.doi.org/10.1016/j.jconrel.2009.03.002] [PMID: 19285109]
[58]
Hauser PS, Narayanaswami V, Ryan RO. Apolipoprotein E: from lipid transport to neurobiology. Prog Lipid Res 2011; 50(1): 62-74.
[http://dx.doi.org/10.1016/j.plipres.2010.09.001] [PMID: 20854843]
[59]
Neves AR, Queiroz JF, Lima SAC, Reis S. Apo E-functionalization of solid lipid nanoparticles enhances brain drug delivery: uptake mechanism and transport pathways. Bioconjug Chem 2017; 28(4): 995-1004.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00705] [PMID: 28355061]
[60]
Feczkó T, Piiper A, Ansar S, et al. Stimulating brain recovery after stroke using theranostic albumin nanocarriers loaded with nerve growth factor in combination therapy. J Control Release 2019; 293: 63-72.
[http://dx.doi.org/10.1016/j.jconrel.2018.11.017] [PMID: 30458203]
[61]
Kuo YC, Lin CY. Targeting delivery of liposomes with conjugated p-aminophenyl-α-d-manno-pyranoside and apolipoprotein E for inhibiting neuronal degeneration insulted with β-amyloid peptide. J Drug Target 2015; 23(2): 147-58.
[http://dx.doi.org/10.3109/1061186X.2014.965716] [PMID: 25268274]
[62]
Neves AR, Queiroz JF, Reis S. Brain-targeted delivery of resveratrol using solid lipid nanoparticles functionalized with apolipoprotein E. J Nanobiotechnology 2016; 14(1): 27.
[http://dx.doi.org/10.1186/s12951-016-0177-x] [PMID: 27061902]
[63]
Demeule M, Currie JC, Bertrand Y, et al. Involvement of the low-density lipoprotein receptor-related protein in the transcytosis of the brain delivery vector angiopep-2. J Neurochem 2008; 106(4): 1534-44.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05492.x] [PMID: 18489712]
[64]
Ke W, Shao K, Huang R, et al. Gene delivery targeted to the brain using an Angiopep-conjugated polyethyleneglycol-modified polyamidoamine dendrimer. Biomaterials 2009; 30(36): 6976-85.
[http://dx.doi.org/10.1016/j.biomaterials.2009.08.049] [PMID: 19765819]
[65]
Zhang Q, Vakili MR, Li XF, Lavasanifar A, Le XC. Polymeric micelles for GSH-triggered delivery of arsenic species to cancer cells. Biomaterials 2014; 35(25): 7088-100.
[http://dx.doi.org/10.1016/j.biomaterials.2014.04.072] [PMID: 24840615]
[66]
Tao J, Fei W, Tang H, et al. Angiopep-2-Conjugated “Core-Shell” Hybrid Nanovehicles for Targeted and pH-Triggered Delivery of Arsenic Trioxide into Glioma. Mol Pharm 2019; 16(2): 786-97.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b01056] [PMID: 30620881]
[67]
Ghosh P, Han G, De M, Kim CK, Rotello VM. Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 2008; 60(11): 1307-15.
[http://dx.doi.org/10.1016/j.addr.2008.03.016] [PMID: 18555555]
[68]
Velasco-Aguirre C, Morales-Zavala F, Salas-Huenuleo E, et al. Improving gold nanorod delivery to the central nervous system by conjugation to the shuttle Angiopep-2. Nanomedicine (Lond) 2017; 12(20): 2503-17.
[http://dx.doi.org/10.2217/nnm-2017-0181] [PMID: 28882086]
[69]
Huang R, Ma H, Guo Y, et al. Angiopep-conjugated nanoparticles for targeted long-term gene therapy of Parkinson’s disease. Pharm Res 2013; 30(10): 2549-59.
[http://dx.doi.org/10.1007/s11095-013-1005-8] [PMID: 23703371]
[70]
Régina A, Demeule M, Ché C, et al. Antitumour activity of ANG1005, a conjugate between paclitaxel and the new brain delivery vector Angiopep-2. Br J Pharmacol 2008; 155(2): 185-97.
[http://dx.doi.org/10.1038/bjp.2008.260] [PMID: 18574456]
[71]
Nahar K, Hasanuzzaman M, Fujita M. Physiological roles of glutathione in conferring abiotic stress tolerance to plants. Abiotic Stress Response in Plants 2016 jan; 8
[http://dx.doi.org/10.1002/9783527694570.ch8]
[72]
Robaczewska J, Kedziora-Kornatowska K, Kozakiewicz M, et al. Role of glutathione metabolism and glutathione-related antioxidant defense systems in hypertension. J Physiol Pharmacol 2016; 67(3): 331-7.
[PMID: 27511994]
[73]
Benzi G, Moretti A. Glutathione in brain aging and neurodegenerative disordersGlutathione in the nervous system. Routledge 2018; pp. 231-56.
[74]
Salem HF, Ahmed SM, Hassaballah AE, Omar MM. Targeting brain cells with glutathione-modulated nanoliposomes: in vitro and in vivo study. Drug Des Devel Ther 2015; 9: 3705-27.
[http://dx.doi.org/10.2147/DDDT.S85302] [PMID: 26229435]
[75]
Maussang D, Rip J, van Kregten J, et al. Glutathione conjugation dose-dependently increases brain-specific liposomal drug delivery in vitro and in vivo. Drug Discov Today Technol 2016; 20: 59-69.
[http://dx.doi.org/10.1016/j.ddtec.2016.09.003] [PMID: 27986226]
[76]
Hu Y, Gaillard PJ, de Lange ECM, Hammarlund-Udenaes M. Targeted brain delivery of methotrexate by glutathione PEGylated liposomes: How can the formulation make a difference? Eur J Pharm Biopharm 2019; 139: 197-204.
[http://dx.doi.org/10.1016/j.ejpb.2019.04.004] [PMID: 30951819]
[77]
Englert C, Trützschler AK, Raasch M, et al. Crossing the blood-brain barrier: Glutathione-conjugated poly(ethylene imine) for gene delivery. J Control Release 2016; 241: 1-14.
[http://dx.doi.org/10.1016/j.jconrel.2016.08.039] [PMID: 27586188]
[78]
Nosrati H, Tarantash M, Bochani S, et al. KheiriManjili H. Glutathione (GSH) Peptide Conjugated Magnetic Nanoparticles As Blood–Brain Barrier Shuttle for MRI-Monitored Brain Delivery of Paclitaxel. ACS Biomater Sci Eng 2019; 5(4): 1677-85.
[http://dx.doi.org/10.1021/acsbiomaterials.8b01420]
[79]
Geldenhuys W, Wehrung D, Groshev A, Hirani A, Sutariya V. Brain-targeted delivery of doxorubicin using glutathione-coated nanoparticles for brain cancers. Pharm Dev Technol 2015; 20(4): 497-506.
[http://dx.doi.org/10.3109/10837450.2014.892130] [PMID: 24597667]
[80]
Edwards KA, Tu-Maung N, Cheng K, Wang B, Baeumner AJ, Kraft CE. Thiamine assays—advances, challenges, and caveats. ChemistryOpen 2017; 6(2): 178-91.
[http://dx.doi.org/10.1002/open.201600160] [PMID: 28413748]
[81]
Zhao R, Gao F, Goldman ID. Reduced folate carrier transports thiamine monophosphate: an alternative route for thiamine delivery into mammalian cells. Am J Physiol Cell Physiol 2002; 282(6): C1512-7.
[http://dx.doi.org/10.1152/ajpcell.00547.2001] [PMID: 11997266]
[82]
Rajgopal A, Edmondnson A, Goldman ID, Zhao R. SLC19A3 encodes a second thiamine transporter ThTr2. Biochim Biophys Acta 2001; 1537(3): 175-8.
[http://dx.doi.org/10.1016/S0925-4439(01)00073-4] [PMID: 11731220]
[83]
Lo PK, Wang FF. Identification of transcriptional start sites and splicing of mouse thiamine transporter gene THTR-1 (Slc19a2). Biochim Biophys Acta 2002; 1576(1-2): 209-13.
[http://dx.doi.org/10.1016/S0167-4781(02)00305-6] [PMID: 12031504]
[84]
Patel SK, Gajbhiye V, Jain NK. Synthesis, characterization and brain targeting potential of paclitaxel loaded thiamine-PPI nanoconjugates. J Drug Target 2012; 20(10): 841-9.
[http://dx.doi.org/10.3109/1061186X.2012.719231] [PMID: 22994427]
[85]
Lockman PR, Oyewumi MO, Koziara JM, Roder KE, Mumper RJ, Allen DD. Brain uptake of thiamine-coated nanoparticles. J Control Release 2003; 93(3): 271-82.
[http://dx.doi.org/10.1016/j.jconrel.2003.08.006] [PMID: 14644577]
[86]
Zhao Y, Zhang L, Peng Y, et al. GLUT1 -mediated venlafaxine-thiamine disulfide system-glucose conjugates with “lock-in” function for central nervous system delivery. Chem Biol Drug Des 2018; 91(3): 707-16.
[http://dx.doi.org/10.1111/cbdd.13128] [PMID: 29063718]
[87]
Raikhel NV, Mishkind ML, Palevitz BA. Characterization of a wheat germ agglutinin-like lectin from adult wheat plants. Planta 1984; 162(1): 55-61.
[http://dx.doi.org/10.1007/BF00397421] [PMID: 24253947]
[88]
Shen Y, Chen J, Liu Q, et al. Effect of wheat germ agglutinin density on cellular uptake and toxicity of wheat germ agglutinin conjugated PEG-PLA nanoparticles in Calu-3 cells. Int J Pharm 2011; 413(1-2): 184-93.
[http://dx.doi.org/10.1016/j.ijpharm.2011.04.026] [PMID: 21550388]
[89]
Allen AK, Neuberger A, Sharon N. The purification, composition and specificity of wheat-germ agglutinin. Biochem J 1973; 131(1): 155-62.
[http://dx.doi.org/10.1042/bj1310155] [PMID: 4737292]
[90]
Rice RH, Etzler ME. Chemical modification and hybridization of wheat germ agglutinins. Biochemistry 1975; 14(18): 4093-9.
[http://dx.doi.org/10.1021/bi00689a027]
[91]
Wright CS. Structural comparison of the two distinct sugar binding sites in wheat germ agglutinin isolectin II. J Mol Biol 1984; 178(1): 91-104.
[http://dx.doi.org/10.1016/0022-2836(84)90232-8] [PMID: 6548265]
[92]
Kuo YC, Lin CC. Rescuing apoptotic neurons in Alzheimer’s disease using wheat germ agglutinin-conjugated and cardiolipin-conjugated liposomes with encapsulated nerve growth factor and curcumin. Int J Nanomedicine 2015; 10: 2653-72.
[http://dx.doi.org/10.2147/IJN.S79528] [PMID: 25878499]
[93]
Gao X, Tao W, Lu W, et al. Lectin-conjugated PEG-PLA nanoparticles: preparation and brain delivery after intranasal administration. Biomaterials 2006; 27(18): 3482-90.
[http://dx.doi.org/10.1016/j.biomaterials.2006.01.038] [PMID: 16510178]
[94]
Kuo YC, Chang YH, Rajesh R. Targeted delivery of etoposide, carmustine and doxorubicin to human glioblastoma cells using methoxy poly(ethylene glycol)‑poly(ε‑caprolactone) nanoparticles conjugated with wheat germ agglutinin and folic acid. Mater Sci Eng C 2019; 96: 114-28.
[http://dx.doi.org/10.1016/j.msec.2018.10.094] [PMID: 30606517]
[95]
Allen DD, Lockman PR. The blood-brain barrier choline transporter as a brain drug delivery vector. Life Sci 2003; 73(13): 1609-15.
[http://dx.doi.org/10.1016/S0024-3205(03)00504-6] [PMID: 12875893]
[96]
Gao H. Progress and perspectives on targeting nanoparticles for brain drug delivery. Acta Pharm Sin B 2016; 6(4): 268-86.
[http://dx.doi.org/10.1016/j.apsb.2016.05.013] [PMID: 27471668]
[97]
Li J, Zhou L, Ye D, et al. Choline-derivate-modified nanoparticles for brain-targeting gene delivery. Adv Mater 2011; 23(39): 4516-20.
[http://dx.doi.org/10.1002/adma.201101899] [PMID: 21898606]
[98]
Li J, Huang S, Shao K, et al. A choline derivate-modified nanoprobe for glioma diagnosis using MRI Sci Rep 2013a; 3: 1623
[http://dx.doi.org/10.1038/srep01623] [PMID: 23563908]
[99]
van Tellingen O, Yetkin-Arik B, de Gooijer MC, Wesseling P, Wurdinger T, de Vries HE. Overcoming the blood-brain tumor barrier for effective glioblastoma treatment. Drug Resist Updat 2015; 19: 1-12.
[http://dx.doi.org/10.1016/j.drup.2015.02.002] [PMID: 25791797]
[100]
Li J, Yang H, Zhang Y, et al. Choline derivate-modified doxorubicin loaded micelle for glioma therapy. ACS Appl Mater Interfaces 2015; 7(38): 21589-601.
[http://dx.doi.org/10.1021/acsami.5b07045] [PMID: 26356793]
[101]
Li J, Guo Y, Kuang Y, An S, Ma H, Jiang C. Choline transporter-targeting and co-delivery system for glioma therapy. Biomaterials 2013; 34(36): 9142-8.
[http://dx.doi.org/10.1016/j.biomaterials.2013.08.030] [PMID: 23993342]
[102]
Soni V, Kohli DV, Jain SK. Transferrin-conjugated liposomal system for improved delivery of 5-fluorouracil to brain. J Drug Target 2008; 16(1): 73-8.
[http://dx.doi.org/10.1080/10611860701725381] [PMID: 18172823]
[103]
Gupta Y, Jain A, Jain SK. Transferrin-conjugated solid lipid nanoparticles for enhanced delivery of quinine dihydrochloride to the brain. J Pharm Pharmacol 2007; 59(7): 935-40.
[http://dx.doi.org/10.1211/jpp.59.7.0004] [PMID: 17637187]
[104]
Ulbrich K, Hekmatara T, Herbert E, Kreuter J. Transferrin- and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood-brain barrier (BBB). Eur J Pharm Biopharm 2009; 71(2): 251-6.
[http://dx.doi.org/10.1016/j.ejpb.2008.08.021] [PMID: 18805484]
[105]
Mulik RS, Mönkkönen J, Juvonen RO, Mahadik KR, Paradkar AR. Apoptosis-induced anticancer effect of transferrin-conjugated solid lipid nanoparticles of curcumin. Cancer Nanotechnol 2012; 3(1-6): 65-81.
[http://dx.doi.org/10.1007/s12645-012-0031-2] [PMID: 26069496]
[106]
Jain A, Jain A, Garg NK, et al. Surface engineered polymeric nanocarriers mediate the delivery of transferrin-methotrexate conjugates for an improved understanding of brain cancer. Acta Biomater 2015; 24: 140-51.
[http://dx.doi.org/10.1016/j.actbio.2015.06.027] [PMID: 26116986]
[107]
Chen H, Qin Y, Zhang Q, et al. Lactoferrin modified doxorubicin-loaded procationic liposomes for the treatment of gliomas. Eur J Pharm Sci 2011; 44(1-2): 164-73.
[http://dx.doi.org/10.1016/j.ejps.2011.07.007] [PMID: 21782939]
[108]
Meng Q, Wang A, Hua H, et al. Intranasal delivery of Huperzine A to the brain using lactoferrin-conjugated N-trimethylated chitosan surface-modified PLGA nanoparticles for treatment of Alzheimer’s disease. Int J Nanomedicine 2018; 13: 705-18.
[http://dx.doi.org/10.2147/IJN.S151474] [PMID: 29440896]
[109]
Kamalinia G, Khodagholi F, Atyabi F, et al. Enhanced brain delivery of deferasirox-lactoferrin conjugates for iron chelation therapy in neurodegenerative disorders: in vitro and in vivo studies. Mol Pharm 2013; 10(12): 4418-31.
[http://dx.doi.org/10.1021/mp4002014] [PMID: 24063264]
[110]
Fang JH, Chiu TL, Huang WC, et al. Dual‐Targeting Lactoferrin‐Conjugated Polymerized Magnetic Polydiacetylene‐Assembled Nanocarriers with self responsive fluorence/magnetic resonance imaging for in vivo brain tumor therapy. Adv Healthc Mater 2016; 5(6): 688-95.
[http://dx.doi.org/10.1002/adhm.201500750] [PMID: 26820074]
[111]
Lu F, Pang Z, Zhao J, et al. Angiopep-2-conjugated poly(ethylene glycol)-co- poly(ε-caprolactone) polymersomes for dual-targeting drug delivery to glioma in rats. Int J Nanomedicine 2017; 12: 2117-27.
[http://dx.doi.org/10.2147/IJN.S123422] [PMID: 28356732]
[112]
Wang X, Xiong Z, Liu Z, Huang X, Jiang X. Angiopep-2/IP10-EGFRvIIIscFv modified nanoparticles and CTL synergistically inhibit malignant glioblastoma. Sci Rep 2018; 8(1): 12827.
[http://dx.doi.org/10.1038/s41598-018-30072-x] [PMID: 30150691]
[113]
Huang S, Li J, Han L, et al. Dual targeting effect of Angiopep-2-modified, DNA-loaded nanoparticles for glioma. Biomaterials 2011; 32(28): 6832-8.
[http://dx.doi.org/10.1016/j.biomaterials.2011.05.064] [PMID: 21700333]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy