Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

Antidiabetic and Anticholinesterase Properties of Extracts and Pure Metabolites of Fruit Stems of Pistachio (Pistacia vera L.)

Author(s): Yabo Dambagi Lawali, Akyuz Mehmet, Aydin Tuba and Cakir Ahmet*

Volume 24, Issue 7, 2020

Page: [785 - 797] Pages: 13

DOI: 10.2174/1385272824666200401111036

Price: $65

Abstract

Five metabolites were isolated by chromatographic methods from the fruit stems of P. vera and their chemical structures were characterized as masticadienonic acid (1), tirucallol (2), masticadienolic acid (3), pistachionic acid (4) and inulobiose (5) via FT-IR, 1H-NMR, 13C-NMR, 1D-NMR and 2D-NMR. Pistachionic acid (4), a new shikimic acid derivative, was isolated from the ethanol extract for the first time. The hexane, chloroform, ethanol extracts and pure metabolites exhibited antidiabetic properties by inhibiting α- glycosidase and α-amylase enzymes at different rates. Their inhibitory effects against the α- glycosidase enzyme were also higher than that of the acarbose (IC50=10.30 mg/mL). Masticadienolic acid (3) (IC50=0.03 mg/mL), masticadienonic acid (1) (IC50=0.13 mg/mL) and hexane extract (IC50=0.09 mg/mL) with the lowest IC50 values were found to be most active substances. Nevertheless, the inhibitory effect of acarbose against the α-amylase enzyme was determined to be higher than the inhibition effects of the extracts and pure metabolites. According to the IC50 values, the best inhibitors against the α-amylase were ethanol extract (IC50=5.17 mg/mL), pistachionic acid (4) (IC50=7.35 mg/mL), tirucallol (2) (IC50=7.58 mg/mL) and masticadienolic acid (3) (IC50=8.22 mg/mL), respectively among the applications. In addition, anticholinesterase properties of the extracts and pure metabolites were investigated by testing the inhibitory properties against acetylcholine esterase (AChE) and butrylcholine esterase (BChE) enzymes activities. The results showed that the anticholinesterase properties of all extracts and pure metabolites were weaker than those of the commercial cholinesterase inhibitors, neostigmine and galantamine, and all applications reduced the activity of these enzymes at very high concentrations.

Keywords: Pistacia vera, fruit stems, antidiabetic, anticholinesterase, pistachionic acid, tirucallanes.

Graphical Abstract
[1]
Baytop, T. Therapy with Medicinal Plants in Turkey: in the Past and Today, 2nd ed; Nobel Tıp Kitabevleri Press: Istanbul, 1999.
[2]
Topcu, G.; Ay, M.; Bilici, A.; Sarikurkcu, C.; Ozturk, M.; Ulubelen, A. A new flavone from antioxidant extracts of Pistacia terebinthus. Food Chem., 2007, 103, 816-822.
[http://dx.doi.org/10.1016/j.foodchem.2006.09.028]
[3]
Orhan, I.E.; Senol, F.S.; Gulpinar, A.R.; Sekeroglu, N.; Kartal, M.; Sener, B. Neuroprotective potential of some terebinth coffee brands and the unprocessed fruits of Pistacia terebinthus L. and their fatty and essential oil analyses. Food Chem., 2012, 130, 882-888.
[http://dx.doi.org/10.1016/j.foodchem.2011.07.119]
[4]
Durak, M.Z.; Ucak, G. Solvent optimization and characterization of fatty acid profile and antimicrobial and antioxidant activities of Turkish Pistacia terebinthus L. extracts. Turk. J. Agric. For., 2015, 39, 10-19.
[http://dx.doi.org/10.3906/tar-1403-63]
[5]
Foddai, M.; Kasabri, V.; Afifi, F.U.; Azara, E.; Petretto, G.L.; Pintore, G. In vitro inhibitory effects of Sardinian Pistacia lentiscus L. and Pistacia terebinthus L. on metabolic enzymes: pancreatic lipase, alpha-amylase, and alpha-glucosidase. Starke, 2015, 67, 204-212.
[http://dx.doi.org/10.1002/star.201400068]
[6]
Hacıbekiroğlu, I.; Yılmaz, P.K.; Haşimi, N.; Kılınç, E.; Tolan, V.; Kolak, U. In vitro biological activities and fatty acid profiles of Pistacia terebinthus fruits and Pistacia khinjuk seeds. Nat. Prod. Res., 2015, 29(5), 444-446.
[http://dx.doi.org/10.1080/14786419.2014.947492] [PMID: 25115646]
[7]
Turkoglu, S.; Celik, S.; Keser, S.; Turkoglu, I.; Yılmaz, O. The effect of Pistacia terebinthus extract on lipid peroxidation, glutathione, protein, and some enzyme activities in tissues of rats undergoing oxidative stress. Turk. J. Zool., 2017, 41, 82-88.
[http://dx.doi.org/10.3906/zoo-1508-41]
[9]
Bayraktar, M. Oral hypoglycemics. Turkey Med. J., 2001, 8, 35-44.
[10]
Mazzone, T.; Chait, A.; Plutzky, J. Cardiovascular disease risk in type 2 diabetes mellitus: insights from mechanistic studies. Lancet, 2008, 371(9626), 1800-1809.
[http://dx.doi.org/10.1016/S0140-6736(08)60768-0] [PMID: 18502305]
[11]
Laube, H. Acarbose: An update of its therapeutic use in diabetes treatment. Clin. Drug Investig., 2002, 22, 141-156.
[http://dx.doi.org/10.2165/00044011-200222030-00001]
[12]
Ozdemir, A.; Sidal, U. Determination of ability of alpha-amylase production by Streptomyces sp. mc10 strain. CBU J. Sci., 2013, 9, 39-46.
[13]
Beard, C.M.; Kokmen, E.; O’Brien, P.C.; Kurland, L.T. The prevalence of dementia is changing over time in Rochester, Minnesota. Neurology, 1995, 45(1), 75-79.
[http://dx.doi.org/10.1212/WNL.45.1.75] [PMID: 7824140]
[14]
Prince, M.; Acosta, D.; Chiu, H.; Scazufca, M.; Varghese, M. 10/66 Dementia Research Group.Dementia diagnosis in developing countries: a cross-cultural validation study. Lancet, 2003, 361(9361), 909-917.
[http://dx.doi.org/10.1016/S0140-6736(03)12772-9] [PMID: 12648969]
[15]
Shoog, I.; Nilsson, L.; Palmertz, B. A population based study of dementia in 85 years-old. N. Engl. J. Med., 2014, 328, 153-158.
[16]
Koyuncu, E.; Yasar, A.; Arslan, F.; Sari, N. Synthesis of novel Schiff base derivatives of tacrine and investigation of their acetylcholinesterase inhibition potency. Maced. J. Chem. Chem. Eng., 2019, 38, 75-84.
[http://dx.doi.org/10.20450/mjcce.2019.1561]
[17]
Quinn, D.M. Acetylcholinesterase: enzyme structure, reaction dynamics and virtual transition states. Chem. Rev., 1987, 87, 955-979.
[http://dx.doi.org/10.1021/cr00081a005]
[18]
Francis, P.T.; Palmer, A.M.; Snape, M.; Wilcock, G.K. The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J. Neurol. Neurosurg. Psychiatry, 1999, 66(2), 137-147.
[http://dx.doi.org/10.1136/jnnp.66.2.137] [PMID: 10071091]
[19]
Massoulié, J.; Pezzementi, L.; Bon, S.; Krejci, E.; Vallette, F.M. Molecular and cellular biology of cholinesterases. Prog. Neurobiol., 1993, 41(1), 31-91.
[http://dx.doi.org/10.1016/0301-0082(93)90040-Y] [PMID: 8321908]
[20]
Tekin, H.; Arpaci, S.; Atli, H.S.; Acar, I.; Karadag, S.; Yukceken, Y.; Yaman, A. Pistachio cultivation., 2001. No: 13, 3-11
[21]
Ozçelik, B.; Aslan, M.; Orhan, I.; Karaoglu, T. Antibacterial, antifungal, and antiviral activities of the lipophylic extracts of Pistacia vera. Microbiol. Res., 2005, 160(2), 159-164.
[http://dx.doi.org/10.1016/j.micres.2004.11.002] [PMID: 15881833]
[22]
Orhan, I.; Aslan, M.; Sener, B.; Kaiser, M.; Tasdemir, D. In vitro antiprotozoal activity of the lipophilic extracts of different parts of Turkish Pistacia vera L. Phytomedicine, 2006, 13(9-10), 735-739.
[http://dx.doi.org/10.1016/j.phymed.2005.10.003] [PMID: 17085297]
[23]
Ballistreri, G.; Catalano, A.E.; Arena, E.; Spagna, G.; Fallico, B. Lipase and lipoxygenase activity of Pistacia vera L. Acta Hortic., 2011, (912), 179-185.
[http://dx.doi.org/10.17660/ActaHortic.2011.912.25]
[24]
Rauf, A.; Patel, S.; Uddin, G.; Siddiqui, B.S.; Ahmad, B.; Muhammad, N.; Mabkhot, Y.N.; Hadda, T.B. Phytochemical, ethnomedicinal uses and pharmacological profile of genus Pistacia. Biomed. Pharmacother., 2017, 86, 393-404.
[http://dx.doi.org/10.1016/j.biopha.2016.12.017] [PMID: 28012394]
[25]
Koyuncu, I.; Kocyigit, A.; Dikme, R.; Selek, S. Phyotherapeutic properties of Urfa pistachio nuts (Pistacia vera L.). Bezmialem Sci., 2018, 6, 200-205.
[http://dx.doi.org/10.14235/bs.2018.1842]
[26]
Seifaddinipour, M.; Farghadani, R.; Namvar, F.; Mohamad, J.; Abdul Kadir, H. Cytotoxic effects and anti-angiogenesis potential of pistachio (Pistacia vera L.) hulls against MCF-7 human breast cancer cells. Molecules, 2018, 23(1), 110.
[http://dx.doi.org/10.3390/molecules23010110] [PMID: 29303970]
[27]
Kisa, A.; Akyuz, M.; Cogun, H.Y.; Kordali, S.; Usanmaz Bozhuyuk, A.; Tezel, B.; Siltelioglu, U.; Anil, B.; Cakir, A. Effects of Olea europaea L. leaf metabolites on the tilapia(Oreochromis niloticus) and three stored pests, Sitophilus granarius, Tribolium confusum and Acanthoscelides obtectus. Rec. Nat. Prod., 2018, 12, 201-215.
[http://dx.doi.org/10.25135/rnp.23.17.07.126]
[28]
Devarajan, S.; Venugopal, S. Antioxidant and α-amylase inhibition activities of phenolic compounds in the extracts of Indian honey. Chin. J. Nat. Med., 2012, 10, 225-259.
[http://dx.doi.org/10.3724/SP.J.1009.2012.00255]
[29]
Ellman, G.L.; Courtney, K.D.; Andres, V., Jr; Feather-Stone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol., 1961, 7, 88-95.
[http://dx.doi.org/10.1016/0006-2952(61)90145-9] [PMID: 13726518]
[30]
Elya, B.; Basah, K.; Mun’im, A.; Yuliastuti, W.; Bangun, A.; Septiana, E.K. Screening of alpha-glucosidase inhibitory activity from some plants of Apocynaceae, Clusiaceae, Euphorbiaceae, and Rubiaceae. J. Biomed. Biotechnol., 2012, 20122810786
[http://dx.doi.org/10.1155/2012/281078]
[31]
Dewi, R.T.; Tachibana, S.; Fajriah, S.; Hanafi, M. Alpha-Glycosidase inhibitor compounds from Aspergillus terreus RCC1 and their antioxidant activity. Med. Chem. Res., 2015, 24, 737-743.
[http://dx.doi.org/10.1007/s00044-014-1164-0]
[32]
Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed; Allured publishing Co.: Carol Stream, Illinois, 2007.
[33]
Caputo, R.; Mangoni, L.; Monaco, P.; Palumbo, G.; Aynenchi, Y.; Bagheri, M. Triterpenes from the bled resin of Pistacia vera. Phytochemistry, 1978, 17, 815-817.
[http://dx.doi.org/10.1016/S0031-9422(00)94245-6]
[34]
Nicholson, T.M.; Gradl, M.; Welte, B.; Metzger, M.; Pusch, C.M.; Albert, K. Enlightening the past: analytical proof for the use of Pistacia exudates in ancient Egyptian embalming resins. J. Sep. Sci., 2011, 34(23), 3364-3371.
[http://dx.doi.org/10.1002/jssc.201100541] [PMID: 22083980]
[35]
Bozorgi, M.; Memariani, Z.; Mobli, M.; Surmaghi, M.H.; Shams-Ardekani, M.R.; Rahimi, R. Five Pistacia species (P. vera, P. atlantica, P. terebinthus, P. khinjuk, and P. lentiscus): a review of their traditional uses, phytochemistry, and pharmacology. Sci. World J., 2013, 2013(1)21981533
[36]
Vuorinen, A.; Seibert, J.; Papageorgiou, V.P.; Rollinger, J.M.; Odermatt, A.; Schuster, D.; Assimopoulou, A.N. Pistacia lentiscus oleoresin: Virtual screening and identification of masticadienonic and isomasticadienonic acids as inhibitors of 11 beta-hydroxysteroid dehydrogenase 1. Planta Med., 2015, 81(6), 525-532.
[http://dx.doi.org/10.1055/s-0035-1545720] [PMID: 25782037]
[37]
Assimopoulou, A.N.; Papageorgiou, V.P. GC-MS analysis of penta- and tetra-cyclic triterpenes from resins of Pistacia species. Part II. Pistacia terebinthus var. Chia. Biomed. Chromatogr., 2005, 19(8), 586-605.
[http://dx.doi.org/10.1002/bmc.484] [PMID: 15770609]
[38]
Sharifi, M.S.; Hazell, S.L. Isolation, analysis and antimicrobial activity of the acidic fractions of Mastic, Kurdica, Mutica and Cabolica gums from genus Pistacia. Glob. J. Health Sci., 2011, 4(1), 217-228.
[http://dx.doi.org/10.5539/gjhs.v4n1p217] [PMID: 22980113]
[39]
Calub, T.M.; Waterhouse, A.L.; French, A.D. Conformational analysis of inulobiose by molecular mechanics. Carbohydr. Res., 1990, 207(2), 221-235.
[http://dx.doi.org/10.1016/0008-6215(90)84050-5] [PMID: 2076518]
[40]
Yun, J.W.; Kim, D.H.; Kim, B.W.; Song, S.K. Comparison of sugar compositions between inulo- and fructo-oligosaccharides produced by different enzyme forms. Biotechnol. Lett., 1997, 19, 553-556.
[http://dx.doi.org/10.1023/A:1018393505192]
[41]
Fujishima, M.; Furuyama, K.; Ishihiro, Y.; Onodera, S.; Fukushi, E.; Benkeblia, N.; Shiomi, N. Isolation and structural analysis in vivo of newly synthesized fructooligosaccharides in onion bulbs tissues (Allium cepa L.) during storage. Int. J. Carbohydr. Chem., 2009, 20094937379
[http://dx.doi.org/10.1155/2009/493737]
[42]
Jan Mei, S.; Mohd Nordin, M.S.; Norrakiah, A.S. Fructooligosaccharides in honey and effects of honey on growth of Bifidobacterium longum BB 536. Int. Food Res. J., 2010, 17, 557-561.
[43]
Ishiguro, Y.; Ueno, K.; Onodera, S.; Benkeblia, N.; Shiomi, N. Effects of temperature on inulobiose and inulooligosaccharides in burdock roots during storage. J. Food Compos. Anal., 2011, 24, 398-401.
[http://dx.doi.org/10.1016/j.jfca.2010.08.008]
[44]
Middleton, E. The molecular configuration of inulin: implications for ultrafiltration theory and glomerular permeability. J. Membr. Biol., 1977, 34(1), 93-101.
[http://dx.doi.org/10.1007/BF01870295] [PMID: 894702]
[45]
Onat, T.; Emerk, K. Basic Biochemistry; Saray Medical Publishing Co. and Tic. Ltd. Sti. Press: Izmir. , 1996.
[46]
Keha, E.E.; Kufrevioglu, O.I. Biochemistry; Aktif Publishing: Istanbul, 2010.
[47]
Sunguroglu, K. Biochemistry; Akademisyen Tıp Kitapevi Publishing: Ankara, 2014.
[48]
Singh, J.; Dartois, A.; Kaur, L. Starch digestibility in food matrix: a review. Trends Food Sci. Technol., 2010, 21, 168-180.
[http://dx.doi.org/10.1016/j.tifs.2009.12.001]
[49]
Tundis, R.; Loizzo, M.R.; Statti, G.A.; Menichini, F. Inhibitory effects on the digestive enzyme alpha-amylase of three Salsola species (Chenopodiaceae) in vitro. Pharmazie, 2007, 62(6), 473-475.
[PMID: 17663200]
[50]
Katekhaye, S.; Nagmoti, M. α-Glucosidase and α-amylase inhibitory activities of Pithecellobium dulce bark and leaves. Phytopharmacology, 2013, 4, 123-130.
[51]
Uddin, G.; Rauf, A.; Al-Othman, A.M.; Collina, S.; Arfan, M.; Ali, G.; Khan, I. Pistagremic acid, a glucosidase inhibitor from Pistacia integerrima. Fitoterapia, 2012, 83(8), 1648-1652.
[http://dx.doi.org/10.1016/j.fitote.2012.09.017] [PMID: 23022534]
[52]
Hamdan, I.I.; Afifi, F.U. Studies on the in vitro and in vivo hypoglycemic activities of some medicinal plants used in treatment of diabetes in Jordanian traditional medicine. J. Ethnopharmacol., 2004, 93(1), 117-121.
[http://dx.doi.org/10.1016/j.jep.2004.03.033] [PMID: 15182916]
[53]
Kasabri, V.; Afifi, F.U.; Hamdan, I. In vitro and in vivo acute antihyperglycemic effects of five selected indigenous plants from Jordan used in traditional medicine. J. Ethnopharmacol., 2011, 133(2), 888-896.
[http://dx.doi.org/10.1016/j.jep.2010.11.025] [PMID: 21093568]
[54]
Kilic, I.H.; Sarikurkcu, C.; Karagoz, I.D.; Uren, M.C.; Kocak, M.S.; Cilkiz, M.; Tepe, B. A significant by-product of the industrial processing of pistachios: shell skin - RP-HPLC analysis, and antioxidant and enzyme inhibitory activities of the methanol extracts of Pistacia vera L. shell skins cultivated in Gaziantep, Turkey. RSC Adv, 2016, 6, 1203-1209.
[http://dx.doi.org/10.1039/C5RA24530C]
[55]
Mehenni, C.; Kilani, D.A.; Dumarçay, S.; Perrin, D.; Gérardin, P.; Atmani, D. Hepatoprotective and antidiabetic effects of Pistacia lentiscus leaf and fruit extracts. Yao Wu Shi Pin Fen Xi, 2016, 24(3), 653-669.
[http://dx.doi.org/10.1016/j.jfda.2016.03.002] [PMID: 28911573]
[56]
Ahmed, Z.B.; Yousfi, M.; Viaene, J.; Dejaegher, B.; Demeyer, K.; Mangelings, D.; Vander Heyden, Y. Potentially antidiabetic and antihypertensive compounds identified from Pistacia atlantica leaf extracts by LC fingerprinting. J. Pharm. Biomed. Anal., 2018, 149, 547-556.
[http://dx.doi.org/10.1016/j.jpba.2017.11.049] [PMID: 29190580]
[57]
Artiaga, L.N.; López, D.P.; Hernández, A.B.; Wojdyło, A.; Barrachina, A.A.C. Phenolic and triterpenoid composition and inhibition of α-amylase of pistachio kernels (Pistacia vera L.) as affected by rootstock and irrigation treatment. Food Chem., 2018, 261, 240-245.
[http://dx.doi.org/10.1016/j.foodchem.2018.04.033] [PMID: 29739589]
[58]
Obara, K.; Chino, D.; Tanaka, Y. Long-Lasting inhibitory effects of distigmine on recombinant human acetylcholinesterase activity. Biol. Pharm. Bull., 2017, 40(10), 1739-1746.
[http://dx.doi.org/10.1248/bpb.b17-00351] [PMID: 28966245]
[59]
Saeed, A.; Shah, M.S.; Larik, F.A.; Khan, S.U.; Channar, P.A.; Floerke, U.; Iqbal, J. Synthesis, computational studies and biological evaluation of new 1-acetyl-3-aryl thiourea derivatives as potent cholinesterase inhibitors. Med. Chem. Res., 2017, 26, 1635-1646.
[http://dx.doi.org/10.1007/s00044-017-1829-6]
[60]
Ilie, A.C.; Stefaniu, R.; Handaric, M.; Dascalescu, S.; Ivascu, I.; Alexa, I.D. Adverse effects of cholinesterase inhibitors in the elderly patient with myasthenia gravis, case reports. Revista Medico-Chirurgicala, 2018, 122, 314-317.
[61]
Jazayeri, S.B.; Amanlou, A.; Ghanadian, N.; Pasalar, P.; Amanlou, M. A preliminary investigation of anticholinesterase activity of some Iranian medicinal plants commonly used in traditional medicine. Daru, 2014, 22(1), 17.
[http://dx.doi.org/10.1186/2008-2231-22-17] [PMID: 24401532]
[62]
Ammari, M.; Othman, H.; Hajri, A.; Sakly, M.; Abdelmelek, H. Pistacia lentiscus oil attenuates memory dysfunction and decreases levels of biomarkers of oxidative stress induced by lipopolysaccharide in rats. Brain Res. Bull., 2018, 140, 140-147.
[http://dx.doi.org/10.1016/j.brainresbull.2018.04.014] [PMID: 29715489]
[63]
Zahoor, M.; Zafar, R.; Rahman, N.U. Isolation and identification of phenolic antioxidants from Pistacia integerrima gall and their anticholine esterase activities. Heliyon, 2018, 4(12)e01007
[http://dx.doi.org/10.1016/j.heliyon.2018.e01007] [PMID: 30623127]
[64]
Duru, M.E.; Cakir, A.; Kordali, S.; Zengin, H.; Harmandar, M.; Izumi, S.; Hirata, T. Chemical composition and antifungal properties of essential oils of three Pistacia species. Fitoterapia, 2003, 74(1-2), 170-176.
[http://dx.doi.org/10.1016/S0367-326X(02)00318-0] [PMID: 12628418]
[65]
Alma, M.H.; Nitz, S.; Kollmannsberger, H.; Digrak, M.; Efe, F.T.; Yilmaz, N. Chemical composition and antimicrobial activity of the essential oils from the gum of Turkish pistachio (Pistacia vera L.). J. Agric. Food Chem., 2004, 52(12), 3911-3914.
[http://dx.doi.org/10.1021/jf040014e] [PMID: 15186116]
[66]
Tsokou, A.; Georgopoulou, K.; Melliou, E.; Magiatis, P.; Tsitsa, E. Composition and enantiomeric analysis of the essential oil of the fruits and the leaves of Pistacia vera from Greece. Molecules, 2007, 12(6), 1233-1239.
[http://dx.doi.org/10.3390/12061233] [PMID: 17876292]
[67]
Chahed, T.; Dhifi, W.; Hosni, K.; Msaada, K.; Kchouk, M.E.; Marzouk, B. Composition of Tunisian pistachio hull essential oil during fruit formation and ripening. J. Essent. Oil Res., 2008, 20, 122-125.
[http://dx.doi.org/10.1080/10412905.2008.9699971]
[68]
Chahed, T.; Dhifi, W.; Mnif, W.; Mhamdi, B.; Marzouk, B. Changes in essential oil composition during Pistacia vera leaves development in Sfax region (Tunisia). J. Essent. Oil Bear. Pl., 2012, 15, 602-608.
[http://dx.doi.org/10.1080/0972060X.2012.10644094]
[69]
Kalalinia, F.; Behravan, J.; Ramezani, M.; Hassanzadeh, M.K.; Asadipour, A. Chemical composition, moderate in vitro antibacterial and antifungal activity of the essential oil of Pistacia vera L. and its major constituents. J. Essent. Oil Bear. Pl., 2008, 11, 376-383.
[http://dx.doi.org/10.1080/0972060X.2008.10643643]
[70]
Kendirci, P.; Onogur, T. Investigation of volatile compounds and characterization of flavor profiles of fresh pistachio nuts (Pistacia vera L.). Int. J. Food Prop., 2011, 14, 319-330.
[http://dx.doi.org/10.1080/10942910903177830]
[71]
Hashemi-Moghaddam, H.; Mohammdhosseini, M.; Salar, M. Chemical composition of the essential oils from the hulls of Pistacia vera L. by using magnetic nanoparticle-assisted microwave (MW) distillation: comparison with routine MW and conventional hydrodistillation. Anal. Methods-UK, 2014, 6, 2572-2579.
[http://dx.doi.org/10.1039/C3AY42180E]
[72]
Mahmoudvand, H.; Saedi Dezaki, E.; Ezatpour, B.; Sharifi, I.; Kheirandish, F.; Rashidipour, M. In vitro and in vivo antileishmanial activities of Pistacia vera essential oil. Planta Med., 2016, 82(4), 279-284.
[http://dx.doi.org/10.1055/s-0035-1558209] [PMID: 26829519]
[73]
Smeriglio, A.; Denaro, M.; Barreca, D.; Calderaro, A.; Bisignano, C.; Ginestra, G.; Bellocco, E.; Trombetta, D. In vitro Evaluation of the antioxidant, cytoprotective, and antimicrobial properties of essential oil from Pistacia vera L. variety Bronte hull. Int. J. Mol. Sci., 2017, 18(6), 1212.
[http://dx.doi.org/10.3390/ijms18061212] [PMID: 28587291]
[74]
D’Arrigo, M.; Bisignano, C.; Irrera, P.; Smeriglio, A.; Zagami, R.; Trombetta, D.; Romeo, O.; Mandalari, G. In vitro evaluation of the activity of an essential oil from Pistacia vera L. variety Bronte hull against Candida sp. BMC Complement. Altern. Med., 2019, 19(1), 6.
[http://dx.doi.org/10.1186/s12906-018-2425-0] [PMID: 30612544]
[75]
Napoli, E.; Gentile, D.; Ruberto, G. GC-MS analysis of terpenes from Sicilian Pistacia vera L. oleoresin. A source of biologically active compounds. Biomed. Chromatogr., 2019, 33(2)e4381
[http://dx.doi.org/10.1002/bmc.4381] [PMID: 30194698]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy