Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Research Article

Cellulose-Supported Sulfonated Magnetic Nanoparticles: Utilized for One-pot Synthesis of α-Iminonitrile Derivatives

Author(s): Jamal Rahimi, Reza Taheri-Ledari and Ali Maleki*

Volume 17, Issue 4, 2020

Page: [288 - 294] Pages: 7

DOI: 10.2174/1570179417666200324184936

Price: $65

Abstract

Introduction: An instrumental strategy for α-iminonitrile derivatives preparation by Fe3O4@cellulose-OSO3H (MCSA) as an eco-friendly nanocatalyst and oxidative agent in aerobic condition, is presented.

Materials and Methods: Through this method, a one-pot three-component condensation reaction of various aldehydes, primary amines and trimethylsilylcyanide (TMSCN) were applied to synthesize the desired products. It was performed in absolute ethanol and under a mild condition by using the presented nanocatalyst. High reaction yields were obtained through using the presented magnetic agent, as well. Moreover, the threecomponent reactions were executed using accessible and economical precursors. The convenient separation and recyclability of the used nanocatalyst were also precisely investigated.

Results and Discussion: In this research, we identified novel α-iminonitrile derivatives using 1H NMR, 13C NMR, CHN, and FT-IR analyses, as well. In order to determine the well-known derivatives, we used FT-IR method as well as comparing their melting points with those of reported.

Conclusion: In summary, an extremely efficient method was used for the environmentally-friendly synthesis of α-iminonitrile derivatives that are important bioactive substances. The catalytic oxidative coupling reaction afforded the products via a one-pot three-component condensation reaction of various aldehydes, primary amines and TMSCN with great reaction yields, in ethanol under mild conditions.

Keywords: Iminonitriles, oxidative coupling reaction, multicomponent reaction, cellulose nanocomposite, magnetic nanoparticles, green synthesis.

Graphical Abstract
[1]
Taheri-Ledari, R.; Rahimi, J.; Maleki, A. Synergistic catalytic effect between ultrasound waves and pyrimidine-2,4-diamine-functionalized magnetic nanoparticles: Applied for synthesis of 1,4-dihydropyridine pharmaceutical derivatives. Ultrason. Sonochem., 2019, 59, 104737
[http://dx.doi.org/10.1016/j.ultsonch.2019.104737] [PMID: 31473427]
[2]
Taheri-Ledari, R.; Hashemi, S.M.; Maleki, A. High-performance sono/nano-catalytic system: CTSN/Fe3O4–Cu nanocomposite, a promising heterogeneous catalyst for the synthesis of N-arylimidazoles. RSC Advances, 2019, 9, 40348-40356.
[http://dx.doi.org/10.1039/C9RA08062G]
[3]
Rahimi, J.; Taheri-Ledari, R.; Niksefat, M.; Maleki, A. Enhanced reduction of nitrobenzene derivatives: Effective strategy executed by Fe3O4/PVA-10% Ag as a versatile hybrid nanocatalyst. Catal. Commun., 2020, 134, 105850
[http://dx.doi.org/10.1016/j.catcom.2019.105850]
[4]
Maleki, A.; Azadegan, S.; Rahimi, J. Gallic acid grafted to amine-functionalized magnetic nanoparticles as a proficient catalyst for environmentally friendly synthesis of α-aminonitriles. Appl. Organomet. Chem., 2019, 33, e4810
[http://dx.doi.org/10.1002/aoc.4810]
[5]
Maleki, A.; Rahimi, J.; Hajizadeh, Z.; Niksefat, M. Synthesis and characterization of an acidic nanostructure based on magnetic polyvinyl alcohol as an efficient heterogeneous nanocatalyst for the synthesis of α-aminonitriles. J. Organomet. Chem., 2018, 881, 58-65.
[http://dx.doi.org/10.1016/j.jorganchem.2018.12.002]
[6]
Fontaine, P.; Masson, G.; Zhu, J. Synthesis of pyrroles by consecutive multicomponent reaction/[4 + 1] cycloaddition of α-iminonitriles with isocyanides. Org. Lett., 2009, 11(7), 1555-1558.
[http://dx.doi.org/10.1021/ol9001619] [PMID: 19320503]
[7]
Liu, K.; Tao, S.W.; Qian, C.; Zhu, Y.M. Pd-Catalyzed Suzuki–Miyaura Cross‐Coupling of arylboronic acids and α-iminonitriles through C–CN Bond Activation. Eur. J. Org. Chem., 2018, 16, 4769-4775.
[http://dx.doi.org/10.1002/ejoc.201800857]
[8]
Chen, Z.; Liang, P.; Liu, B.; Luo, H.; Zheng, J.; Wen, X.; Liu, T.; Ye, M. A facile tandem decyanation/cyanation reaction of α-iminonitriles toward cyano-substituted amides. Org. Biomol. Chem., 2018, 16(44), 8481-8485.
[http://dx.doi.org/10.1039/C8OB02186D] [PMID: 30378615]
[9]
Li, Y.; Zhou, J.; Fang, F.; Xu, B.; Liu, H.; Zhou, Y. Rhodium (III)-catalyzed C–H activation of α-iminonitriles or α-imino esters and cyclization with acrylates to 2H-isoindoles. J. Org. Chem., 2018, 83(19), 11736-11746.
[http://dx.doi.org/10.1021/acs.joc.8b01664] [PMID: 30153732]
[10]
Middya, S.; Yadav, D.B.; Shrivastava, R.; Raina, S.; Banerjee, M.; Surya, A. Curadev Pharma Pvt Ltd Novel iminonitrile derivatives, U.S. Patent Application. 2017.
[11]
Kaur, N. Metal and non-metal catalysts in the synthesis of five-membered S-heterocycles. Curr. Org. Synth., 2019, 16(2), 258-275.
[http://dx.doi.org/10.2174/1570179416666181207144430] [PMID: 31975675]
[12]
Singh, G.S. Reactions of organic nitrogen compounds with carbenoids and diarylketenes from diazoalkanes and diazocarbonyls. Curr. Org. Synth., 2005, 2, 377-391.
[http://dx.doi.org/10.2174/1570179054368536]
[13]
Kalbandhe, A.H.; Kavale, A.C.; Karade, N.N. Ring-opening reaction of imidazo [1, 2-a] pyridines using (diacetoxyiodo) benzene and NaN3: The synthesis of α-iminonitriles. Eur. J. Org. Chem., 2017, 2017, 1318-1322.
[http://dx.doi.org/10.1002/ejoc.201601480]
[14]
Tobisu, M.; Kitajima, A.; Yoshioka, S.; Hyodo, I.; Oshita, M.; Chatani, N. Brønsted acid catalyzed formal insertion of isocyanides into a C-O bond of acetals. J. Am. Chem. Soc., 2007, 129(37), 11431-11437.
[http://dx.doi.org/10.1021/ja073286h] [PMID: 17718490]
[15]
Pochat, F. Une nouvelle méthode de transformation des aldéhydes aromatiques en α-iminonitriles Ar-C(CN)=N-R. Tetrahedron Lett., 1981, 22, 955-956.
[http://dx.doi.org/10.1016/0040-4039(81)89018-1]
[16]
Sandhu, J.S.; Mohan, S.; Kapoor, A.L. Novel method for oxidation of alpha-aminonitriles. Chem. Ind., 1971, 5, 152.
[17]
Jursic, B.S.; Douelle, F.; Bowdy, K.; Stevens, E.D. A new facile method for preparation of heterocyclic α-iminonitriles and α-oxoacetic acid from heterocyclic aldehydes, p-aminophenol, and sodium cyanide. Tetrahedron Lett., 2002, 43, 5361-5365.
[http://dx.doi.org/10.1016/S0040-4039(02)00799-2]
[18]
Chen, F.; Huang, X.; Cui, Y.; Jiao, N. Direct transformation of methyl imines to α-iminonitriles under mild and transition-metal-free conditions. Chemistry, 2013, 19(34), 11199-11202.
[http://dx.doi.org/10.1002/chem.201301933] [PMID: 23853059]
[19]
Ayers, B.J.; Fleet, G.W. One-pot tandem Strecker reaction and iminocyclisations: syntheses of trihydroxypiperidine α-iminonitriles. Eur. J. Org. Chem., 2014, 2053-2069.
[http://dx.doi.org/10.1002/ejoc.201301705]
[20]
Chen, Z.B.; Zhang, Y.; Yuan, Q.; Zhang, F.L.; Zhu, Y.M.; Shen, J.K. Palladium-catalyzed synthesis of α-iminonitriles from aryl halides via isocyanide double insertion reaction. J. Org. Chem., 2016, 81(4), 1610-1616.
[http://dx.doi.org/10.1021/acs.joc.5b02777] [PMID: 26816103]
[21]
Chen, Z.; Liang, P.; Zheng, J.; Zhou, Z.; Wen, X.; Liu, T.; Ye, M. Cyanide-free Ce(III)-catalyzed highly efficient synthesis of α-iminonitriles from 2-aminopyridines and nitroalkenes via intermolecular dehydration reaction. ACS Omega, 2018, 3(10), 12520-12529.
[http://dx.doi.org/10.1021/acsomega.8b02214] [PMID: 31457985]
[22]
Fontaine, P.; Chiaroni, A.; Masson, G.; Zhu, J. One-pot three-component synthesis of α-iminonitriles by IBX/TBAB-mediated oxidative Strecker reaction. Org. Lett., 2008, 10(8), 1509-1512.
[http://dx.doi.org/10.1021/ol800199b] [PMID: 18345680]
[23]
Gualtierotti, J.B.; Schumacher, X.; Wang, Q.; Zhu, J. Synthesis of iminonitriles by oxone/TBAB-mediated one-pot oxidative three-component Strecker reaction. Synthesis, 2013, 45, 13801386
[24]
Maleki, A.; Niksefat, M.; Rahimi, J.; Azadegan, S. Facile synthesis of tetrazolo [1,5-a] pyrimidine with the aid of an effective gallic acid nanomagnetic catalyst. Polyhedron, 2019, 167, 103-110.
[http://dx.doi.org/10.1016/j.poly.2019.04.015]
[25]
Maleki, A.; Taheri-Ledari, R.; Soroushnejad, M. Surface functionalization of magnetic nanoparticles via palladium-catalyzed Diels-Alder approach. ChemistrySelect, 2018, 3, 13057-13062.
[http://dx.doi.org/10.1002/slct.201803001]
[26]
Maleki, A.; Taheri-Ledari, R.; Rahimi, J.; Soroushnejad, M.; Hajizadeh, Z. Facile peptide bond formation: Effective interplay between isothiazolone rings and silanol groups at silver/iron Oxide nanocomposite surfaces. ACS Omega, 2019, 4(6), 10629-10639.
[http://dx.doi.org/10.1021/acsomega.9b00986] [PMID: 31460161]
[27]
Maleki, A.; Niksefat, M.; Rahimi, J.; Taheri-Ledari, R. Multicomponent synthesis of pyrano[2,3-d]pyrimidine derivatives via a direct one-pot strategy executed by novel designed copperated Fe3O4@polyvinyl alcohol magnetic nanoparticles. Mater. Today Chem., 2019, 13, 110-120.
[http://dx.doi.org/10.1016/j.mtchem.2019.05.001]
[28]
Manzoli, M.; Calcio Gaudino, E.; Cravotto, G.; Tabasso, S.; Nasir Baig, R.B.; Colacino, E.; Varma, R.S. Microwave-assisted reductive amination with aqueous ammonia: Sustainable pathway using recyclable magnetic nickel-based nano-catalyst. ACS Sustain. Chem.& Eng., 2019, 7, 5963-5974.
[http://dx.doi.org/10.1021/acssuschemeng.8b06054]
[29]
Maleki, A.; Rahimi, J.; Demchuk, O.M.; Wilczewska, A.Z.; Jasiński, R. Green in water sonochemical synthesis of tetrazolopyrimidine derivatives by a novel core-shell magnetic nanostructure catalyst. Ultrason. Sonochem., 2018, 43, 262-271.
[http://dx.doi.org/10.1016/j.ultsonch.2017.12.047] [PMID: 29555283]
[30]
Taheri-Ledari, R.; Rahimi, J.; Maleki, A. Method screening for conjugation of the small molecules onto the vinyl-coated Fe3O4/silica nanoparticles: highlighting the efficiency of ultrasonication. Mater. Res. Express, 2020, 7, 015067
[http://dx.doi.org/10.1088/2053-1591/ab69cc]
[31]
Zhang, W.; Taheri-Ledari, R.; Hajizadeh, Z.; Zolfaghari, E.; Ahghari, M.R.; Maleki, A.; Hamblin, M.R.; Tian, Y. Enhanced activity of vancomycin by encapsulation in hybrid magnetic nanoparticles conjugated to a cell-penetrating peptide. Nanoscale, 2020, 12(6), 3855-3870.
[http://dx.doi.org/10.1039/C9NR09687F] [PMID: 31996884]
[32]
Valadi, K.; Gharibi, S.; Taheri-Ledari, R.; Maleki, A. Ultrasound-assisted synthesis of 1,4-dihydropyridine derivatives by an efficient volcanic-based hybrid nanocomposite. Solid State Sci., 2020, 101, 106141
[http://dx.doi.org/10.1016/j.solidstatesciences.2020.106141]
[33]
Maleki, A.; Eskandarpour, V.; Rahimi, J.; Hamidi, N. Cellulose matrix embedded copper decorated magnetic bionanocomposite as a green catalyst in the synthesis of dihydropyridines and polyhydroquinolines. Carbohydr. Polym., 2019, 208, 251-260.
[http://dx.doi.org/10.1016/j.carbpol.2018.12.069] [PMID: 30658798]
[34]
Maleki, A.; Akhlaghi, E.; Paydar, R. Design, synthesis, characterization and catalytic performance of a new cellulose-based magnetic nanocomposite in the one-pot three-component synthesis of α-aminonitriles. Appl. Organomet. Chem., 2016, 30, 382-386.
[http://dx.doi.org/10.1002/aoc.3443]
[35]
Barnes, C.S.; Halbert, E.J.; Goldsack, R.J. The dimerization of anils of pyridine aldehydes catalysed by cyanide ion. Aust. J. Chem., 1973, 26, 2027-2034.
[http://dx.doi.org/10.1071/CH9732027]
[36]
Ogata, Y.; Kawasaki, A. Addition of hydrogen cyanide to benzylidene-anilines. Oxidation products. J. Chem. Soc., Perkin Trans., 1972, II, 1792-1797.
[http://dx.doi.org/10.1039/p29720001792]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy