Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Formulation Development of Tamoxifen Loaded Lipid Nanoparticle by Taguchi (L12 (211)) Orthogonal Array Design

Author(s): Ganesan Poovi and Narayanasamy Damodharan*

Volume 17, Issue 1, 2021

Published on: 20 March, 2020

Page: [144 - 159] Pages: 16

DOI: 10.2174/1573409916666200320162948

Price: $65

Abstract

Background: A better understanding of the biopharmaceutical and physicochemical properties of drugs and the pharmaco-technical factors would be of great help for developing pharmaceutical products. But, it is extremely difficult to study the effect of each variable and interaction among them through the conventional approach.

Methods: To screen the most influential factors affecting the particle size (PS) of lipid nanoparticle (LNPs) (solid lipid nanoparticle (SLN) and nanostructured lipid carrier (NLC)) for poorly watersoluble BCS class-II drug like tamoxifen (TMX) to improve its oral bioavailability and to reduce its toxicity to tolerable limits using Taguchi (L12 (211)) orthogonal array design by applying computer optimization technique.

Results: The size of all LNPs formulations prepared as per the experimental design varied between 172 nm and 3880 μm, polydispersity index between 0.033 and 1.00, encapsulation efficiency between 70.8% and 75.7%, and drug loading between 5.84% and 9.68%. The study showed spherical and non-spherical as well as aggregated and non-aggregated LNPs. Besides, it showed no interaction and amorphous form of the drug in LNPs formulation. The Blank NLCs exhibited no cytotoxicity on MCF-7 cells as compared to TMX solution, SLNs (F5) and NLCs (F12) suggest that the cause of cell death is primarily from the effect of TMX present in NLCs.

Conclusions: The screening study clearly showed the importance of different individual factors significant effect for the LNPs formulation development and its overall performance in an in-vitro study with minimum experimentation thus saving considerable time, efforts, and resources for further in-depth study.

Keywords: Solid lipid nanoparticle, nanostructured lipid carrier, Taguchi (L12 (211)), orthogonal array design, tamoxifen, cytotoxicity study.

Graphical Abstract
[1]
Williams, H.D.; Trevaskis, N.L.; Charman, S.A.; Shanker, R.M.; Charman, W.N.; Pouton, C.W.; Porter, C.J. Strategies to address low drug solubility in discovery and development. Pharmacol. Rev., 2013, 65(1), 315-499.
[http://dx.doi.org/10.1124/pr.112.005660] [PMID: 23383426]
[2]
Di, L.; Kerns, E.H.; Carter, G.T. Drug-like property concepts in pharmaceutical design. Curr. Pharm. Des., 2009, 15(19), 2184-2194.
[http://dx.doi.org/10.2174/138161209788682479] [PMID: 19601822]
[3]
Di, L.; Fish, P.V.; Mano, T. Bridging solubility between drug discovery and development. Drug Discov. Today, 2012, 17(9-10), 486-495.
[http://dx.doi.org/10.1016/j.drudis.2011.11.007] [PMID: 22138563]
[4]
Ali, H.; Singh, S.K. Biological voyage of solid lipid nanoparticles: a proficient carrier in nanomedicine. Ther. Deliv., 2016, 7(10), 691-709.
[http://dx.doi.org/10.4155/tde-2016-0038] [PMID: 27790956]
[5]
Mukherjee, S.; Ray, S.; Thakur, R.S. Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Indian J. Pharm. Sci., 2009, 71(4), 349-358.
[http://dx.doi.org/10.4103/0250-474X.57282] [PMID: 20502539]
[6]
Kharia, A.A.; Singhai, A.K. Effective parameters for formulation of gastro adhesive nanoparticles: screening by design-of-experiments approach. J. Microencapsul., 2014, 31(4), 399-405.
[http://dx.doi.org/10.3109/02652048.2013.863398] [PMID: 24697180]
[7]
Negi, L.M.; Jaggi, M.; Talegaonkar, S. A logical approach to optimize the nanostructured lipid carrier system of irinotecan: efficient hybrid design methodology. Nanotechnology, 2013, 24(1)015104
[http://dx.doi.org/10.1088/0957-4484/24/1/015104] [PMID: 23221112]
[8]
Beg, S.; Jain, S.; Kushwah, V.; Bhatti, G.K.; Sandhu, P.S.; Katare, O.P.; Singh, B. Novel surface-engineered solid lipid nanoparticles of rosuvastatin calcium for low-density lipoprotein-receptor targeting: a Quality by Design-driven perspective. Nanomedicine (Lond.), 2017, 12(4), 333-356.
[http://dx.doi.org/10.2217/nnm-2016-0336] [PMID: 28093941]
[9]
Kharia, A.A.; Singhai, A.K. Screening of most effective variables for development of gastroretentive mucoadhesive nanoparticles by Taguchi design. ISRN Nanomater., 2013, 2013, 1-8.
[http://dx.doi.org/10.1155/2013/348095]
[10]
Sonam; Chaudhary, H.; Kumar, V. Taguchi design for optimization and development of antibacterial drug-loaded PLGA nanoparticles. Int. J. Biol. Macromol., 2014, 64, 99-105.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.11.032] [PMID: 24315945]
[11]
Poovi, G.; Thangavel Mahalingam, V.; Narayanasamy, D. solid lipid nanoparticles and nanostructured lipid carriers: a review of the effect of physicochemical formulation factors in the optimization process, different preparation technique, characterization, and toxicity. Curr. Nanosci., 2018, 14, 1-18.
[12]
Elnaggar, Y.S.; El-Massik, M.A.; Abdallah, O.Y. Self-nanoemulsifying drug delivery systems of tamoxifen citrate: design and optimization. Int. J. Pharm., 2009, 380(1-2), 133-141.
[http://dx.doi.org/10.1016/j.ijpharm.2009.07.015] [PMID: 19635537]
[13]
Koziara, J.M.; Lockman, P.R.; Allen, D.D.; Mumper, R.J. Paclitaxel nanoparticles for the potential treatment of brain tumors. J. Control. Release, 2004, 99(2), 259-269.
[http://dx.doi.org/10.1016/j.jconrel.2004.07.006] [PMID: 15380635]
[14]
Koziara, J.M.; Oh, J.J.; Akers, W.S.; Ferraris, S.P.; Mumper, R.J. Blood compatibility of cetyl alcohol/polysorbate-based nanoparticles. Pharm. Res., 2005, 22(11), 1821-1828.
[http://dx.doi.org/10.1007/s11095-005-7547-7] [PMID: 16132346]
[15]
Mumper, R.J.; Jay, M. Microemulsions as precursors to solid nanoparticles; Google Patents, 2006, pp. 1-23.
[16]
Ganesan, P.; Narayanasamy, D. Lipid nanoparticles: Different preparation techniques, characterization, hurdles, and strategies for the production of solid lipid nanoparticles and nanostructured lipid carriers for oral drug delivery. Sustain. Chem. Pharm., 2017, 6, 37-56.
[http://dx.doi.org/10.1016/j.scp.2017.07.002]
[17]
Shete, H.; Patravale, V. Long chain lipid based tamoxifen NLC. Part I: preformulation studies, formulation development and physicochemical characterization. Int. J. Pharm., 2013, 454(1), 573-583.
[http://dx.doi.org/10.1016/j.ijpharm.2013.03.034] [PMID: 23535345]
[18]
de Carvalho, S.M.; Noronha, C.M.; Floriani, C.L.; Lino, R.C.; Rocha, G.; Bellettini, I.C.; Ogliari, P.J.; Barreto, P.L.M. Optimization of α-tocopherol loaded solid lipid nanoparticles by central composite design. Ind. Crops Prod., 2013, 49, 278-285.
[http://dx.doi.org/10.1016/j.indcrop.2013.04.054]
[19]
Dudhipala, N.; Veerabrahma, K. Pharmacokinetic and pharmacodynamic studies of nisoldipine-loaded solid lipid nanoparticles developed by central composite design. Drug Dev. Ind. Pharm., 2015, 41(12), 1968-1977.
[http://dx.doi.org/10.3109/03639045.2015.1024685] [PMID: 25830370]
[20]
Pardeshi, C.V.; Rajput, P.V.; Belgamwar, V.S.; Tekade, A.R.; Surana, S.J. Novel surface modified solid lipid nanoparticles as intranasal carriers for ropinirole hydrochloride: application of factorial design approach. Drug Deliv., 2013, 20(1), 47-56.
[http://dx.doi.org/10.3109/10717544.2012.752421] [PMID: 23311653]
[21]
Cho, H-J.; Park, J.W.; Yoon, I-S.; Kim, D-D. Surface-modified solid lipid nanoparticles for oral delivery of docetaxel: enhanced intestinal absorption and lymphatic uptake. Int. J. Nanomedicine, 2014, 9, 495-504.
[PMID: 24531717]
[22]
Gamberini, M.C.; Baraldi, C.; Tinti, A.; Palazzoli, F.; Ferioli, V. Vibrational study of tamoxifen citrate polymorphism. J. Mol. Struct., 2007, 840(1-3), 29-37.
[http://dx.doi.org/10.1016/j.molstruc.2007.02.019]
[23]
Ghadi, R.; Dand, N. BCS class IV drugs: Highly notorious candidates for formulation development. J. Control. Release, 2017, 248, 71-95.
[http://dx.doi.org/10.1016/j.jconrel.2017.01.014] [PMID: 28088572]
[24]
Čerpnjak, K.; Zvonar, A.; Gašperlin, M.; Vrečer, F. Lipid-based systems as a promising approach for enhancing the bioavailability of poorly water-soluble drugs. Acta Pharm., 2013, 63(4), 427-445.
[http://dx.doi.org/10.2478/acph-2013-0040] [PMID: 24451070]
[25]
Fatouros, D.G.; Karpf, D.M.; Nielsen, F.S.; Mullertz, A. Clinical studies with oral lipid based formulations of poorly soluble compounds. Ther. Clin. Risk Manag., 2007, 3(4), 591-604.
[PMID: 18472981]
[26]
Kalepu, S.; Manthina, M.; Padavala, V. Oral lipid-based drug delivery systems-an overview. Acta Pharm. Sin. B, 2013, 3(6), 361-372.
[http://dx.doi.org/10.1016/j.apsb.2013.10.001]
[27]
Thanki, K.; Gangwal, R.P.; Sangamwar, A.T.; Jain, S. Oral delivery of anticancer drugs: challenges and opportunities. J. Control. Release, 2013, 170(1), 15-40.
[http://dx.doi.org/10.1016/j.jconrel.2013.04.020] [PMID: 23648832]
[28]
Manjunath, K.; Reddy, J.S.; Venkateswarlu, V. Solid lipid nanoparticles as drug delivery systems. Methods Find. Exp. Clin. Pharmacol., 2005, 27(2), 127-144.
[http://dx.doi.org/10.1358/mf.2005.27.2.876286] [PMID: 15834465]
[29]
Velazco, E.E. JSTOR 1991.
[30]
Varshosaz, J.; Tavakoli, N.; Minayian, M.; Rahdari, N. Applying the Taguchi design for optimized formulation of sustained release gliclazide chitosan beads: an in vitro/in vivo study. AAPS PharmSciTech, 2009, 10(1), 158-165.
[http://dx.doi.org/10.1208/s12249-009-9191-8] [PMID: 19205888]
[31]
Zhang, C.; Gu, C.; Peng, F.; Liu, W.; Wan, J.; Xu, H.; Lam, C.W.; Yang, X. Preparation and optimization of triptolide-loaded solid lipid nanoparticles for oral delivery with reduced gastric irritation. Molecules, 2013, 18(11), 13340-13356.
[http://dx.doi.org/10.3390/molecules181113340] [PMID: 24172242]
[32]
Emami, J.; Mohiti, H.; Hamishehkar, H.; Varshosaz, J. Formulation and optimization of solid lipid nanoparticle formulation for pulmonary delivery of budesonide using Taguchi and Box-Behnken design. Res. Pharm. Sci., 2015, 10(1), 17-33.
[PMID: 26430454]
[33]
Arora, S.; Gupta, S.; Narang, R.K.; Budhiraja, R.D. Amoxicillin loaded chitosan-alginate polyelectrolyte complex nanoparticles as mucopenetrating delivery system for H. Pylori. Sci. Pharm., 2011, 79(3), 673-694.
[http://dx.doi.org/10.3797/scipharm.1011-05] [PMID: 21886911]
[34]
Mehnert, W.; Mäder, K. Solid lipid nanoparticles: production, characterization and applications. Adv. Drug Deliv. Rev., 2001, 47(2-3), 165-196.
[http://dx.doi.org/10.1016/S0169-409X(01)00105-3] [PMID: 11311991]
[35]
Vysloužil, J.; Doležel, P.; Kejdušová, M.; Mašková, E.; Mašek, J.; Lukáč, R.; Košťál, V.; Vetchý, D.; Dvořáčková, K. Influence of different formulations and process parameters during the preparation of drug-loaded PLGA microspheres evaluated by multivariate data analysis. Acta Pharm., 2014, 64(4), 403-417.
[http://dx.doi.org/10.2478/acph-2014-0032] [PMID: 25531782]
[36]
Yang, Y-Y.; Chung, T-S.; Ng, N.P. Morphology, drug distribution, and in vitro release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method. Biomaterials, 2001, 22(3), 231-241.
[http://dx.doi.org/10.1016/S0142-9612(00)00178-2] [PMID: 11197498]
[37]
Zirak, M.B.; Pezeshki, A. Effect of surfactant concentration on the particle size, stability and potential zeta of beta carotene nano lipid carrier. Int. J. Curr. Microbiol. Appl. Sci., 2015, 4(9), 924-932.
[38]
Hu, F-Q.; Jiang, S-P.; Du, Y-Z.; Yuan, H.; Ye, Y-Q.; Zeng, S. Preparation and characterization of stearic acid nanostructured lipid carriers by solvent diffusion method in an aqueous system. Colloids Surf. B Biointerfaces, 2005, 45(3-4), 167-173.
[http://dx.doi.org/10.1016/j.colsurfb.2005.08.005] [PMID: 16198092]
[39]
Pandolfe, W.D. Effect of dispersed and continuous phase viscosity on droplet size of emulsions generated by homogenization. J. Dispers. Sci. Technol., 1981, 2(4), 459-474.
[http://dx.doi.org/10.1080/01932698108943924]
[40]
Gonzalez-Mira, E.; Egea, M.A.; Souto, E.B.; Calpena, A.C.; García, M.L. Optimizing flurbiprofen-loaded NLC by central composite factorial design for ocular delivery. Nanotechnology, 2011, 22(4)045101
[http://dx.doi.org/10.1088/0957-4484/22/4/045101] [PMID: 21169662]
[41]
Domingo, C.; Saurina, J. An overview of the analytical characterization of nanostructured drug delivery systems: towards green and sustainable pharmaceuticals: a review. Anal. Chim. Acta, 2012, 744, 8-22.
[http://dx.doi.org/10.1016/j.aca.2012.07.010] [PMID: 22935368]
[42]
Pardeshi, C.; Rajput, P.; Belgamwar, V.; Tekade, A.; Patil, G.; Chaudhary, K.; Sonje, A. Solid lipid based nanocarriers: an overview. Acta Pharm., 2012, 62(4), 433-472.
[http://dx.doi.org/10.2478/v10007-012-0040-z] [PMID: 23333884]
[43]
Kumar, S.; Dilbaghi, N.; Saharan, R.; Bhanjana, G. nanotechnology as emerging tool for enhancing solubility of poorly water-soluble drugs. Bionanoscience, 2012, 2(4), 227-250.
[http://dx.doi.org/10.1007/s12668-012-0060-7]
[44]
Shah, M.; Agrawal, Y.K.; Garala, K.; Ramkishan, A. Solid lipid nanoparticles of a water soluble drug, ciprofloxacin hydrochloride. Indian J. Pharm. Sci., 2012, 74(5), 434-442.
[http://dx.doi.org/10.4103/0250-474X.108419] [PMID: 23716872]
[45]
How, C.W.; Rasedee, A.; Manickam, S.; Rosli, R. Tamoxifen-loaded nanostructured lipid carrier as a drug delivery system: characterization, stability assessment and cytotoxicity. Colloids Surf. B Biointerfaces, 2013, 112, 393-399.
[http://dx.doi.org/10.1016/j.colsurfb.2013.08.009] [PMID: 24036474]
[46]
Shete, H.; Chatterjee, S.; De, A.; Patravale, V. Long chain lipid based tamoxifen NLC. Part II: pharmacokinetic, biodistribution and in vitro anticancer efficacy studies. Int. J. Pharm., 2013, 454(1), 584-592.
[http://dx.doi.org/10.1016/j.ijpharm.2013.03.036] [PMID: 23535344]
[47]
Yuan, H.; Miao, J.; Du, Y-Z.; You, J.; Hu, F-Q.; Zeng, S. Cellular uptake of solid lipid nanoparticles and cytotoxicity of encapsulated paclitaxel in A549 cancer cells. Int. J. Pharm., 2008, 348(1-2), 137-145.
[http://dx.doi.org/10.1016/j.ijpharm.2007.07.012] [PMID: 17714896]
[48]
Müller, R.; Maaßen, S.; Weyhers, H.; Specht, F.; Lucks, J. Cytotoxicity of magnetite-loaded polylactide, polylactide/glycolide particles and solid lipid nanoparticles. Int. J. Pharm., 1996, 138(1), 85-94.
[http://dx.doi.org/10.1016/0378-5173(96)04539-5]
[49]
Svilenov, H. Nanomedicine; One Central Press: Manchester, 2014, pp. 187-237.
[50]
MuÈller, R.H.; MaÈder, K.; Gohla, S. Solid lipid nanoparticles (SLN) for controlled drug delivery-a review of the state of the art. Eur. J. Pharm. Biopharm., 2000, 50(1), 161-177.
[http://dx.doi.org/10.1016/S0939-6411(00)00087-4] [PMID: 10840199]
[51]
Wang, D.; Zhao, P.; Cuia, F.; Li, X. Preparation and characterization of solid lipid nanoparticles loaded with total flavones of Hippophae rhamnoides (TFH). PDA J. Pharm. Sci. Technol., 2007, 61(2), 110-120.
[PMID: 17479719]
[52]
Baek, J-S.; Cho, C-W. Surface modification of solid lipid nanoparticles for oral delivery of curcumin: improvement of bioavailability through enhanced cellular uptake, and lymphatic uptake. Eur. J. Pharm. Biopharm., 2017, 117, 132-140.
[http://dx.doi.org/10.1016/j.ejpb.2017.04.013] [PMID: 28412471]
[53]
Kumar, V.; Kharb, R.; Chaudhary, H. Optimization & design of isradipine loaded solid lipid nanobioparticles using rutin by Taguchi methodology. Int. J. Biol. Macromol., 2016, 92, 338-346.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.07.020] [PMID: 27392772]
[54]
El-Moslamy, S.H.; Elkady, M.F.; Rezk, A.H.; Abdel-Fattah, Y.R. Applying Taguchi design and large-scale strategy for mycosynthesis of nano-silver from endophytic Trichoderma harzianum SYA. F4 and its application against phytopathogens. Sci. Rep., 2017, 7, 45297.
[http://dx.doi.org/10.1038/srep45297] [PMID: 28349997]
[55]
Varshosaz, J.; Tabbakhian, M.; Mohammadi, M.Y. Formulation and optimization of solid lipid nanoparticles of buspirone HCl for enhancement of its oral bioavailability. J. Liposome Res., 2010, 20(4), 286-296.
[http://dx.doi.org/10.3109/08982100903443065] [PMID: 19958118]
[56]
Yang, S.C.; Zhu, J.B. Preparation and characterization of camptothecin solid lipid nanoparticles. Drug Dev. Ind. Pharm., 2002, 28(3), 265-274.
[http://dx.doi.org/10.1081/DDC-120002842] [PMID: 12026219]
[57]
Sharma, R.; Dubey, S.; Mody, N.; Sharma, G.; Kushwah, V.; Jain, S.; Katare, O.P.; Vyas, S.P. Release promoter-based systematically designed nanocomposite (s): a novel approach for site-specific delivery of tumor-associated antigen (s)(TAAs). Artif. Cells Nanomed. Biotechnol, 2018, 42(sup2), 776-789..
[58]
Shinde, G.; Patel, M.; Mehta, M.; Kesarla, R.; Bangale, G.; Bangale, G. Formulation, optimization, and characterization of repaglinide loaded nanocrystal for diabetes therapy.Adv. Pharm., 2015, 2015.
[59]
Hamidi, M.; Azadi, A.; Ashrafi, H.; Rafiei, P.; Mohamadi‐Samani, S. Taguchi orthogonal array design for the optimization of hydrogel nanoparticles for the intravenous delivery of small‐molecule drugs. J. Appl. Polym. Sci., 2012, 126(5), 1714-1724.
[http://dx.doi.org/10.1002/app.36778]
[60]
Kyadarkunte, A.Y.; Patole, M.S.; Pokharkar, V.B. Cellular interactions and photoprotective effects of idebenone-loaded nanostructured lipid carriers stabilized using PEG-free surfactant. Int. J. Pharm., 2015, 479(1), 77-87.
[http://dx.doi.org/10.1016/j.ijpharm.2014.12.044] [PMID: 25545795]
[61]
Muheem, A.; Shakeel, F.; Warsi, M.H.; Jain, G.K.; Ahmad, F.J. a combinatorial statistical design approach to optimize the nanostructured cubosomal carrier system for oral delivery of ubidecarenone for management of doxorubicin-induced cardiotoxicity: in vitro-in vivo investigations. J. Pharm. Sci., 2017, 106(10), 3050-3065.
[http://dx.doi.org/10.1016/j.xphs.2017.05.026] [PMID: 28552692]
[62]
Shah, R.A.; Thakkar, V.T.; Gohel, M.C.; Shah, P.; Baldaniya, L.H. applicability of taguchi design in development of microparticles for pulmonary delivery. Saudi J. Med. Pharm. Sci., 2017, 3(8), 881-895.
[63]
Sudharsan, N.; Ng, E. Parametric optimization for tumour identification: bioheat equation using ANOVA and the Taguchi method. Proceedings of the Institution of Mechanical Engineers, Part H. J. Eng. Med., 2000, 214(5), 505-512.
[http://dx.doi.org/10.1243/0954411001535534]
[64]
Fontani, S.; Niccolai, A.; Kapat, A.; Olivieri, R. Studies on the maximization of recombinant Helicobacter pylori neutrophil-activating protein production in Escherichia coli: application of Taguchi robust design and response surface methodology for process optimization. World J. Microbiol. Biotechnol., 2003, 19(7), 711-717.
[http://dx.doi.org/10.1023/A:1025104119260]
[65]
Tanfous, N.G.B.; Kallel, H.; Jarboui, M.A.; Fathallah, D.M. Expression in Pichia pastoris of a recombinant scFv form of MAb 107, an anti human CD11b integrin antibody. Enzyme Microb. Technol., 2006, 38(5), 636-642.
[http://dx.doi.org/10.1016/j.enzmictec.2005.07.014]
[66]
Nikbakht, R.; Sadrzadeh, M.; Mohammadi, T. Effect of operating parameters on concentration of citric acid using electro dialysis. J. Food Eng., 2007, 83(4), 596-604.
[http://dx.doi.org/10.1016/j.jfoodeng.2007.04.010]
[67]
Oztop, M.H.; Sahin, S.; Sumnu, G. Optimization of microwave frying of potato slices by using Taguchi technique. J. Food Eng., 2007, 79(1), 83-91.
[http://dx.doi.org/10.1016/j.jfoodeng.2006.01.031]
[68]
Da̧browski, W.; Czekajło-Kołodziej, U.; Mȩdrala, D.; Giedrys-Kalemba, S. Optimisation of AP-PCR fingerprinting discriminatory power for clinical isolates of Pseudomonas aeruginosa. FEMS Microbiol. Lett., 2003, 218(1), 51-57.
[http://dx.doi.org/10.1016/S0378-1097(02)01183-7] [PMID: 12583897]
[69]
Khoudoli, G.A.; Porter, I.M.; Blow, J.J.; Swedlow, J.R. Optimisation of the two-dimensional gel electrophoresis protocol using the Taguchi approach. Proteome Sci., 2004, 2(1), 6.
[http://dx.doi.org/10.1186/1477-5956-2-6] [PMID: 15357868]
[70]
Mousavi, S.; Yaghmaei, S.; Jafari, A.; Vossoughi, M.; Ghobadi, Z. Optimization of ferrous biooxidation rate in a packed bed bioreactor using Taguchi approach. Chem. Eng. Process., 2007, 46(10), 935-940.
[http://dx.doi.org/10.1016/j.cep.2007.06.010]
[71]
Tupe, S.G.; Rajwade, J.M.; Paknikar, K.M. Taguchi approach significantly increases bioremediation process efficiency: a case study with Hg (II) removal by Pseudomonas aeruginosa. Lett. Appl. Microbiol., 2007, 45(1), 36-41.
[http://dx.doi.org/10.1111/j.1472-765X.2007.02152.x] [PMID: 17594458]
[72]
Venkata Mohan, S.; Sirisha, K.; Sreenivasa Rao, R.; Sarma, P.N. Bioslurry phase remediation of chlorpyrifos contaminated soil: process evaluation and optimization by Taguchi design of experimental (DOE) methodology. Ecotoxicol. Environ. Saf., 2007, 68(2), 252-262.
[http://dx.doi.org/10.1016/j.ecoenv.2007.06.002] [PMID: 17640730]
[73]
Prakasham, R.S.; Subba Rao, Ch.; Sreenivas Rao, R.; Sarma, P.N. Enhancement of acid amylase production by an isolated Aspergillus awamori. J. Appl. Microbiol., 2007, 102(1), 204-211.
[http://dx.doi.org/10.1111/j.1365-2672.2006.03058.x] [PMID: 17184336]
[74]
Chung, C.; Chen, H.; Hsieh, P. Application of the Taguchi method to optimize Monascus spp. culture. J. Food Process Eng., 2007, 30(2), 241-254.
[http://dx.doi.org/10.1111/j.1745-4530.2007.00112.x]
[75]
Sirisansaneeyakul, S.; Luangpipat, T.; Vanichsriratana, W.; Srinophakun, T.; Chen, H.H-H.; Chisti, Y. Optimization of lactic acid production by immobilized Lactococcus lactis IO-1. J. Ind. Microbiol. Biotechnol., 2007, 34(5), 381-391.
[http://dx.doi.org/10.1007/s10295-007-0208-6] [PMID: 17318489]
[76]
Saudagar, P.S.; Singhal, R.S. Optimization of nutritional requirements and feeding strategies for clavulanic acid production by Streptomyces clavuligerus. Bioresour. Technol., 2007, 98(10), 2010-2017.
[http://dx.doi.org/10.1016/j.biortech.2006.08.003] [PMID: 17011778]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy