Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Letter Article

Enzyme-assisted Cyclization of Chalcones to Flavanones

Author(s): Mariana Macías Alonso*, Carlos José Boluda , Gabriela Díaz Barajas, Nallely Caldera Sánchez, Iván Córdova-Guerrero and Joaquín González Marrero*

Volume 17, Issue 12, 2020

Page: [926 - 931] Pages: 6

DOI: 10.2174/1570178617666200319115406

Price: $65

Abstract

Enzyme catalyzed synthesis is an eco-friendly technique in organic synthesis, having several benefits over conventional methods. In the present work, we describe a simple process of laccase and chloroperoxidase assisted cyclization of chalcones, leading to the formation of flavanones. The reaction proceeds in a mixture of phosphate buffer and ethanol, under oxygen atmosphere at room temperature, yielding the corresponding flavanone in good to moderate yield. The relative configuration of the products at C2 is tentatively assigned as S*-flavanone based on the coupling constants with the methylenic protons H3α,β. In comparison to the chemical methods, we describe a process which can be achieved efficiently under mild conditions using oxygen as oxidant.

Keywords: Enzyme, Laccase, Chloroperoxidase, chalcone, flavonoids, flavanone, mediator.

Graphical Abstract
[1]
Yang, B.; Liu, H.; Yang, J.; Gupta, V.K.; Jiang, Y. Trends Food Sci. Technol., 2018, 79, 116-124.
[http://dx.doi.org/10.1016/j.tifs.2018.07.006]
[2]
Rengasamy, K.R.R.; Khan, H.; Gowrishankar, S.; Lagoa, R.J.L.; Mahomoodally, F.M.; Khan, Z.; Suroowan, S.; Tewari, D.; Zengin, G.; Hassan, S.T.S.; Pandian, S.K. Pharmacol. Ther., 2019, 194, 107-131.
[http://dx.doi.org/10.1016/j.pharmthera.2018.09.009] [PMID: 30268770]
[3]
(a)Barreca, D.; Gattuso, G.; Bellocco, E.; Calderaro, A.; Trombetta, D.; Smeriglio, A.; Laganà, G.; Daglia, M.; Meneghini, S.; Nabavi, S.M. Biofactors, 2017, 43(4), 495-506.
[http://dx.doi.org/10.1002/biof.1363]
(b)Khan, M.K.; Huma, Z.E.; Dangles, O. J. Food Compos. Anal., 2014, 33, 85-104. PMID:28497905
[http://dx.doi.org/10.1016/j.jfca.2013.11.004]
[4]
Nibbs, A.E.; Scheidt, K.A. Eur. J. Org. Chem., 2012, 2012, 449-462.
[http://dx.doi.org/10.1002/ejoc.201101228]
[5]
(a)Martínez, M.R.; Medina, F.G.; Marrero, J.G.; Robles, S.O. RSC Advances, 2014, 4, 10627-10647.
(b)Itoh, T.; Hanefeld, U.F. Green Chem., 2017, 19, 331-332.
[http://dx.doi.org/10.1039/C3RA45146A] [http://dx.doi.org/10.1039/C6GC90124G]
[6]
Rocha-Martin, J.; Velasco-Lozano, S.; Guisán, J.M.; López-Gallego, F. Green Chem., 2014, 16, 303-311.
[http://dx.doi.org/10.1039/C3GC41456F]
[7]
(a)Mate, D.M.; Alcalde, M. Microb. Biotechnol., 2017, 10(6), 1457-1467.
[http://dx.doi.org/10.1111/1751-7915.12422]
(b)Wever, R.; Barnett, P. Chem. Asian J., 2017, 12(16), 1997-2007. PMID:27696775
[http://dx.doi.org/10.1002/asia.201700420]
(c)Burton, S.G. Trends Biotechnol., 2003, 21(12), 543-549. PMID:28569439
[http://dx.doi.org/10.1016/j.tibtech.2003.10.006] [PMID: 14624863]
[8]
(a)Marrero, J.G.; Moujir, L.; Andrés, L.S.; Montaño, N.P.; Araujo, L.; Luis, J.G. J. Nat. Prod., 2009, 72(8), 1385-1389.
[http://dx.doi.org/10.1021/np900047p]
(b)Miranda, L.D.; Marrero, J.G.; Bautista, E.; Ortega, A.; Maldonado, E. Tetrahedron Lett., 2009, 50, 633-635. PMID:19711987
(c)Mijangos, M.V.; González-Marrero, J.; Miranda, L.D.; Vincent-Ruz, P.; Lujan-Montelongo, A.; Olivera-Díaz, D.; Bautista, E.; Ortega, A.; de la Luz Campos-González, M.; Gamez-Montaño, R. Org. Biomol. Chem., 2012, 10(15), 2946-2949.
[http://dx.doi.org/10.1016/j.tetlet.2008.11.087] [http://dx.doi.org/10.1039/c2ob25249j]
dMarrero, J.G.; San Andrés, L.; Luis, J.G. J. Chem. Res., 2013, 37, 193-196. PMID:22395456
(e)Miranda, L.D.; Ávila, E.I.; Gómez, Á.R.; Pila, M.; Marrero, J.G. Eur. J. Org. Chem., 2015, 2015, 4098-4101.
[http://dx.doi.org/10.3184/174751913X13618945224197] [http://dx.doi.org/10.1002/ejoc.201500322]
[9]
Ritter, M.; Martins, R.M.; Rosa, S.A.; Malavolta, J.L. J. Braz. Chem. Soc., 2015, 26, 1201-1210.
[10]
(a)Hilgers, R.; Vincken, J.P.; Gruppen, H.; Kabel, M.A. ACS Sustain. Chem.& Eng., 2018, 6(2), 2037-2046.
[http://dx.doi.org/10.1021/acssuschemeng.7b03451]
(b)Cañas, A.I.; Camarero, S. Biotechnol. Adv., 2010, 28(6), 694-705. PMID:29430340
[http://dx.doi.org/10.1016/j.biotechadv.2010.05.002] [PMID: 20471466]
[11]
Zhu, C.; Zhang, Z.; Ding, W.; Xie, J.; Chen, Y.; Wu, J.; Chen, X.; Ying, H. Green Chem., 2014, 16, 1131-1138.
[http://dx.doi.org/10.1039/C3GC42124D]
[12]
Hammami, S.; Ben Jannet, H.; Bergaoui, A.; Ciavatta, L.; Cimino, G.; Mighri, Z. Molecules, 2004, 9(7), 602-608.
[http://dx.doi.org/10.3390/90700602] [PMID: 18007460]
[13]
Bourbonnais, R.; Paice, M.G.; Reid, I.D.; Lanthier, P.; Yaguchi, M. Appl. Environ. Microbiol., 1995, 61(5), 1876-1880.
[http://dx.doi.org/10.1128/AEM.61.5.1876-1880.1995] [PMID: 7646025]
[14]
(a)Yoo, H.S.; Son, S.H.; Cho, Y.Y.; Lee, S.J.; Jang, H.J.; Kim, Y.M.; Kim, D.H.; Kim, N.Y.; Park, B.Y.; Lee, Y.S.; Kim, N.J. J. Org. Chem., 2019, 84(16), 10012-10023.
[http://dx.doi.org/10.1021/acs.joc.9b01162]
(b)Lee, J.I.; Jung, M.G.B. Kor Chem. Soc, 2005, 26, 2044-2046. PMID:31322349
(c)Zheng, X.; Jiang, H.; Xie, J.; Yin, Z.; Zhang, H. Synth. Commun., 2013, 43, 1023-1029.
[http://dx.doi.org/10.5012/bkcs.2005.26.12.2044] [http://dx.doi.org/10.1080/00397911.2011.621096]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy