Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Organic Triads for Solar Cells Application: A Review

Author(s): Dorota Zając*, Jadwiga Sołoducho and Joanna Cabaj

Volume 24, Issue 6, 2020

Page: [658 - 672] Pages: 15

DOI: 10.2174/1385272824666200311151421

Price: $65

Abstract

The need to find alternative sources of energy and environmental protection has resulted in the significant development of organic photovoltaics. The synthesis of organic compounds that will ensure the efficiency of the cells has become a key issue. In this work, we present an overview of materials based on donor-linker-acceptor structural motifs, and summarize the current state of research which can help in the design of new, effective photovoltaic materials.

Keywords: Conjugated heterocyclic materials, organic semiconductor, triad motif (D-π-A), organic solar cells, cyanoacrylic acid, power conversion efficiency.

Graphical Abstract
[1]
Li, S.; Ye, L.; Zhao, W.; Zhang, S.; Mukherjee, S.; Ade, H.; Hou, J. Energy-level modulation of small-molecule electron acceptors to achieve over 12% efficiency in polymer solar cells. Adv. Mater., 2016, 28(42), 9423-9429.
[http://dx.doi.org/10.1002/adma.201602776] [PMID: 27606970]
[2]
Zhao, W.; Li, S.; Yao, H.; Zhang, S.; Zhang, Y.; Yang, B.; Hou, J. Molecular optimization enables over 13% efficiency in organic solar cells. J. Am. Chem. Soc., 2017, 139(21), 7148-7151.
[http://dx.doi.org/10.1021/jacs.7b02677] [PMID: 28513158]
[3]
Zhao, F.; Dai, S.; Wu, Y.; Zhang, Q.; Wang, J.; Jiang, L.; Ling, Q.; Wei, Z.; Ma, W.; You, W.; Wang, C.; Zhan, X. Single-junction binary-blend nonfullerene polymer solar cells with 12.1% efficiency. Adv. Mater., 2017, 29(18), 1700144
[http://dx.doi.org/10.1002/adma.201700144] [PMID: 28295734]
[4]
Cui, Y.; Yao, H.; Zhang, T.; Hong, L.; Gao, B.; Xian, K.; Qin, J.; Hou, J. 1 cm2 Organic photovoltaic cells for indoor application with over 20% efficiency. Adv. Mater., 2019, 31(42), e1904512
[http://dx.doi.org/10.1002/adma.201904512] [PMID: 31490601]
[5]
Hong, L.; Yao, H.; Wu, Z.; Cui, Y.; Zhang, T.; Xu, Y.; Yu, R.; Liao, Q.; Gao, B.; Xian, K.; Woo, H.Y.; Ge, Z.; Hou, J. Eco-compatible solvent-processed organic photovoltaic cells with over 16% efficiency. Adv. Mater., 2019, 31(39), e1903441
[http://dx.doi.org/10.1002/adma.201903441] [PMID: 31392768]
[6]
Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H.L.; Lau, T.K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P.A.; Leclerc, M.; Cao, Y.; Ulanski, J.; Li, Y.; Zou, Y. Single-junction organic solar cell withover 15% efficiency using fused-ring acceptor with electron-deficient core. Joule, 2019, 3(4), 1140-1151.
[http://dx.doi.org/10.1016/j.joule.2019.01.004]
[7]
Cui, Y.; Yao, H.; Zhang, J.; Zhang, T.; Wang, Y.; Hong, L.; Xian, K.; Xu, B.; Zhang, S.; Peng, J.; Wei, Z.; Gao, F.; Hou, J. Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages. Nat. Commun., 2019, 10(1), 2515.
[http://dx.doi.org/10.1038/s41467-019-10351-5] [PMID: 31175276]
[8]
Firdaus, Y.; Le Corre, V.M.; Khan, J.I.; Kan, Z.; Laquai, F.; Beaujuge, P.M.; Anthopoulos, T.D. Key parameters requirements for non-fullerene-based organic solar cells with power conversion efficiency >20. Adv. Sci. (Weinh.), 2019, 6(9), 1802028
[http://dx.doi.org/10.1002/advs.201802028] [PMID: 31065524]
[9]
Kan, B.; Feng, H.; Yao, H.; Chang, M.; Wan, X.; Li, C.; Hou, J.; Chen, Y.A. Chlorinated low-bandgap small-molecule acceptor for organic solar cells with 14.1% efficiency and low energy loss. Sci. China Chem., 2018, 61, 1307-1313.
[http://dx.doi.org/10.1007/s11426-018-9334-9]
[10]
Meng, L.; Zhang, Y.; Wan, X.; Li, C.; Zhang, X.; Wang, Y.; Ke, X.; Xiao, Z.; Ding, L.; Xia, R.; Yip, H.L.; Cao, Y.; Chen, Y. Organic and solution-processed tandem solar cells with 17.3% efficiency. Science, 2018, 361(6407), 1094-1098.
[http://dx.doi.org/10.1126/science.aat2612] [PMID: 30093603]
[11]
Yao, H.; Cui, Y.; Qian, D.; Ponseca, C.S., Jr; Honarfar, A.; Xu, Y.; Xin, J.; Chen, Z.; Hong, L.; Gao, B.; Yu, R.; Zu, Y.; Ma, W.; Chabera, P.; Pullerits, T.; Yartsev, A.; Gao, F.; Hou, J. 14.7% Efficiency organic photovoltaic cells enabled by active materials with a large electrostatic potential difference. J. Am. Chem. Soc., 2019, 141(19), 7743-7750.
[http://dx.doi.org/10.1021/jacs.8b12937] [PMID: 31017418]
[12]
Li, S.; Ye, L.; Zhao, W.; Yan, H.; Yang, B.; Liu, D.; Li, W.; Ade, H.; Hou, J. A wide band gap polymer with a deep highest occupied molecular orbital level enables 14.2% efficiency in polymer solar cells. J. Am. Chem. Soc., 2018, 140(23), 7159-7167.
[http://dx.doi.org/10.1021/jacs.8b02695] [PMID: 29737160]
[13]
Kumavat, P.P.; Sonar, P.; Dalal, D.S. An overview on basics of organic and dye sensitized solar cells, their mechanism and recent improvements. Renew. Sustain. Energy Rev., 2017, 78, 1262-1287.
[http://dx.doi.org/10.1016/j.rser.2017.05.011]
[14]
Guo, X.; Zhou, N.; Lou, S.J.; Smith, J.; Tice, D.B.; Hennek, J.W.; Ortiz, R.P.; López Navarrete, J.T.; Li, S.; Strzalka, J.; Chen, L.X.; Chang, R.P.H.; Facchetti, A.; Marks, T.J. Polymer solar cells with enhanced fill factors. Nat. Photonics, 2013, 7, 825-833.
[http://dx.doi.org/10.1038/nphoton.2013.207]
[15]
Brebels, J.; Manca, J.V.; Lutsen, L.; Vanderzandeac, D.; Maes, W. High dielectric constant conjugated materials for organic photovoltaics. J. Mater. Chem. A Mater. Energy Sustain., 2017, 5, 24037-24050.
[http://dx.doi.org/10.1039/C7TA06808E]
[16]
Vandewal, K.; Tvingstedt, K.; Gadisa, A.; Inganäs, O.; Manca, J.V. Relating the open-circuit voltage to interface molecular properties of donor: acceptor bulk heterojunction solar cells. Phys. Rev. B Condens. Matter Mater. Phys., 2010, 81(12), 125204
[http://dx.doi.org/10.1103/PhysRevB.81.125204]
[17]
Simokaitienea, J.; Cekaviciutea, M.; Volyniuka, D.; Sinib, G.; Vozc, C.; Puigdollersc, J.; Bucinskasa, A.; Grazuleviciusa, J.V. Satisfying both interfacial- and bulk requirements for organic photovoltaics: bridged-triphenylamines with extended π-conjugated systems as efficient new molecules. Org. Electron., 2019, 73, 137-145.
[http://dx.doi.org/10.1016/j.orgel.2019.05.053]
[18]
Arooj, Q.; Wang, F. Switching on optical properties of D-π-A DSSC sensitizers from π-spacers towards machine learning. Sol. Energy, 2019, 188, 1189-1200.
[http://dx.doi.org/10.1016/j.solener.2019.06.044]
[19]
Liu, Z.; Li, W.; Topa, S.; Xu, X.; Zeng, X.; Zhao, Z.; Wang, M.; Chen, W.; Wang, F.; Cheng, Y.B.; He, H. Fine tuning of fluorene-based dye structures for high-efficiency p-type dye-sensitized solar cells. ACS Appl. Mater. Interfaces, 2014, 6(13), 10614-10622.
[http://dx.doi.org/10.1021/am5022396] [PMID: 24918263]
[20]
Zhang, Y.; Mascarenhas, A. Scaling of exciton binding energy and virial theorem in semiconductor quantum wells and wires. Phys. Rev. B Condens. Matter Mater. Phys., 1999, 59, 2040-2044.
[http://dx.doi.org/10.1103/PhysRevB.59.2040]
[21]
Lei, T.; Xia, X.; Wang, J.Y.; Liu, C.J.; Pei, J. “Conformation locked” strong electron-deficient poly(p-phenylene vinylene) derivatives for ambient-stable n-type field-effect transistors: synthesis, properties, and effects of fluorine substitution position. J. Am. Chem. Soc., 2014, 136(5), 2135-2141.
[http://dx.doi.org/10.1021/ja412533d] [PMID: 24422749]
[22]
Lei, T.; Dou, J.H.; Cao, X.Y.; Wang, J.Y.; Pei, J. Electron-deficient poly(p-phenylene vinylene) provides electron mobility over 1 cm2 V(-1) s(-1) under ambient conditions. J. Am. Chem. Soc., 2013, 135(33), 12168-12171.
[http://dx.doi.org/10.1021/ja403624a] [PMID: 23675890]
[23]
Capelli, R.; Toffanin, S.; Generali, G.; Usta, H.; Facchetti, A.; Muccini, M. Organic light-emitting transistors with an efficiency that outperforms the equivalent light-emitting diodes. Nat. Mater., 2010, 9(6), 496-503.
[http://dx.doi.org/10.1038/nmat2751] [PMID: 20436466]
[24]
Li, X.; Hu, Y.; Sanchez-Molina, I.; Zhou, Y.; Yu, F.; Haque, S.A.; Wu, W.; Hua, J.; Tiana, H.; Robertson, N. Insight into quinoxaline containing D-π-A dyes for dye-sensitized solar cells with cobalt and iodine based electrolytes: the effect of p-bridge on the HOMO energy level and photovoltaic performance. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3, 21733-21743.
[http://dx.doi.org/10.1039/C5TA07254A]
[25]
Sorohhov, G.; Yi, C.; Grätzel, M.; Decurtins, S.; Liu, S.X. A hybrid electron donor comprising cyclopentadithiophene and dithiafulvenyl for dye-sensitized solar cells. Beilstein J. Org. Chem., 2015, 11, 1052-1059.
[http://dx.doi.org/10.3762/bjoc.11.118] [PMID: 26199660]
[26]
Paramasivam, M.; Chitumalla, R.K.; Singh, S.P.; Islam, A.; Han, L.; Rao, V.J.; Bhanuprakash, K. Tuning the photovoltaic performance of benzocarbazole-based sensitizers for dye-sensitized solar cells: a joint experimental and theoretical study of the influence of π spacers. J. Phys. Chem. C, 2015, 119, 17053-17064.
[http://dx.doi.org/10.1021/acs.jpcc.5b04629]
[27]
Zhang, L.; Cole, J.M. Anchoring groups for dye-sensitized solar cells. ACS Appl. Mater. Interfaces, 2015, 7(6), 3427-3455.
[http://dx.doi.org/10.1021/am507334m] [PMID: 25594514]
[28]
Zhou, G.; Pschirer, N.; Schöneboom, J.C.; Eickemeyer, F.; Baumgarten, M.; Müllen, K. Ladder-type pentaphenylene dyes for dye-sensitized solar Cells. Chem. Mater., 2008, 20, 1808-1815.
[http://dx.doi.org/10.1021/cm703459p]
[29]
Liu, L.; Eisenbrandt, P.; Roland, T.; Polkehn, M.; Schwartz, P-O.; Bruchlos, K.; Omiecienski, B.; Ludwigs, S.; Leclerc, N.; Zaborova, E.; Léonard, J.; Méry, S.; Burghardt, I.; Haacke, S. Controlling charge separation and recombination by chemical design in donor-acceptor dyads. Phys. Chem. Chem. Phys., 2016, 18(27), 18536-18548.
[http://dx.doi.org/10.1039/C6CP00644B] [PMID: 27341086]
[30]
Xiao, S.; Li, Y.; Li, Y.; Zhuang, J.; Wang, N.; Liu, H.; Ning, B.; Liu, Y.; Lu, F.; Fan, L.; Yang, C.; Li, Y.; Zhu, D. [60]Fullerene-based molecular triads with expanded absorptions in the visible region: synthesis and photovoltaic properties. J. Phys. Chem. B, 2004, 108, 16677-16685.
[http://dx.doi.org/10.1021/jp0478413]
[31]
Sforazzini, G.; Orentas, E.; Bolag, A.; Sakai, N.; Matile, S. Toward oriented surface architectures with three coaxial charge-transporting pathways. J. Am. Chem. Soc., 2013, 135(32), 12082-12090.
[http://dx.doi.org/10.1021/ja405776a] [PMID: 23906313]
[32]
Gupta, A.; Kelson, M.M.A.; Armel, V.; Xiang, W.A.; Bilic, A.; Bhosale, S.V. Novel organic sensitizer based on directly linked oligothiophenes to donor nitrogen atom for efficient dye-sensitized solar cells. Synth. Met., 2014, 193, 102-109.
[http://dx.doi.org/10.1016/j.synthmet.2014.04.005]
[33]
Duan, T.; Fan, K.; Zhong, C.; Chen, X.; Peng, T.; Qin, J. A new class of organic dyes containing b-substituted 2, 20-bithiophenene unit as a π-linker for dye sensitized solar cells: structural modification for understanding relationship of structure and photovoltaic performances. J. Power Sources, 2013, 234, 23-30.
[http://dx.doi.org/10.1016/j.jpowsour.2013.01.127]
[34]
Kim, S.; Lee, J.K.; Kang, S.O.; Ko, J.; Yum, J.H.; Fantacci, S.; De Angelis, F.; Di Censo, D.; Nazeeruddin, M.K.; Grätzel, M. Molecular engineering of organic sensitizers for solar cell applications. J. Am. Chem. Soc., 2006, 128(51), 16701-16707.
[http://dx.doi.org/10.1021/ja066376f] [PMID: 17177420]
[35]
Zhang, G.; Bala, H.; Cheng, Y.; Shi, D.; Lv, X.; Yu, Q.; Wang, P. High efficiency and stable dye-sensitized solar cells with an organic chromophore featuring a binary π-conjugated spacer. Chem. Commun. (Camb.), 2009, (16), 2198-2200.
[http://dx.doi.org/10.1039/b822325d] [PMID: 19360192]
[36]
Zhang, G.; Bai, Y.; Li, R.; Shi, D.; Wenger, S.; Zakeeruddin, S.M.; Gratzel, M.; Wang, P. Employ a bisthienothiophene linker to construct an organic chromophore for efficient and stable dye-sensitized solar cells. Energy Environ. Sci., 2009, 2, 92-95.
[http://dx.doi.org/10.1039/B817990E]
[37]
Lee, M.W.; Kim, J.Y.; Lee, D.H.; Ko, M.J. Novel D-π-A organic dyes with thieno[3,2-b]thiophene-3,4-ethylenedioxythiophene unit as a π-bridge for highly efficient dye-sensitized solar cells with long-term stability. ACS Appl. Mater. Interfaces, 2014, 6(6), 4102-4108.
[http://dx.doi.org/10.1021/am405686z] [PMID: 24559244]
[38]
Xiang, W.; Gupta, A.; Kashif, M.K.; Duffy, N.; Bilic, A.; Evans, R.A.; Spiccia, L.; Bach, U. Cyanomethylbenzoic acid: an acceptor for donor-π-acceptor chromophores used in dye-sensitized solar cells. ChemSusChem, 2013, 6(2), 256-260.
[http://dx.doi.org/10.1002/cssc.201200636] [PMID: 23345047]
[39]
Perera, I.R.; Gupta, A.; Xiang, W.; Daeneke, T.; Bach, U.; Evans, R.A.; Ohlin, C.A.; Spiccia, L. Introducing manganese complexes as redox mediators for dye-sensitized solar cells. Phys. Chem. Chem. Phys., 2014, 16(24), 12021-12028.
[http://dx.doi.org/10.1039/c3cp54894e] [PMID: 24394772]
[40]
Fan, G.; Yang, L.; Chen, Z. Water-soluble BODIPY and aza-BODIPY dyes: synthetic progress and applications. Front. Chem. Sci. Eng., 2014, 8(4), 405-417.
[http://dx.doi.org/10.1007/s11705-014-1445-7]
[41]
Loudet, A.; Burgess, K. BODIPY dyes and their derivatives: syntheses and spectroscopic properties. Chem. Rev., 2007, 107(11), 4891-4932.
[http://dx.doi.org/10.1021/cr078381n] [PMID: 17924696]
[42]
El-Khouly, M.E.; Fukuzumi, S.; D’Souza, F. Photosynthetic antenna-reaction center mimicry by using boron dipyrromethene sensitizers. ChemPhysChem, 2014, 15(1), 30-47.
[http://dx.doi.org/10.1002/cphc.201300715] [PMID: 24243758]
[43]
Aguiar, A.; Farinhas, J.; Silva, W.; Ghica, M.E.; Brett, C.M.A.; Morgado, J.; Sobral, A.J.F.N. Synthesis, characterization and application of meso-substituted fluorinated boron dipyrromethenes (BODIPYs) with different styryl groups in organic photovoltaic cells. Dyes Pigm., 2019, 168, 103-110.
[http://dx.doi.org/10.1016/j.dyepig.2019.04.031]
[44]
Chen, Y.; Wan, L.; Zhang, D.; Bian, Y.; Jiang, J. Modulation of the spectroscopic property of Bodipy derivates through tuning the molecular configuration. Photochem. Photobiol. Sci., 2011, 10(6), 1030-1038.
[http://dx.doi.org/10.1039/c1pp00001b] [PMID: 21384046]
[45]
Umezawa, K.; Nakamura, Y.; Makino, H.; Citterio, D.; Suzuki, K. Bright, color-tunable fluorescent dyes in the visible-near-infrared region. J. Am. Chem. Soc., 2008, 130(5), 1550-1551.
[http://dx.doi.org/10.1021/ja077756j] [PMID: 18193873]
[46]
Kamkaew, A.; Lim, S.H.; Lee, H.B.; Kiew, L.V.; Chung, L.Y.; Burgess, K. BODIPY dyes in photodynamic therapy. Chem. Soc. Rev., 2013, 42(1), 77-88.
[http://dx.doi.org/10.1039/C2CS35216H] [PMID: 23014776]
[47]
Awuah, S.G.; You, Y. Boron dipyrromethene (BODIPY)-based photosensitizers for photodynamic therapy. RSC Advances, 2012, 2, 11169-11183.
[http://dx.doi.org/10.1039/c2ra21404k]
[48]
Ulrich, G.; Ziessel, R.; Harriman, A. The chemistry of fluorescent bodipy dyes: versatility unsurpassed. Angew. Chem. Int. Ed. Engl., 2008, 47(7), 1184-1201.
[http://dx.doi.org/10.1002/anie.200702070] [PMID: 18092309]
[49]
Engelhardt, V.; Khuri, S.; Fleischhauer, J.; Garcia-Iglesias, M.; Gonzalez-Rodriguez, D.; Bottari, G.; Torres, T.; Guldi, D.M.; Faust, R. Light-harvesting with panchromatically absorbing BODIPY-porphyrazine conjugates to power electron transfer in supramolecular donor-acceptor ensembles. Chem. Sci. (Camb.), 2013, 4, 3888-3892.
[http://dx.doi.org/10.1039/c3sc51622a]
[50]
Obondi, C.O.; Lim, G.N.; Karr, P.A.; Nesterov, V.N.; D’Souza, F. Photoinduced charge separation in wide-band capturing, multi-modular bis(donor styryl)BODIPY-fullerene systems. Phys. Chem. Chem. Phys., 2016, 18(27), 18187-18200.
[http://dx.doi.org/10.1039/C6CP03479A] [PMID: 27333163]
[51]
Jadhav, T.; Misra, R.; Biswas, S.; Sharma, G.D. Bulk heterojunction organic solar cells based on carbazole-BODIPY conjugate small molecules as donors with high open circuit voltage. Phys. Chem. Chem. Phys., 2015, 17(40), 26580-26588.
[http://dx.doi.org/10.1039/C5CP04807A] [PMID: 26394373]
[52]
Bulut, I.; Huaulmé, Q.; Mirloup, A.; Chávez, P.; Fall, S.; Hébraud, A.; Méry, S.; Heinrich, B.; Heiser, T.; Lévêque, P.; Leclerc, N. Rational engineering of BODIPY-bridged trisindole derivatives for solar cell applications. ChemSusChem, 2017, 10(9), 1878-1882.
[http://dx.doi.org/10.1002/cssc.201700465] [PMID: 28326678]
[53]
Klfout, H.; Stewart, A.; Elkhalifa, M.; He, H. BODIPYs for dye-sensitized solar cells. ACS Appl. Mater. Interfaces, 2017, 9(46), 39873-39889.
[http://dx.doi.org/10.1021/acsami.7b07688] [PMID: 29072443]
[54]
Ziessel, R.; Ulrich, G.; Harriman, A. The chemistry of BODIPY: a new El Dorado for fluorescence tools. New J. Chem., 2007, 31(4), 496-501.
[http://dx.doi.org/10.1039/b617972j]
[55]
Xiao, L.; Wang, H.; Gao, K.; Li, L.; Liu, C.; Peng, X.; Wong, W.Y.; Wong, W.K.; Zhu, X. A-D-A type small molecules based on boron dipyrromethene for solution processed organic solar cells. Chem. Asian J., 2015, 10(7), 1513-1518.
[http://dx.doi.org/10.1002/asia.201500382] [PMID: 25955792]
[56]
Ni, Y.; Zeng, L.; Kang, N.Y.; Huang, K.W.; Wang, L.; Zeng, Z.; Chang, Y.T.; Wu, J. meso-Ester and carboxylic acid substituted BODIPYs with far-red and near-infrared emission for bioimaging applications. Chemistry, 2014, 20(8), 2301-2310.
[http://dx.doi.org/10.1002/chem.201303868] [PMID: 24515608]
[57]
Swavey, S.; Quinn, J.; Coladipietro, M.; Cox, K.G.; Brennaman, M.K. Tuning the photophysical properties of BODIPY dyes through extended aromatic pyrroles. RSC Advances, 2017, 7(1), 173-179.
[http://dx.doi.org/10.1039/C6RA26331C]
[58]
Liao, J.; Zhao, H.; Xu, Y.; Cai, Z.; Peng, Z.; Zhang, W.; Zhou, W.; Li, B.; Zong, Q.; Yang, X. Novel D-A-D type dyes based on BODIPY platform for solution processed organic solar cells. Dyes Pigm., 2016, 128(1), 131-140.
[http://dx.doi.org/10.1016/j.dyepig.2016.01.020]
[59]
Rousseau, T.; Cravino, A.; Ripaud, E.; Leriche, P.; Rihn, S.; De Nicola, A.; Ziessel, R.; Roncali, J. A tailored hybrid BODIPY-oligothiophene donor for molecular bulk heterojunction solar cells with improved performances. Chem. Commun. (Camb.), 2010, 46(28), 5082-5084.
[http://dx.doi.org/10.1039/c0cc01144d] [PMID: 20559594]
[60]
Rousseau, T.; Cravino, A.; Bura, T.; Ulrich, G.; Ziessel, R.; Roncali, J. BODIPY derivatives as donor materials for bulk heterojunction solar cells. Chem. Commun. (Camb.), 2009, 13(13), 1673-1675.
[http://dx.doi.org/10.1039/b822770e] [PMID: 19294258]
[61]
Lin, H-Y.; Huang, W-C.; Chen, Y-C.; Chou, H-H.; Hsu, C-Y.; Lin, J.T.; Lin, H-W. BODIPY dyes with β-conjugation and their applications for high-efficiency inverted small molecule solar cells. Chem. Commun. (Camb.), 2012, 48(71), 8913-8915.
[http://dx.doi.org/10.1039/c2cc34286c] [PMID: 22842497]
[62]
Chen, J.J.; Conron, S.M.; Erwin, P.; Dimitriou, M.; McAlahney, K.; Thompson, M.E. High-efficiency BODIPY-based organic photovoltaics. ACS Appl. Mater. Interfaces, 2015, 7(1), 662-669.
[http://dx.doi.org/10.1021/am506874k] [PMID: 25496538]
[63]
Liu, W.; Yao, J.; Zhan, C. Performance enhancement of BODIPY dimer-based small-molecule solar cells using a visible-photon-capturing diketopyrrolopyrrole [small pi]-bridge. RSC Advances, 2015, 5(91), 74238-74241.
[http://dx.doi.org/10.1039/C5RA16725F]
[64]
Baran, D.; Tuladhar, S.; Economopoulos, S.P.; Neophytou, M.; Savva, A.; Itskos, G.; Othonos, A.; Bradley, D.D.C.; Brabec, C.J.; Nelson, J.; Choulis, S.A. Photovoltaic limitations of BODIPY: fullerene based bulk heterojunction solar cells. Synth. Met., 2017, 226(1), 25-30.
[http://dx.doi.org/10.1016/j.synthmet.2017.01.006]
[65]
Li, T.; Benduhn, J.; Li, Y.; Jaiser, F.; Spoltore, D.; Zeika, O.; Ma, Z.; Neher, D.; Vandewal, K.; Leo, K. Boron dipyrromethene (BODIPY) with meso-perfluorinated alkyl substituents as near infrared donors in organic solar cells. J. Mater. Chem., 2018, 6(38), 18583-18591.
[http://dx.doi.org/10.1039/C8TA06261G]
[66]
Bucher, L.; Desbois, N.; Harvey, P.D.; Gros, C.P.; Sharma, G.D. Porphyrin antenna-enriched BODIPY−thiophene copolymer for efficient solar cells. ACS Appl. Mater. Interfaces, 2018, 10, 992-1004.
[67]
Wanwong, S.; Sangkhun, W.; Wootthikanokkhan, J. The effect of co-sensitization methods between N719 and boron dipyrromethene triads on dye-sensitized solar cell performance. RSC Advances, 2018, 8, 9202-9210.
[http://dx.doi.org/10.1039/C8RA00862K]
[68]
Singh, S.P.; Gayathri, T. Evolution of BODIPY dyes as potential sensitizers for dye‐sensitized solar cells. Eur. J. Org. Chem., 2014, 2014(22), 4689-4707.
[http://dx.doi.org/10.1002/ejoc.201400093]
[69]
Lu, H.; Mack, J.; Yang, Y.; Shen, Z. Structural modification strategies for the rational design of red/NIR region BODIPYs. Chem. Soc. Rev., 2014, 43(13), 4778-4823.
[http://dx.doi.org/10.1039/C4CS00030G] [PMID: 24733589]
[70]
Buenea, A.F.; Hagfeldtb, A.; Hof, B.H. A comprehensive experimental study of five fundamental phenothiazine geometries increasing the diversity of the phenothiazine dye class for dye-sensitized solar cells. Dyes Pigm., 2019, 169, 66-72.
[http://dx.doi.org/10.1016/j.dyepig.2019.05.007]
[71]
Rostamia, Z.; Saedib, L.; Beheshtic, K.S.; Vahabid, V.; Ostadhosseini, N. Design of a novel series of small molecule donors for application in organic solar cells. Sol. Energy, 2019, 186, 72-83.
[http://dx.doi.org/10.1016/j.solener.2019.04.080]
[72]
Damaceanu, M.D.; Constantin, C.P.; Bejan, A.E.; Mihaila, M.; Kusko, M.; Diaconuc, C.; Mihalache, I.; Pascu, R. Heteroatom-mediated performance of dye-sensitized solar cells based on T-shaped molecules. Dyes Pigm., 2019, 166, 15-31.
[http://dx.doi.org/10.1016/j.dyepig.2019.02.055]
[73]
Formo, A.; Boholm, B.N.; Hagfeldt, A.; Hoff, B.H. Effect of furan p-spacer and triethylene oxidemethyl ether substituents on performance of phenothiazine sensitizers in dye-sensitized solar cells. J. Chem., 2019, 43, 9403-9410.
[74]
Buene, A.F.; Ose, E.E.; Zakariassen, A.G.; Bard, A.H.; Hoff, H. Auxiliary donors for phenothiazine sensitizers for dye-sensitized solar cells-how important are they really? J. Mater. Chem. A Mater. Energy Sustain., 2019, 7(13), 7581-7590.
[http://dx.doi.org/10.1039/C9TA00472F]
[75]
Huang, S.; Meier, H.; Cao, D. Phenothiazine-based dyes for efficient dye-sensitized solar cells. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2016, 4, 2404-2426.
[http://dx.doi.org/10.1039/C5TC04418A]
[76]
Lin, R.Y-Y.; Wu, F-L.; Li, C-T.; Chen, P-Y.; Ho, K-C.; Lin, J.T. High-performance aqueous/organic dye-sensitized solar cells based on sensitizers containing triethylene oxide methyl ether. ChemSusChem, 2015, 8(15), 2503-2513.
[http://dx.doi.org/10.1002/cssc.201500589] [PMID: 26098636]
[77]
Tian, H.; Yang, X.; Chen, R.; Pan, Y.; Li, L.; Hagfeldt, A.; Sun, L. Phenothiazine derivatives for efficient organic dye-sensitized solar cells. Chem. Commun. (Camb.), 2007, 36(36), 3741-3743.
[http://dx.doi.org/10.1039/b707485a] [PMID: 17851613]
[78]
Lu, J.; Zhu, S.; Su, H.; Liu, R.; Li, Y.; Zhu, H. Synthesis, luminescence and excited state absorption properties of conjugated D-π-A and D-π-D phenothiazine compounds. J. Lumin., 2019, 205, 158-166.
[http://dx.doi.org/10.1016/j.jlumin.2018.09.001]
[79]
Kim, S.H.; Kim, H.W.; Sakong, C.; Namgoong, J.; Park, S.W.; Ko, M.J.; Lee, C.H.; Lee, W.I.; Kim, J.P. Effect of five-membered heteroaromatic linkers to the performance of phenothiazine-based dye-sensitized solar cells. Org. Lett., 2011, 13(21), 5784-5787.
[http://dx.doi.org/10.1021/ol2023517] [PMID: 21970651]
[80]
Iqbal, Z.; Wu, W.Q.; Huang, Z.S.; Wang, L.; Kuang, D.B.; Meier, H.; Cao, D. Trilateral π-conjugation extensions of phenothiazine based dyes enhance the photovoltaic performance of the dye-sensitized solar cells. Dyes Pigm., 2016, 124, 63-71.
[http://dx.doi.org/10.1016/j.dyepig.2015.09.001]
[81]
Yang, C.J.; Chang, Y.J.; Watanabe, M.; Hon, Y.S.; Chow, T.J. Phenothiazine derivatives as organic sensitizers for highly efficient dye-sensitized solar cells. J. Mater. Chem., 2012, 22, 4040-4049.
[http://dx.doi.org/10.1039/c2jm13961h]
[82]
Hua, Y.; Chang, S.; Huang, D.; Zhou, X.; Zhu, X.; Zhao, J.; Chen, T.; Wong, W.Y.; Wong, W.K. Significant improvement of dye-sensitized solar cell performance using simple phenothiazine-based dyes. Chem. Mater., 2013, 25, 2146-2153.
[http://dx.doi.org/10.1021/cm400800h]
[83]
Zhang, X.; Gou, F.; Zhao, D.; Shi, J.; Gao, H.; Zhu, Z.; Jing, H. π-Spacer effect in dithiafulvenyl-π-phenothiazine dyes for dye-sensitized solar cells. J. Power Sources, 2016, 324, 484-491.
[http://dx.doi.org/10.1016/j.jpowsour.2016.05.120]
[84]
Onoabedje, E.A.; Egu, S.A.; Ezeokonkwo, M.A.; Okoro, U.C. Highlights of molecular structures and applications of phenothiazine & phenoxazine polycycles. J. Mol. Struct., 2019, 1175, 956-962.
[http://dx.doi.org/10.1016/j.molstruc.2018.08.064]
[85]
Revoju, S.; Biswas, S.; Eliasson, B.; Sharma, G.D. Phenothiazine-based small molecules for bulk heterojunction organic solar cells; variation of side-chain polarity and length of conjugated system. Org. Electron., 2019, 65, 232-242.
[http://dx.doi.org/10.1016/j.orgel.2018.11.024]
[86]
Schwarz, K.N.; Geraghty, P.B.; Jones, D.J.; Smith, T.A.; Ghiggino, K.P. Suppressing subnanosecond bimolecular charge recombination in a high-performance organic photovoltaic material. J. Phys. Chem. C, 2016, 120, 24002-24010.
[http://dx.doi.org/10.1021/acs.jpcc.6b08354]
[87]
Zhang, C.; Wang, S.; Li, Y. Phenothiazine organic dyes containing dithieno[3,2-b:20,30-d]pyrrole (DTP) units for dye-sensitized solar cells. Sol. Energy, 2017, 157, 94-102.
[http://dx.doi.org/10.1016/j.solener.2017.08.012]
[88]
Karuppasamy, A.; Stalindurai, K.; Peng, J.D.; Ho, K.C.; Ramalingan, C. Organic dyes festooned with fluorene and fused thiazine for efficient dye-sensitized solar cells. Electrochim. Acta, 2018, 268, 347-357.
[http://dx.doi.org/10.1016/j.electacta.2018.02.134]
[89]
Zhang, M.M.; Yang, W.; Li, K.; Zhou, W.Q.; Gong, T.F.; Xue, R.Y. Mater. Chem. Phys., 2018, 204, 37-47.
[http://dx.doi.org/10.1016/j.matchemphys.2017.10.030]
[90]
Bi, D.; Tress, W.; Dar, M.I.; Gao, P.; Luo, J.; Renevier, C.; Schenk, K.; Abate, A.; Giordano, F.; Correa Baena, J.P.; Decoppet, J.D.; Zakeeruddin, S.M.; Nazeeruddin, M.K.; Grätzel, M.; Hagfeldt, A. Efficient luminescent solar cells based on tailored mixed-cation perovskites. Sci. Adv., 2016, 2(1), e1501170
[http://dx.doi.org/10.1126/sciadv.1501170] [PMID: 26767196]
[91]
Chen, S.; Jia, H.; Zheng, M.; Shen, K.; Zheng, H. Insight into the effects of modifying π-bridges on the performance of dye-sensitized solar cells containing triphenylamine dyes. Phys. Chem. Chem. Phys., 2016, 18(42), 29555-29560.
[http://dx.doi.org/10.1039/C6CP05173A] [PMID: 27748484]
[92]
Beni, A.R.S.; Karami, M.; Hosseinzadeh, B.; Ghahary, R. New organic dyes with diphenylamine core for dye-sensitized solar cells. J. Mater. Sci. Mater. Electron., 2018, 29, 6323-6336.
[http://dx.doi.org/10.1007/s10854-018-8612-4]
[93]
Saritha, G.; Mangalaraja, R.V.; Anandan, S. High-efficiency dye-sensitized solar cells fabricated using D-D-π-A (donor-donor/π spacer-acceptor) architecture. Sol. Energy, 2017, 146, 150-160.
[http://dx.doi.org/10.1016/j.solener.2017.02.046]
[94]
Pati, P.B.; Yang, W.; Zade, S.S. New dyes for DSSC containing triphenylamine based extended donor: Synthesis, photophysical properties and device performance. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2017, 178, 106-113.
[http://dx.doi.org/10.1016/j.saa.2017.01.048] [PMID: 28171814]
[95]
Weidelener, M.; Mishra, A.; Nattestad, A.; Powar, S.; Mozer, A.J.; Mena-Osteritz, E.; Cheng, Y.B.; Bach, U.; Bauerle, P. Synthesis and characterization of perylene-bithiophene-triphenylamine triads: studies on the effect of alkyl-substitution in π-type NiO based photocathodes. J. Mater. Chem., 2012, 22, 7366-7379.
[http://dx.doi.org/10.1039/c2jm16847b]
[96]
Yan, T.; Bin, H.; Sun, C.; Zhang, Z.G.; Li, Y. Effect of thieno[3,2-b]thiophene π-bridge on photovoltaic performance of a D-A copolymer of alkoxy-benzodithiophene-alt-fluoro-benzotriazole. Org. Electron., 2018, 55, 106-111.
[http://dx.doi.org/10.1016/j.orgel.2018.01.018]
[97]
Velusamy, M.; Justin Thomas, K.R.; Lin, J.T.; Hsu, Y.C.; Ho, K.C. Organic dyes incorporating low-band-gap chromophores for dye-sensitized solar cells. Org. Lett., 2005, 7(10), 1899-1902.
[http://dx.doi.org/10.1021/ol050417f] [PMID: 15876014]
[98]
Qu, J.; Gao, B.; Tian, H.; Zhang, X.; Wang, Y.; Xie, Z.; Wang, H.; Geng, Y.; Wang, F. Donor-spacer-acceptor monodisperse conjugated co-oligomers for efficient single-molecule photovoltaic cells based on non-fullerene acceptors. J. Mater. Chem. A Mater. Energy Sustain., 2014, 2, 3632-3640.
[http://dx.doi.org/10.1039/c3ta14701k]
[99]
K, L.; Liu S., H.; Chou, P. T.; Chi, Y. Donor-acceptor dyes with fluorine substituted phenylene spacer for dye-sensitized solar cells. J. Mater. Chem., 2011, 21, 1937-1945.
[http://dx.doi.org/10.1039/C0JM02433C]
[100]
Akhtaruzzaman, Md.; Seya, Y.; Asao, N.; Islam, A.; Kwon, E.; El-Shafei, A.; Hanc, L.; Yamamoto, Y. Donor-acceptor dyes incorporating a stable dibenzosilole π-conjugated spacer for dye-sensitized solar cells. J. Mater. Chem., 2012, 22, 10771-10778.
[http://dx.doi.org/10.1039/c2jm30978e]
[101]
Liu, J.; Wang, K.; Xu, F.; Tang, Z.; Zheng, W.; Zhang, J.; Li, C.; Yu, T.; You, X. Synthesis and photovoltaic performances of donor-p-acceptor dyes utilizing 1,3,5-triazine as π- spacers. Tetrahedron Lett., 2011, 52, 6492-6496.
[http://dx.doi.org/10.1016/j.tetlet.2011.09.116]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy