Generic placeholder image

Current Vascular Pharmacology

Editor-in-Chief

ISSN (Print): 1570-1611
ISSN (Online): 1875-6212

Review Article

Assessment and Management of Volume Overload Among Patients on Chronic Dialysis

Author(s): Adrian Covic* and Dimitrie Siriopol

Volume 19, Issue 1, 2021

Published on: 25 February, 2020

Page: [34 - 40] Pages: 7

DOI: 10.2174/1570161118666200225093827

Price: $65

Abstract

Volume overload is the most common complication in end-stage renal disease (ESRD) patients, being directly related to numerous complications including resistant hypertension, cardiac hypertrophy, congestive heart failure or arterial stiffness, among others. Therefore, volume overload is now considered an important risk factor for hard outcomes, like all-cause or cardiovascular mortality.

Relying solely on clinical examination for assessing volume overload in ESRD patients lacks sensitivity and specificity. Numerous efforts have been made to identify new methods that could objectively assess volume status; however, each of them has important limitations. This review aims to discuss the most frequently used methods (biomarkers, inferior vena cava assessment, lung ultrasonography, bioimpedance analysis and blood volume monitoring) and to compare the advantage of each method vs. the overall/ clinical strategy.

Keywords: Dialysis, volume overload, management, lung ultrasonography, bioimpedance, biomarkers.

Graphical Abstract
[1]
Ok E, Asci G, Chazot C, Ozkahya M, Mees EJ. Controversies and problems of volume control and hypertension in haemodialysis. Lancet 2016; 388(10041): 285-93.
[http://dx.doi.org/10.1016/S0140-6736(16)30389-0] [PMID: 27226131]
[2]
Wizemann V, Wabel P, Chamney P, et al. The mortality risk of overhydration in haemodialysis patients. Nephrol Dial Transplant 2009; 24(5): 1574-9.
[http://dx.doi.org/10.1093/ndt/gfn707] [PMID: 19131355]
[3]
Bock JS, Gottlieb SS. Cardiorenal syndrome: new perspectives. Circulation 2010; 121(23): 2592-600.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.109.886473] [PMID: 20547939]
[4]
Hung SC, Lai YS, Kuo KL, Tarng DC. Volume overload and adverse outcomes in chronic kidney disease: clinical observational and animal studies. J Am Heart Assoc 2015; 4(5)e001918
[http://dx.doi.org/10.1161/JAHA.115.001918] [PMID: 25944876]
[5]
Onofriescu M, Siriopol D, Voroneanu L, et al. Overhydration, cardiac function and survival in hemodialysis patients. PLoS One 2015; 10(8)e0135691
[http://dx.doi.org/10.1371/journal.pone.0135691] [PMID: 26274811]
[6]
Tsai YC, Chiu YW, Tsai JC, et al. Association of fluid overload with cardiovascular morbidity and all-cause mortality in stages 4 and 5 CKD. Clin J Am Soc Nephrol 2015; 10(1): 39-46.
[http://dx.doi.org/10.2215/CJN.03610414] [PMID: 25512646]
[7]
Agarwal R, Andersen MJ, Pratt JH. On the importance of pedal edema in hemodialysis patients. Clin J Am Soc Nephrol 2008; 3(1): 153-8.
[http://dx.doi.org/10.2215/CJN.03650807] [PMID: 18057304]
[8]
Ronco C, Kaushik M, Valle R, Aspromonte N, Peacock WF IV. Diagnosis and management of fluid overload in heart failure and cardio-renal syndrome: the “5B” approach. Semin Nephrol 2012; 32(1): 129-41.
[http://dx.doi.org/10.1016/j.semnephrol.2011.11.016] [PMID: 22365171]
[9]
Savoj J, Becerra B, Kim JK, et al. Utility of cardiac biomarkers in the setting of kidney disease. Nephron 2019; 141(4): 227-35.
[http://dx.doi.org/10.1159/000495946] [PMID: 30726855]
[10]
Eisenhauer T, Talartschik J, Scheler F. Detection of fluid overload by plasma concentration of human atrial natriuretic peptide (h-ANP) in patients with renal failure. Klin Wochenschr 1986; 64(Suppl. 6): 68-72.
[PMID: 2948067]
[11]
Lee SW, Song JH, Kim GA, Lim HJ, Kim MJ. Plasma brain natriuretic peptide concentration on assessment of hydration status in hemodialysis patient. Am J Kidney Dis 2003; 41(6): 1257-66.
[http://dx.doi.org/10.1016/S0272-6386(03)00358-5] [PMID: 12776279]
[12]
Stenberg J, Melin J, Lindberg M, Furuland H. Brain natriuretic peptide reflects individual variation in hydration status in hemodialysis patients. Hemodial Int 2019; 23(3): 402-13.
[http://dx.doi.org/10.1111/hdi.12751] [PMID: 30848066]
[13]
Nitta K, Kawashima A, Yumura W, et al. Plasma concentration of brain natriuretic peptide as an indicator of cardiac ventricular function in patients on hemodialysis. Am J Nephrol 1998; 18(5): 411-5.
[http://dx.doi.org/10.1159/000013385] [PMID: 9730565]
[14]
Shawky AM, Hamdy RM, Elmadbouly AA. Clinical utility of left ventricular strain, wall stress and serum brain natriuretic peptide levels in chronic hemodialysis patients. Egypt Heart J 2018; 70(4): 329-35.
[http://dx.doi.org/10.1016/j.ehj.2018.05.006] [PMID: 30591751]
[15]
Safley DM, Awad A, Sullivan RA, et al. Changes in B-type natriuretic peptide levels in hemodialysis and the effect of depressed left ventricular function. Adv Chronic Kidney Dis 2005; 12(1): 117-24.
[http://dx.doi.org/10.1053/j.ackd.2004.11.002] [PMID: 15719344]
[16]
Thygesen K, Mair J, Mueller C, et al. Recommendations for the use of natriuretic peptides in acute cardiac care: a position statement from the Study Group on Biomarkers in Cardiology of the ESC Working Group on Acute Cardiac Care. Eur Heart J 2012; 33(16): 2001-6.
[http://dx.doi.org/10.1093/eurheartj/ehq509] [PMID: 21292681]
[17]
Booth J, Pinney J, Davenport A. N-terminal proBNP--marker of cardiac dysfunction, fluid overload, or malnutrition in hemodialysis patients? Clin J Am Soc Nephrol 2010; 5(6): 1036-40.
[http://dx.doi.org/10.2215/CJN.09001209] [PMID: 20507952]
[18]
Agarwal R. B-type natriuretic peptide is not a volume marker among patients on hemodialysis. Nephrol Dial Transplant 2013; 28(12): 3082-9.
[http://dx.doi.org/10.1093/ndt/gft054] [PMID: 23525529]
[19]
Cheng YJ, Yao FJ, Liu LJ, et al. B-type natriuretic peptide and prognosis of end-stage renal disease: a meta-analysis. PLoS One 2013; 8(11)e79302
[http://dx.doi.org/10.1371/journal.pone.0079302] [PMID: 24236118]
[20]
Siriopol I, Siriopol D, Voroneanu L, Covic A. Predictive abilities of baseline measurements of fluid overload, assessed by bioimpedance spectroscopy and serum N-terminal pro-B-type natriuretic peptide, for mortality in hemodialysis patients. Arch Med Sci 2017; 13(5): 1121-9.
[http://dx.doi.org/10.5114/aoms.2017.68993] [PMID: 28883854]
[21]
Voroneanu L, Siriopol D, Apetrii M, et al. Prospective validation of a screening biomarker approach combining amino-terminal pro-brain natriuretic peptide with galectin-3 predicts death and cardiovascular events in asymptomatic hemodialysis patients. Angiology 2018; 69(5): 449-55.
[http://dx.doi.org/10.1177/0003319717733371] [PMID: 28974104]
[22]
Voroneanu L, Siriopol D, Nistor I, et al. Superior predictive value for NTproBNP compared with high sensitivity cTnT in dialysis patients: a pilot prospective observational study. Kidney Blood Press Res 2014; 39(6): 636-47.
[http://dx.doi.org/10.1159/000368452] [PMID: 25571877]
[23]
Sivalingam M, Vilar E, Mathavakkannan S, Farrington K. The role of natriuretic peptides in volume assessment and mortality prediction in Haemodialysis patients. BMC Nephrol 2015; 16: 218.
[http://dx.doi.org/10.1186/s12882-015-0212-4] [PMID: 26714753]
[24]
Laveborn E, Lindmark K, Skagerlind M, Stegmayr B. NT-proBNP and troponin T levels differ after haemodialysis with a low versus high flux membrane. Int J Artif Organs 2015; 38(2): 69-75.
[http://dx.doi.org/10.5301/ijao.5000387] [PMID: 25744196]
[25]
Ekinci C, Karabork M, Siriopol D, Dincer N, Covic A, Kanbay M. Effects of volume overload and current techniques for the assessment of fluid status in patients with renal disease. Blood Purif 2018; 46(1): 34-47.
[http://dx.doi.org/10.1159/000487702] [PMID: 29649794]
[26]
Sato Y, Ishizaki Y, Aso K, et al. Characterisation of N-terminal pro-brain natriuretic peptide in dialysis patients and its reduced prognostic significance in the elderly. Sci Rep 2019; 9(1): 6630.
[http://dx.doi.org/10.1038/s41598-019-43253-z] [PMID: 31036872]
[27]
Arrigo M, Von Moos S, Gerritsen K, et al. Soluble CD146 and B-type natriuretic peptide dissect overhydration into functional components of prognostic relevance in haemodialysis patients. Nephrol Dial Transplant 2018; 33(11): 2035-42.
[http://dx.doi.org/10.1093/ndt/gfy113] [PMID: 29733422]
[28]
Tetsuka T, Ando Y, Ono S, Asano Y. Change in inferior vena caval diameter detected by ultrasonography during and after hemodialysis. ASAIO J 1995; 41(1): 105-10.
[PMID: 7727811]
[29]
Ando Y, Yanagiba S, Asano Y. The inferior vena cava diameter as a marker of dry weight in chronic hemodialyzed patients. Artificial Organs 1995; 19: 1237-42.
[http://dx.doi.org/10.1111/j.1525-1594.1995.tb02292.x]
[30]
Kircher BJ, Himelman RB, Schiller NB. Noninvasive estimation of right atrial pressure from the inspiratory collapse of the inferior vena cava. Am J Cardiol 1990; 66(4): 493-6.
[http://dx.doi.org/10.1016/0002-9149(90)90711-9] [PMID: 2386120]
[31]
Barbier C, Loubières Y, Schmit C, et al. Respiratory changes in inferior vena cava diameter are helpful in predicting fluid responsiveness in ventilated septic patients. Intensive Care Med 2004; 30(9): 1740-6.
[http://dx.doi.org/10.1007/s00134-004-2259-8] [PMID: 15034650]
[32]
Kaptein MJ, Kaptein JS, Oo Z, Kaptein EM. Relationship of inferior vena cava collapsibility to ultrafiltration volume achieved in critically ill hemodialysis patients. Int J Nephrol Renovasc Dis 2018; 11: 195-209.
[http://dx.doi.org/10.2147/IJNRD.S165744] [PMID: 30087575]
[33]
Grant CJ, Wade TP, McKenzie CA, Filler G, McIntyre CW, Huang SS. Effect of ultrafiltration during hemodialysis on hepatic and total-body water: an observational study. BMC Nephrol 2018; 19(1): 356.
[http://dx.doi.org/10.1186/s12882-018-1150-8] [PMID: 30541478]
[34]
Hassan MO, Duarte R, Dix-Peek T, et al. Volume overload and its risk factors in South African chronic kidney disease patients: an appraisal of bioimpedance spectroscopy and inferior vena cava measurements. Clin Nephrol 2016; 86(7): 27-34.
[http://dx.doi.org/10.5414/CN108778] [PMID: 27285312]
[35]
Tiba MH, Belmont B, Heung M, et al. Dynamic limb bioimpedance and inferior vena cava ultrasound in patients undergoing hemodialysis. ASAIO J 2016; 62(4): 463-9.
[http://dx.doi.org/10.1097/MAT.0000000000000355] [PMID: 26919184]
[36]
Shibata E, Nagai K, Ueda S, et al. The utility and limitation of inferior vena cava diameter as a dry weight marker. J Med Invest 2019; 66(1.2): 172-7.
[http://dx.doi.org/10.2152/jmi.66.172] [PMID: 31064933]
[37]
Kusaba T, Yamaguchi K, Oda H, Harada T. Echography of inferior vena cava for estimating fluid removed from patients undergoing hemodialysis. Nippon Jinzo Gakkai Shi 1994; 36: 914-20.
[PMID: 7933667]
[38]
Chang ST, Chen CC, Chen CL, Cheng HW, Chung CM, Yang TY. Changes of the cardiac architectures and functions for chronic hemodialysis patients with dry weight determined by echocardiography. Blood Purif 2004; 22(4): 351-9.
[http://dx.doi.org/10.1159/000080031] [PMID: 15297785]
[39]
Chang ST, Chen CL, Chen CC, Hung KC. Clinical events occurrence and the changes of quality of life in chronic haemodialysis patients with dry weight determined by echocardiographic method. Int J Clin Pract 2004; 58(12): 1101-7.
[http://dx.doi.org/10.1111/j.1742-1241.2004.00124.x] [PMID: 15646404]
[40]
Chang ST, Chen CL, Chen CC, Lin FC, Wu D. Enhancement of quality of life with adjustment of dry weight by echocardiographic measurement of inferior vena cava diameter in patients undergoing chronic hemodialysis. Nephron Clin Pract 2004; 97(3): c90-7.
[http://dx.doi.org/10.1159/000078636] [PMID: 15292685]
[41]
Steinwandel U, Gibson N, Towell-Barnard A, Parsons R, Rippey J, Rosman J. Does the intravascular volume status in haemodialysis patients measured by inferior vena cava ultrasound correlate with bioimpedance spectroscopy? J Clin Nurs 2019; 28(11-12): 2135-46.
[http://dx.doi.org/10.1111/jocn.14804] [PMID: 30667115]
[42]
Lichtenstein D, Mézière G, Biderman P, Gepner A, Barré O. The comet-tail artifact. An ultrasound sign of alveolar-interstitial syndrome. Am J Respir Crit Care Med 1997; 156(5): 1640-6.
[http://dx.doi.org/10.1164/ajrccm.156.5.96-07096] [PMID: 9372688]
[43]
Soldati G, Copetti R, Sher S. Sonographic interstitial syndrome: the sound of lung water. J Ultrasound Med 2009; 28(2): 163-74.
[http://dx.doi.org/10.7863/jum.2009.28.2.163] [PMID: 19168766]
[44]
Spinelli A, Vinci B, Tirella A, et al. Realization of a poro-elastic ultrasound replica of pulmonary tissue. Biomatter 2012; 2(1): 37-42.
[http://dx.doi.org/10.4161/biom.19835] [PMID: 23507784]
[45]
Chiem AT, Chan CH, Ander DS, Kobylivker AN, Manson WC. Comparison of expert and novice sonographers’ performance in focused lung ultrasonography in dyspnea (FLUID) to diagnose patients with acute heart failure syndrome. Acad Emerg Med 2015; 22(5): 564-73.
[http://dx.doi.org/10.1111/acem.12651] [PMID: 25903470]
[46]
Gargani L, Sicari R, Raciti M, et al. Efficacy of a remote web-based lung ultrasound training for nephrologists and cardiologists: a LUST trial sub-project. Nephrol Dial Transplant 2016; 31(12): 1982-8.
[http://dx.doi.org/10.1093/ndt/gfw329] [PMID: 27672089]
[47]
Mallamaci F, Benedetto FA, Tripepi R, et al. Detection of pulmonary congestion by chest ultrasound in dialysis patients. JACC Cardiovasc Imaging 2010; 3(6): 586-94.
[http://dx.doi.org/10.1016/j.jcmg.2010.02.005] [PMID: 20541714]
[48]
Trezzi M, Torzillo D, Ceriani E, et al. Lung ultrasonography for the assessment of rapid extravascular water variation: evidence from hemodialysis patients. Intern Emerg Med 2013; 8(5): 409-15.
[http://dx.doi.org/10.1007/s11739-011-0625-4] [PMID: 21590437]
[49]
Weitzel WF, Hamilton J, Wang X, et al. Quantitative lung ultrasound comet measurement: method and initial clinical results. Blood Purif 2015; 39(1-3): 37-44.
[http://dx.doi.org/10.1159/000368973] [PMID: 25660686]
[50]
Bitar Z, Maadarani O, Almerri K. Sonographic chest B-lines anticipate elevated B-type natriuretic peptide level, irrespective of ejection fraction. Ann Intensive Care 2015; 5(1): 56.
[http://dx.doi.org/10.1186/s13613-015-0100-x] [PMID: 26714806]
[51]
Volpicelli G, Mussa A, Garofalo G, et al. Bedside lung ultrasound in the assessment of alveolar-interstitial syndrome. Am J Emerg Med 2006; 24(6): 689-96.
[http://dx.doi.org/10.1016/j.ajem.2006.02.013] [PMID: 16984837]
[52]
Jambrik Z, Monti S, Coppola V, et al. Usefulness of ultrasound lung comets as a nonradiologic sign of extravascular lung water. Am J Cardiol 2004; 93(10): 1265-70.
[http://dx.doi.org/10.1016/j.amjcard.2004.02.012] [PMID: 15135701]
[53]
Covic A, Siriopol D, Voroneanu L. Use of lung ultrasound for the assessment of volume status in CKD. Am J Kidney Dis 2018; 71(3): 412-22.
[http://dx.doi.org/10.1053/j.ajkd.2017.10.009] [PMID: 29274919]
[54]
Donadio C, Bozzoli L, Colombini E, et al. Effective and timely evaluation of pulmonary congestion: qualitative comparison between lung ultrasound and thoracic bioelectrical impedance in maintenance hemodialysis patients. Medicine (Baltimore) 2015; 94(6)e473
[http://dx.doi.org/10.1097/MD.0000000000000473] [PMID: 25674735]
[55]
Paudel K, Kausik T, Visser A, Ramballi C, Fan SL. Comparing lung ultrasound with bioimpedance spectroscopy for evaluating hydration in peritoneal dialysis patients. Nephrology (Carlton) 2015; 20(1): 1-5.
[http://dx.doi.org/10.1111/nep.12342] [PMID: 25231593]
[56]
Pardała A, Lupa M, Chudek J, Kolonko A. Lung ultrasound b-lines occurrence in relation to left ventricular function and hydration status in hemodialysis patients. Medicina (Kaunas) 2019; 55(2): 55.
[PMID: 30759793]
[57]
Basso F, Milan Manani S, Cruz DN, et al. Comparison and reproducibility of techniques for fluid status assessment in chronic he-modialysis patients. Cardiorenal Med 2013; 3(2): 104-12.
[http://dx.doi.org/10.1159/000351008] [PMID: 23922550]
[58]
Vitturi N, Dugo M, Soattin M, et al. Lung ultrasound during hemodialysis: the role in the assessment of volume status. Int Urol Nephrol 2014; 46(1): 169-74.
[http://dx.doi.org/10.1007/s11255-013-0500-5] [PMID: 23884727]
[59]
Annamalai I, Balasubramaniam S, Fernando ME, et al. Volume assessment in hemodialysis: A comparison of present methods in clinical practice with sonographic lung comets. Indian J Nephrol 2019; 29(2): 102-10.
[PMID: 30983750]
[60]
Siriopol D, Hogas S, Voroneanu L, et al. Predicting mortality in haemodialysis patients: a comparison between lung ultrasonography, bioimpedance data and echocardiography parameters. Nephrol Dial Transplant 2013; 28(11): 2851-9.
[http://dx.doi.org/10.1093/ndt/gft260] [PMID: 23828163]
[61]
Zoccali C, Torino C, Tripepi R, et al. Pulmonary congestion predicts cardiac events and mortality in ESRD. J Am Soc Nephrol 2013; 24(4): 639-46.
[http://dx.doi.org/10.1681/ASN.2012100990] [PMID: 23449536]
[62]
Torino C, Gargani L, Sicari R, et al. The agreement between auscultation and lung ultrasound in hemodialysis patients: The LUST study. Clin J Am Soc Nephrol 2016; 11(11): 2005-11.
[http://dx.doi.org/10.2215/CJN.03890416] [PMID: 27660305]
[63]
Panuccio V, Enia G, Tripepi R, et al. Chest ultrasound and hidden lung congestion in peritoneal dialysis patients. Nephrol Dial Transplant 2012; 27(9): 3601-5.
[http://dx.doi.org/10.1093/ndt/gfs116] [PMID: 22573237]
[64]
Saad MM, Kamal J, Moussaly E, et al. Relevance of b-lines on lung ultrasound in volume overload and pulmonary congestion: Clinical correlations and outcomes in patients on hemodialysis. Cardiorenal Med 2018; 8(2): 83-91.
[http://dx.doi.org/10.1159/000476000] [PMID: 29617006]
[65]
Marino F, Martorano C, Tripepi R, et al. Subclinical pulmonary congestion is prevalent in nephrotic syndrome. Kidney Int 2016; 89(2): 421-8.
[http://dx.doi.org/10.1038/ki.2015.279] [PMID: 26444027]
[66]
Enia G, Torino C, Panuccio V, et al. Asymptomatic pulmonary congestion and physical functioning in hemodialysis patients. Clin J Am Soc Nephrol 2013; 8(8): 1343-8.
[http://dx.doi.org/10.2215/CJN.11111012] [PMID: 23580785]
[67]
Enia G, Tripepi R, Panuccio V, et al. Pulmonary congestion and physical functioning in peritoneal dialysis patients. Perit Dial Int 2012; 32(5): 531-6.
[http://dx.doi.org/10.3747/pdi.2010.00250] [PMID: 22942271]
[68]
Loutradis C, Sarafidis PA, Ekart R, et al. The effect of dry-weight reduction guided by lung ultrasound on ambulatory blood pressure in hemodialysis patients: a randomized controlled trial. Kidney Int 2019; 95(6): 1505-13.
[http://dx.doi.org/10.1016/j.kint.2019.02.018] [PMID: 31027889]
[69]
Loutradis C, Papadopoulos CE, Sachpekidis V, et al. Lung ultrasound-guided dry weight assessment and echocardiographic measures in hypertensive hemodialysis patients: A randomized controlled study. Am J Kidney Dis 2020; 75(1): 11-20.
[http://dx.doi.org/10.1053/j.ajkd.2019.07.025] [PMID: 31732234]
[70]
Siriopol D, Voroneanu L, Hogas S, et al. Bioimpedance analysis versus lung ultrasonography for optimal risk prediction in hemodialysis patients. Int J Cardiovasc Imaging 2016; 32(2): 263-70.
[http://dx.doi.org/10.1007/s10554-015-0768-x] [PMID: 26428675]
[71]
Kawachi K, Kajimoto K, Otsubo S, Nitta K. Associations between pulmonary congestion on chest ultrasound and survival in hemodialysis patients. Ren Replace Ther 2019; 5: 27.
[http://dx.doi.org/10.1186/s41100-019-0223-x]
[72]
Siriopol D, Onofriescu M, Voroneanu L, et al. Dry weight assessment by combined ultrasound and bioimpedance monitoring in low cardiovascular risk hemodialysis patients: a randomized controlled trial. Int Urol Nephrol 2017; 49(1): 143-53.
[http://dx.doi.org/10.1007/s11255-016-1471-0] [PMID: 27928711]
[73]
Soldati G, Copetti R, Sher S. Can lung comets be counted as “objects”? JACC Cardiovasc Imaging 2011; 4(4): 438-9.
[http://dx.doi.org/10.1016/j.jcmg.2010.09.025] [PMID: 21492821]
[74]
Picano E, Gargani L, Gheorghiade M. Why, when, and how to assess pulmonary congestion in heart failure: pathophysiological, clinical, and methodological implications. Heart Fail Rev 2010; 15(1): 63-72.
[http://dx.doi.org/10.1007/s10741-009-9148-8] [PMID: 19504345]
[75]
Picano E, Pellikka PA. Ultrasound of extravascular lung water: a new standard for pulmonary congestion. Eur Heart J 2016; 37(27): 2097-104.
[http://dx.doi.org/10.1093/eurheartj/ehw164] [PMID: 27174289]
[76]
Lukaski HC. Evolution of bioimpedance: a circuitous journey from estimation of physiological function to assessment of body compo-sition and a return to clinical research. Eur J Clin Nutr 2013; 67(Suppl. 1): S2-9.
[http://dx.doi.org/10.1038/ejcn.2012.149] [PMID: 23299867]
[77]
Lukaski HC, Vega Diaz N, Talluri A, Nescolarde L. Classification of hydration in clinical conditions: indirect and direct approaches using bioimpedance. Nutrients 2019; 11(4): 11.
[http://dx.doi.org/10.3390/nu11040809] [PMID: 30974817]
[78]
Moissl UM, Wabel P, Chamney PW, et al. Body fluid volume determination via body composition spectroscopy in health and disease. Physiol Meas 2006; 27(9): 921-33.
[http://dx.doi.org/10.1088/0967-3334/27/9/012] [PMID: 16868355]
[79]
Wabel P, Chamney P, Moissl U, Jirka T. Importance of whole-body bioimpedance spectroscopy for the management of fluid balance. Blood Purif 2009; 27(1): 75-80.
[http://dx.doi.org/10.1159/000167013] [PMID: 19169022]
[80]
Raimann JG, Zhu F, Wang J, et al. Comparison of fluid volume estimates in chronic hemodialysis patients by bioimpedance, direct isotopic, and dilution methods. Kidney Int 2014; 85(4): 898-908.
[http://dx.doi.org/10.1038/ki.2013.358] [PMID: 24067432]
[81]
Kim YJ, Jeon HJ, Kim YH, et al. Overhydration measured by bioimpedance analysis and the survival of patients on maintenance hemodialysis: a single-center study. Kidney Res Clin Pract 2015; 34(4): 212-8.
[http://dx.doi.org/10.1016/j.krcp.2015.10.006] [PMID: 26779424]
[82]
Dekker MJ, Marcelli D, Canaud BJ, et al. Impact of fluid status and inflammation and their interaction on survival: a study in an international hemodialysis patient cohort. Kidney Int 2017; 91(5): 1214-23.
[http://dx.doi.org/10.1016/j.kint.2016.12.008] [PMID: 28209335]
[83]
Zoccali C, Moissl U, Chazot C, et al. Chronic fluid overload and mortality in ESRD. J Am Soc Nephrol 2017; 28(8): 2491-7.
[http://dx.doi.org/10.1681/ASN.2016121341] [PMID: 28473637]
[84]
Dekker M, Konings C, Canaud B, et al. Pre-dialysis fluid status, pre-dialysis systolic blood pressure and outcome in prevalent hae-modialysis patients: results of an international cohort study on behalf of the MONDO initiative. Nephrol Dial Transplant 2018; 33(11): 2027-34.
[http://dx.doi.org/10.1093/ndt/gfy095] [PMID: 29718469]
[85]
Hecking M, Moissl U, Genser B, et al. Greater fluid overload and lower interdialytic weight gain are independently associated with mortality in a large international hemodialysis population. Nephrol Dial Transplant 2018; 33(10): 1832-42.
[http://dx.doi.org/10.1093/ndt/gfy083] [PMID: 29688512]
[86]
Siriopol D, Siriopol M, Stuard S, et al. An analysis of the impact of fluid overload and fluid depletion for all-cause and cardiovascular mortality. Nephrol Dial Transplant 2019; 34(8): 1385-93.
[http://dx.doi.org/10.1093/ndt/gfy396] [PMID: 30624712]
[87]
Hur E, Usta M, Toz H, et al. Effect of fluid management guided by bioimpedance spectroscopy on cardiovascular parameters in hemo-dialysis patients: a randomized controlled trial. Am J Kidney Dis 2013; 61(6): 957-65.
[http://dx.doi.org/10.1053/j.ajkd.2012.12.017] [PMID: 23415416]
[88]
Onofriescu M, Hogas S, Voroneanu L, et al. Bioimpedance-guided fluid management in maintenance hemodialysis: a pilot randomized controlled trial. Am J Kidney Dis 2014; 64(1): 111-8.
[http://dx.doi.org/10.1053/j.ajkd.2014.01.420] [PMID: 24583055]
[89]
Covic A, Ciumanghel AI, Siriopol D, et al. Value of bioimpedance analysis estimated “dry weight” in maintenance dialysis patients: a systematic review and meta-analysis. Int Urol Nephrol 2017; 49(12): 2231-45.
[http://dx.doi.org/10.1007/s11255-017-1698-4] [PMID: 28965299]
[90]
Burton JO, Jefferies HJ, Selby NM, McIntyre CW. Hemodialysis-induced repetitive myocardial injury results in global and segmental reduction in systolic cardiac function. Clin J Am Soc Nephrol 2009; 4(12): 1925-31.
[http://dx.doi.org/10.2215/CJN.04470709] [PMID: 19808220]
[91]
Voroneanu L, Gavrilovici C, Covic A. Overhydration, underhydration, and total body sodium: A tricky “ménage a trois” in dialysis patients. Semin Dial 2018; 31(1): 21-5.
[http://dx.doi.org/10.1111/sdi.12649] [PMID: 28967233]
[92]
Assimon MM, Wenger JB, Wang L, Flythe JE. Ultrafiltration rate and mortality in maintenance hemodialysis patients. Am J Kidney Dis 2016; 68(6): 911-22.
[http://dx.doi.org/10.1053/j.ajkd.2016.06.020] [PMID: 27575009]
[93]
Chou JA, Kalantar-Zadeh K, Mathew AT. A brief review of intradialytic hypotension with a focus on survival. Semin Dial 2017; 30(6): 473-80.
[http://dx.doi.org/10.1111/sdi.12627] [PMID: 28661565]
[94]
Dasselaar JJ, Huisman RM, de Jong PE, Franssen CF. Measurement of relative blood volume changes during haemodialysis: merits and limitations. Nephrol Dial Transplant 2005; 20(10): 2043-9.
[http://dx.doi.org/10.1093/ndt/gfi056] [PMID: 16105867]
[95]
Dasselaar JJ, van der Sande FM, Franssen CF. Critical evaluation of blood volume measurements during hemodialysis. Blood Purif 2012; 33(1-3): 177-82.
[http://dx.doi.org/10.1159/000334142] [PMID: 22269777]
[96]
Barth C, Boer W, Garzoni D, et al. Characteristics of hypotension-prone haemodialysis patients: is there a critical relative blood volume? Nephrol Dial Transplant 2003; 18(7): 1353-60.
[http://dx.doi.org/10.1093/ndt/gfg171] [PMID: 12808173]
[97]
Candan C, Sever L, Civilibal M, Caliskan S, Arisoy N. Blood volume monitoring to adjust dry weight in hypertensive pediatric he-modialysis patients. Pediatr Nephrol 2009; 24(3): 581-7.
[http://dx.doi.org/10.1007/s00467-008-0985-9] [PMID: 18781335]
[98]
Balter P, Ficociello LH, Taylor PB, et al. A year-long quality improvement project on fluid management using blood volume monitoring during hemodialysis. Curr Med Res Opin 2015; 31(7): 1323-31.
[http://dx.doi.org/10.1185/03007995.2015.1047746] [PMID: 25942380]
[99]
Srisuwan K, Hongsawong N, Lumpaopong A, Thirakhupt P, Chulamokha Y. Blood Volume Monitoring to Assess Dry Weight in Pediatric Chronic Hemodialysis Patients. J Med Assoc Thai 2015; 98(11): 1089-96.
[PMID: 26817179]
[100]
Hussein WF, Arramreddy R, Sun SJ, Doss-McQuitty S, Schiller B. Blood volume monitoring to assist fluid management in hemodialysis patients. Am J Kidney Dis 2016; 67(1): 166-8.
[http://dx.doi.org/10.1053/j.ajkd.2015.08.024] [PMID: 26439585]
[101]
Goldstein SL, Smith CM, Currier H. Noninvasive interventions to decrease hospitalization and associated costs for pediatric patients receiving hemodialysis. J Am Soc Nephrol 2003; 14(8): 2127-31.
[http://dx.doi.org/10.1097/01.ASN.0000076077.05508.7E] [PMID: 12874467]
[102]
Reddan DN, Szczech LA, Hasselblad V, et al. Intradialytic blood volume monitoring in ambulatory hemodialysis patients: a randomized trial. J Am Soc Nephrol 2005; 16(7): 2162-9.
[http://dx.doi.org/10.1681/ASN.2004121053] [PMID: 15930095]
[103]
Krepel HP, Nette RW, Akçahüseyin E, Weimar W, Zietse R. Variability of relative blood volume during haemodialysis. Nephrol Dial Transplant 2000; 15(5): 673-9.
[http://dx.doi.org/10.1093/ndt/15.5.673] [PMID: 10809809]
[104]
Schneditz D, Ribitsch W, Schilcher G, Uhlmann M, Chait Y, Stadlbauer V. Concordance of absolute and relative plasma volume changes and stability of F cells in routine hemodialysis. Hemodial Int 2016; 20(1): 120-8.
[http://dx.doi.org/10.1111/hdi.12338] [PMID: 26246366]
[105]
Dasselaar JJ, Huisman RM. DE Jong PE, Franssen CF. Relative blood volume measurements during hemodialysis: comparisons between three noninvasive devices. Hemodial Int 2007; 11(4): 448-55.
[http://dx.doi.org/10.1111/j.1542-4758.2007.00216.x] [PMID: 17922743]
[106]
Koratala A, Chamarthi G, Kazory A. Point-of-care ultrasonography for objective volume management in end-stage renal disease. Blood Purif 2020; 49: 132-6.
[http://dx.doi.org/10.1159/000503000] [PMID: 31597153]
[107]
Zoccali C, Tripepi R, Torino C, Bellantoni M, Tripepi G, Mallamaci F. Lung congestion as a risk factor in end-stage renal disease. Blood Purif 2013; 36(3-4): 184-91.
[http://dx.doi.org/10.1159/000356085] [PMID: 24496189]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy