Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Proteomic Analysis of Medicinal Plant Calotropis Gigantea by In Silico Peptide Mass Fingerprinting

Author(s): Saad Ur Rehman*, Muhammad Rizwan, Sajid Khan, Azhar Mehmood and Anum Munir

Volume 17, Issue 2, 2021

Published on: 19 February, 2020

Page: [254 - 265] Pages: 12

DOI: 10.2174/1573409916666200219114531

Price: $65

Abstract

Medicinal plants are the basic source of medicinal compounds traditionally used for the treatment of human diseases. Calotropis gigantea is a medicinal plant belonging to the family of Apocynaceae in the plant kingdom and subfamily Asclepiadaceae usually bearing multiple medicinal properties to cure a variety of diseases.

Background: The Peptide Mass Fingerprinting (PMF) identifies the proteins from a reference protein database by comparing the amino acid sequence that is previously stored in the database and identified.

Objective: The purpose of the study is to identify the peptides having anti-cancerous properties by in silico peptide mass fingerprinting.

Methods: The calculation of in silico peptide masses is done through the ExPASy PeptideMass and these masses are used to identify the peptides from the MASCOT online server. Anticancer probability is calculated by iACP server, docking of active peptides is done by CABS-dock the server.

Results: The anti-cancer peptides are identified with the MASCOT peptide mass fingerprinting server, the identified peptides are screened and only the anti-cancer are selected. De-novo peptide structure prediction is used for 3D structure prediction by PEP-FOLD 3 server. The docking results confirm strong bonding with the interacting amino acids of the receptor protein of breast cancer BRCA1 which shows the best peptide binding to the active chain, the human leukemia protein docking with peptides shows the accurate binding.

Conclusion: These peptides are stable and functional and are the best way for the treatment of cancer and many other deadly diseases.

Keywords: Peptide mass fingerprinting, calotropis gigantea, peptides, docking, anticancer, breast cancer, human leukemia, MASCOT.

Graphical Abstract
[1]
Debjani, R.C.; Swapan, K.C.; Subhash, K.R. Molecular Phylogeny and Genetic Diversity Studies of Some Potent Endophytic Fungi Isolated from Medicinal Plants (Calotropis Procera and Catharanthus Roseus) Using 18S rRNA and RAPD Analysis. Afr. J. Microbiol. Res., 2018, 12(33), 796-805.
[http://dx.doi.org/10.5897/AJMR2018.8866]
[2]
Hassan, B.A.R. Medicinal Plants (Importance and Uses). Pharm. Anal. Acta, 2012, 03(10)
[3]
Ramesh, D.; Anbalagan, M.; Arumugam, K. Ethnobotanical Survey on Sacred Grove of Panriti Taluk Cuddalore District; Intl; J. Res Pl Scie: Tamilnadu, India, 2014, pp. 1-7.
[4]
Karthik, S.; Subramanian, M.; Ravikumar, S.; Dhamotharan, R. Ethno-Botanical Study of Selected Sacred Groves in Cuddalore and Villupuram Districts, Tamil Nadu, India. International Journal of Current Research in Biosciences and Plant Biology, 2016, 3(1), 92-103.
[http://dx.doi.org/10.20546/ijcrbp.2016.301.010]
[5]
Singh, S.; Singh, S.; Singh, A.P. Phytochemical Investigation of Different Plant Parts of Calotropis Gigantea; International Journal of Scientific and Research Publications, 2013.
[6]
SARKAR, S. I. P. R. A; CHAKRAVERTY, R; GHOSH, A Calotropis Gigantea Linn. - A Complete Busket Of Indian Traditional Medicine Int. J. Pharm. Res. Sci, 2014, 7-17.
[7]
Hoopes, G. M.; Hamilton, J. P.; Kim, J.; Zhao, D.; Wiegert-Rininger, K.; Crisovan, E.; Buell, C. R. Genome Assembly and Annotation of the Medicinal Plant Calotropis Gigantea, a Producer of Anticancer and Antimalarial Cardenolides. Genes|Genomes|Genetics, 2018, 385-391.
[8]
Thiede, B.; Höhenwarter, W.; Krah, A.; Mattow, J.; Schmid, M.; Schmidt, F.; Jungblut, P.R. Peptide mass fingerprinting. Methods, 2005, 35(3), 237-247.
[http://dx.doi.org/10.1016/j.ymeth.2004.08.015] [PMID: 15722220]
[9]
Madeira, F.; Park, Y.M.; Lee, J.; Buso, N.; Gur, T.; Madhusoodanan, N.; Basutkar, P.; Tivey, A.R.N.; Potter, S.C.; Finn, R.D.; Lopez, R. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res., 2019, 47(W1), W636-W641.
[http://dx.doi.org/10.1093/nar/gkz268] [PMID: 30976793]
[10]
Wilkins, M.R.; Lindskog, I.; Gasteiger, E.; Bairoch, A.; Sanchez, J-C.; Hochstrasser, D.F.; Appel, R.D. Detailed peptide characterization using PEPTIDEMASS--a World-Wide-Web-accessible tool. Electrophoresis, 1997, 18(3-4), 403-408.
[http://dx.doi.org/10.1002/elps.1150180314] [PMID: 9150918]
[11]
Baker, R. P.; Chalkley, J. R.; Jen, N.; Huang, L. SILAC and ITRAQ Quantitation on an Orbitrap Using Protein Prospector Search Compare Options in PPv5 , 1-9.
[12]
Perkins, D.N.; Pappin, D.J.C.; Creasy, D.M.; Cottrell, J.S. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis, 1999, 20(18), 3551-3567.
[http://dx.doi.org/10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2] [PMID: 10612281]
[13]
Shen, Y.; Maupetit, J.; Derreumaux, P.; Tufféry, P. Improved PEP-FOLD Approach for Peptide and Miniprotein Structure Prediction. J. Chem. Theory Comput., 2014, 10(10), 4745-4758.
[http://dx.doi.org/10.1021/ct500592m] [PMID: 26588162]
[14]
Blaszczyk, M.; Kurcinski, M.; Kouza, M.; Wieteska, L.; Debinski, A.; Kolinski, A.; Kmiecik, S. Modeling of protein-peptide interactions using the CABS-dock web server for binding site search and flexible docking. Methods, 2016, 93, 72-83.
[http://dx.doi.org/10.1016/j.ymeth.2015.07.004] [PMID: 26165956]
[15]
Chen, W.; Ding, H.; Feng, P.; Lin, H.; Chou, K-C. iACP: a sequence-based tool for identifying anticancer peptides. Oncotarget, 2016, 7(13), 16895-16909.
[http://dx.doi.org/10.18632/oncotarget.7815] [PMID: 26942877]
[16]
Coquelle, N.; Green, R.; Glover, J.N.M. Impact of BRCA1 BRCT domain missense substitutions on phosphopeptide recognition. Biochemistry, 2011, 50(21), 4579-4589.
[http://dx.doi.org/10.1021/bi2003795] [PMID: 21473589]
[17]
Rosen, E.M.; Fan, S.; Pestell, R.G.; Goldberg, I.D. BRCA1 gene in breast cancer. J. Cell. Physiol., 2003, 196(1), 19-41.
[http://dx.doi.org/10.1002/jcp.10257] [PMID: 12767038]
[18]
Mas-Y-Mas. S; Barbon, M; Teyssier, C The Human Mixed Lineage Leukemia 5 (MLL5), a Sequentially and Structurally Divergent SET Domain-Containing Protein with No Intrinsic Catalytic Activity. PLoS One, 2016, 11(11)

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy