Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Research Article

A One-pot Synthesis of Novel Derivatives of Oxadiazine-4-thione, and its Antibacterial Activity, and Molecular Modeling Studies

Author(s): Magda H. Abdellattif*, Ola Abu Ali , Mohamed M.H. Arief and Mostafa A. Hussien

Volume 17, Issue 3, 2020

Page: [230 - 242] Pages: 13

DOI: 10.2174/1570179417666200218092047

Price: $65

Abstract

Background: The synthesis of a novel series of oxadiazine-4-thione biological molecules was executed through the incorporation of the ortho-, meta-, and para-benzoyl isocyanates to the tetrabromophthalimide nucleus.

Objectives: A one-pot multicomponent methodology in a solvent-free microwave irradiation environment was employed to afford this series of oxadiazine-4-thione, deriving a comparison with the conventional method. Subsequently, the yielded derivatives were subjected to further biological assessment.

Materials and Methods: The acquired results denoted that the one-pot procedure, which delivered products in a 2-4 min. interval, was more efficient in evaluation against the classical method, which consumed a 1-2:30 hr. interval.

Results: The application of the antibacterial analyses was subjected to all the compounds, resulting in molecules 6a and 6c demonstrating the highest activity regarding Aspergillus Favus; molecules 5b and 5c exhibiting an equivalent level of activity towards E-coli and Fusarium Moniliform; and molecules 4b, 4c, 5b, and 5c presenting an identical level of activity to the aforementioned derivatives involving Staphylococcus.

Concluison: Molecular modeling studies by the MOE, the preceding antibacterial behavior was conducted to advocate the newly prepared compounds. Moreover, the spectroscopic approaches were exploited to verify and establish the structures and mechanisms of the synthesized derivatives’ reactions.

Keywords: Green protocol, thiones, tetrabromophthalimide, antibacterial activities, modeling, [4+2] cyclo-addition.

Graphical Abstract
[1]
El-Ziaty, A.K.; Shiba, S.A. Antibacterial activities of new (E)-2-Cyano-3-(3′,4′-dimethoxyphenyl)-2-propenoylamide derivatives. Synth. Commun., 2007, 37, 4043-4057. Available from.
[http://dx.doi.org/10.1080/00397910701575491]
[2]
Patel, H.S.; Patel, K.B. Synthesis and biological activity of 3-[4H-(1,2,4)-triazolyl]-2,6-diaryl-1,3,5-oxadiazine-4-thione. Phosphorus Sulfur Silicon Relat. Elem., 2009, 184, 2443-2452. Available from.
[http://dx.doi.org/10.1080/10426500802487789]
[3]
Rambabu, N.; Viral, B.M.; Kirti, J.G. Synthesis and characterization of N-(4-(4-chlorophenyl)-6-(3,4-dimethylphenyl)pyrimidin-2-yl)-4-(2,6-diphenyl-4-thioxo-2H-1,3,5-oxadiazin-3(4H)-yl)benzenesulfonamide. Pharma Chem., 2012, 4, 511-516.
[4]
Zadorozhnii, P.V.; Pokotylo, I.O.; Kiselev, V.V.; Kharchenko, A.V.; Okhtina, O.V. In Silico analysis of 6-(4-Chlorophenyl)-N-Aryl-4- (Trichloromethyl)-4H-1,3,5-Oxadiazin-2-Amines as Potential Antagonists of VEGFR-1. In: Indo Amer. J. Pharm. Sci; , 2019; 6, pp. (2)4196-4200.
[5]
Gudipati, R.; Anreddy, R.N.R.; Manda, S. Synthesis, characterization and anticancer activity of certain 3-4-(5-mercapto-1, 3, 4-oxadiazole-2-yl)phenyliminoindolin-2-one derivatives. Saudi Pharm. J., 2011, 19(3), 153-158. Available from.
[http://dx.doi.org/10.1016/j.jsps.2011.03.002] [PMID: 23960753]
[6]
Rashid, M.; Husain, A.; Mishra, R. Synthesis of benzimidazoles bearing oxadiazole nucleus as anticancer agents. Eur. J. Med. Chem., 2012, 54, 855-866. Available from.
[http://dx.doi.org/10.1016/j.ejmech.2012.04.027] [PMID: 22608854]
[7]
Husain, A.; Rashid, M.; Mishra, R.; Parveen, S.; Shin, D-S.; Kumar, D. Benzimidazole bearing oxadiazole and triazolo-thiadiazoles nucleus: design and synthesis as anticancer agents. Bioorg. Med. Chem. Lett., 2012, 22(17), 5438-5444. Available from.
[http://dx.doi.org/10.1016/j.bmcl.2012.07.038] [PMID: 22840417]
[8]
Puthiyapurayil, P.; Poojary, B.; Chikkanna, C.; Buridipad, S.K. Design, synthesis and biological evaluation of a novel series of 1,3,4-oxadiazole bearing N-methyl-4-(trifluoromethyl)phenyl pyrazole moiety as cytotoxic agents. Eur. J. Med. Chem., 2012, 53, 203-210. Available from.
[http://dx.doi.org/10.1016/j.ejmech.2012.03.056] [PMID: 22542958]
[9]
Sun, J.; Zhu, H.; Yang, Z-M.; Zhu, H-L. Synthesis, molecular modeling and biological evaluation of 2-aminomethyl-5-(quinolin-2-yl)-1,3,4-oxadiazole-2(3H)-thione quinolone derivatives as novel anticancer agent. Eur. J. Med. Chem., 2013, 60, 23-28. Available from.
[http://dx.doi.org/10.1016/j.ejmech.2012.11.039] [PMID: 23279864]
[10]
Zhang, S.; Luo, Y.; He, L.Q.; Liu, Z.J.; Jiang, A.Q.; Yang, Y.H.; Zhu, H.L. Synthesis, biological evaluation, and molecular docking studies of novel 1,3,4-oxadiazole derivatives possessing benzotriazole moiety as FAK inhibitors with anticancer activity. Bioorg. Med. Chem., 2013, 21(13), 3723-3729. Available from.
[http://dx.doi.org/10.1016/j.bmc.2013.04.043] [PMID: 23673215]
[11]
Patel, N.B.; Purohit, A.C.; Rajani, D.P.; Moo-Puc, R.; Rivera, G. New 2-benzylsulfanyl-nicotinic acid based 1,3,4-oxadiazoles: their synthesis and biological evaluation. Eur. J. Med. Chem., 2013, 62, 677-687. Available from.
[http://dx.doi.org/10.1016/j.ejmech.2012.12.055] [PMID: 23434641]
[12]
Rapolu, S.; Alla, M.; Bommena, V.R.; Murthy, R.; Jain, N.; Bommareddy, V.R.; Bommineni, M.R. Synthesis and biological screening of 5-(alkyl(1H-indol-3-yl))-2-(substituted)-1,3,4-oxadiazoles as antiproliferative and anti-inflammatory agents. Eur. J. Med. Chem., 2013, 66, 91-100. Available from.
[http://dx.doi.org/10.1016/j.ejmech.2013.05.024] [PMID: 23792319]
[13]
Li, P.; Shi, L.; Yang, X.; Yang, L.; Chen, X.W.; Wu, F.; Shi, Q.C.; Xu, W.M.; He, M.; Hu, D.Y.; Song, B.A. Design, synthesis, and antibacterial activity against rice bacterial leaf blight and leaf streak of 2,5-substituted-1,3,4-oxadiazole/thiadiazole sulfone derivative. Bioorg. Med. Chem. Lett., 2014, 24(7), 1677-1680. Available from.
[http://dx.doi.org/10.1016/j.bmcl.2014.02.060] [PMID: 24631191]
[14]
Hadady, Z.; Toth, M.; Somsak, L. C-(β-D-glucopyranosyl) heterocycles as potential glycogen phosphorylase inhibitors. ARKIVOC, 2004, 7, 140-149.
[15]
Dhumal, S.T.; Deshmukh, A.R.; Bhosle, M.R.; Khedkar, V.M.; Nawale, L.U.; Sarkar, D.; Mane, R.A. Synthesis and antitubercular activity of new 1,3,4-oxadiazoles bearing pyridyl and thiazolyl scaffolds. Bioorg. Med. Chem. Lett., 2016, 26(15), 3646-3651. Available from.
[http://dx.doi.org/10.1016/j.bmcl.2016.05.093] [PMID: 27301367]
[16]
Ahsan, M.J.; Samy, J.G.; Khalilullah, H.; Nomani, M.S.; Saraswat, P.; Gaur, R.; Singh, A. Molecular properties prediction and synthesis of novel 1,3,4-oxadiazole analogues as potent antimicrobial and antitubercular agents. Bioorg. Med. Chem. Lett., 2011, 21(24), 7246-7250. Available from.
[http://dx.doi.org/10.1016/j.bmcl.2011.10.057] [PMID: 22071303]
[17]
Liu, F.; Luo, X.Q.; Song, B.A.; Bhadury, P.S.; Yang, S.; Jin, L.H.; Xue, W.; Hu, D.Y. Synthesis and antifungal activity of novel sulfoxide derivatives containing trimethoxyphenyl substituted 1,3,4-thiadiazole and 1,3,4-oxadiazole moiety. Bioorg. Med. Chem., 2008, 16(7), 3632-3640. Available from.
[http://dx.doi.org/10.1016/j.bmc.2008.02.006] [PMID: 18329885]
[18]
Taha, M.; Ismail, N.H.; Imran, S. Synthesis of novel inhibitors of β- glucuronidase based on the benzothiazole skeleton and their molecular docking studies RCS Advanced, 2016, 4(6), 3003-3012.
[19]
Stephen, F.; McCann, G.D.; Annis, R.S.; David, W.; Piotrowski, G.P.; Lahm, J.K.; Long, K.C.; Lee, M.M.; Hughes, B.J.; Myers, S.M.; Griswold, B.M.; Reeves, R.W.; March, P.L.; Sharpe, P.L.; Paul, T.; William, E.; Barnette, D.; Keith, D.W. Synthesis and biological activity of oxadiazine and triazine insecticides: The discovery of indoxacarb In: Synthesis and Chemistry of Agrochemicals VI; , 2001; Chapter 16, pp. 166-177.
[20]
Shubakaraka, K.; Umesh, B.; Srikantamurthy, N.; Chethan, J. Antioxidant and DNA damage inhibition activities of 4-Aryl-N-(4-aryl-thiazol-2-yl)-5,6-dihydro-4H-1,3,4-oxadiazine-2-carboxamides. J. Chem. Sci., 2014, 126(6), 1913-1921. Available from.
[http://dx.doi.org/10.1007/s12039-014-0638-4]
[21]
Arikan, N.; Sumengen, D.; Dulger, B. Syntheisis and antimicrobial activity of 1,2,4 oxadiazine-5-one, 6-ones, and 5-thiones. Turk. J. Chem., 2008, 32, 147-155.
[22]
Bala, S.; Kamboj, S.; Kajal, A.; Saini, V.; Prasad, D.N. 1,3,4-oxadiazole derivatives: synthesis, characterization, antimicrobial potential, and computational studies. BioMed Res. Int., 2014, 2014(17), 27-91. Available from.
[http://dx.doi.org/10.1155/2014/172791] [PMID: 25147788]
[23]
Koketsu, M.; Yamamura, Y.; Ando, H.; Ishihara, H. Synthesis of 1,3-selenazetidines and 4H-1,3,5-oxadiazines using acyl isoselenocyanates. ChemInform, 2006, 37(43) Available from.
[http://dx.doi.org/10.1002/chin.200643191]
[24]
Helmy, M.M.; Moustafa, M.H.; Eldeab, H.A. microwave-assisted synthesis of new series some acetyl coumarin derivatives and studying of some their pharmacological activities. J. Pharm. Sci. & Res., 2015, 7(2), 83-88.
[25]
Abdellattif, M.H. Synthesis of some novel compounds of saccharinyl acetic acid containing nucleus and evaluation of their biological activities as antimicrobial. Orient. J. Chem., 2016, 32(1), 567-574.
[26]
Kushwahaa, N.; Kaushikb, D. Recent Advances and Future Prospects of Phthalimide Derivatives. J. Appl. Pharm. Sci., 2016, 6(03), 159-171. Available from.
[http://dx.doi.org/10.7324/JAPS.2016.60330]
[27]
Arif, R.; Nayab, P.S.; Akrema, M.A.; Yadava, U. Rahisud, “Investigation of DNA binding and molecular docking propensity of phthalimide derivatives: In vitro antibacterial and antioxidant assay. J. Anal. Sci. Technol., 2019, 10, 19. Available from.
[http://dx.doi.org/10.1186/s40543-019-0177-1]
[28]
Singh, S.K.; Singh, K.N. An Efficient and Mild Deprotection of 1,3-Oxathiolanes to Carbonyl Compounds Using the Superoxide Ion. Phosphorus Sulfur Silicon Relat. Elem., 2009, 184(9), 2339-2343. Available from.
[http://dx.doi.org/10.1080/10426500802465850]
[29]
Sears, J.E.; Boger, D.L. Tandem Intramolecular Diels-Alder/1,3-Dipolar Cycloaddition Cascade of 1,3,4-Oxadiazoles: Initial Scope and Applications. Acc. Chem. Res., 2016, 49(2), 241-251. Available from.
[http://dx.doi.org/10.1021/acs.accounts.5b00510] [PMID: 26813287]
[30]
Li, J.; Li, P.; Wu, J.; Gao, J.; Xiong, W-W.; Zhang, G.; Zhao, Y.; Zhang, Q. [4 + 2] cycloaddition reaction to approach diazatwistpentacenes: synthesis, structures, physical properties, and self-assembly. J. Org. Chem., 2014, 79(10), 4438-4445. Available from.
[http://dx.doi.org/10.1021/jo500400d] [PMID: 24741990]
[31]
Ali, M.A.; Elumalai, M.; Eluri, K.; Srinivasan, S.; Mohanthi, S.M. Synthesis, characterization and biological evaluation of acetazolamide, cycloserine and isoniazid condensed some novel phthalimide derivatives. Int. J. Anal. Chem., 2013, 4(2), 57-61. Available from.
[http://dx.doi.org/10.1016/j.ijcas.2013.04.004]
[32]
Magda, H.A. Efficient Microwave-ASSISTED SOLVENT-Free synthesis and molecular docking studies of 2-pyridone derivatives as anticancer agents and evaluation of cytotoxic effects. Journal of advances in chemistry, 2016, 4(12), 4351-4364. Available from.
[http://dx.doi.org/10.24297/jac.v12i4.2175]
[33]
Mohamed, H.M.; Abdellattif, M.H.; Elhenawy, A.A.; El-Gazzar, M.A. Synthesis, anti-inflammatory, analgesic, molecular modeling and ADMET studies of some novel diclofenac derivatives containing methionyl moiety. Res. J. Chem. Environ., 2019, 23(1), 2-10.
[34]
Mai, M.H.; Magda, H.A.; Hany, A.E. New methodology for synthesis of coumarin derivatives as potent antimicrobial agents. IJAPBC, 2014, 3(4), 983-990.
[35]
Magda, H.A.; Mostafa, A.H.; Eman, A. New Approaches of 4-aryl-2-hydrazinothiazole derivatives synthesis, molecular docking and biological evaluations. IJPSR, 2018, 9(12), 1000-1019.
[36]
McNutt, M.C.; Kwon, H.J.; Chen, C.; Chen, J.R.; Horton, J.D.; Lagace, T.A. Antagonism of secreted PCSK9 increases low density lipoprotein receptor expression in HepG2 cells. J. Biol. Chem., 2009, 284(16), 10561-10570. Available from.
[http://dx.doi.org/10.1074/jbc.M808802200] [PMID: 19224862]
[37]
Khlood, H. Mashat; Bandar, A. Babgi; Mostafa, A. Hussien; Muhammad Nadeem, Arshad; Magda, H. Abdellattif Synthesis, structures, DNA-binding and anticancer activities of some copper(I)-phosphine complexes. Polyhedron, 2019, 158, 164-172. Available from.
[http://dx.doi.org/10.1016/j.poly.2018.10.062]
[38]
Subudhi, BB.; Chattopadhyay, S.; Mishra, P.; and Kumar, A. Current strategies for inhibition of chikungunya infection. Viruses, 2018, 10(5), 235. Available from.
[http://dx.doi.org/10.3390/v10050235]
[39]
El-Hashash, M.A.; Rizk, S.A.; El-Sayed, A.A. Ultrasonic and solvent free synthesis of regioselective diastereomeric adducts and heterocyclic products as antibacterial agent. J.Adv. Chem., 2017, 13(12), 6106-6117.
[40]
Hegelund, F. Larsen RW and palmer MH: The vibration spectrum of thiazole between (600 - 1400 cm -1) revisited, a combined high resolution infrared and theoretical study. J. Mol. Spectrosc., 2007, 244(1), 63-78.
[41]
Barakat, A.; Al-Majid, A.M.; Soliman, S.M.; Lotfy, G.; Ghabbour, H.A.; Fun, H.K.; Wadood, A.; Warad, I.; Sloop, J.C. New diethyl ammonium salt of thiobarbituric acid derivative: Synthesis, molecular structure investigations and docking studies. Molecules, 2015, 20(11), 20642-20658. Available from.
[http://dx.doi.org/10.3390/molecules201119710] [PMID: 26610441]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy