Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Recent Advances and Perspectives in the Silver-catalyzed Multi-component Reactions

Author(s): G. S. Susan Treesa, Salim Saranya, Gopinadh Meera and Gopinathan Anilkumar*

Volume 24, Issue 3, 2020

Page: [291 - 313] Pages: 23

DOI: 10.2174/1385272824666200217102036

Price: $65

Abstract

The catalytic activity of silver and its salts in various reactions leads to a vast variety of organic compounds having significant applications in organic synthesis. This review gives a comprehensive study on silver-catalyzed multi-component reactions that attracted the interest of the scientific world through ecofriendly, atom-economic and mild conditions. The silver-catalyzed multi-component synthesis of organic compounds including aliphatic, aromatic and heterocycles are divided into subsections based on the types of bond formed and covers literature up to 2019.

Keywords: Silver, multi-component reaction (MCR), heterocycles, catalysis, C-C bond formation, C-N bond formation, C-O bond formation.

Graphical Abstract
[1]
Müller, T.J.J. Multicomponent reactions. Beilstein J. Org. Chem., 2011, 7, 960-961.
[http://dx.doi.org/10.3762/bjoc.7.107] [PMID: 21915194]
[2]
Zhu, J.; Bienaymé, H., Eds.; Multi-component Reactions; Wiley-VCH: Weinheim, Germany, 2005.
[http://dx.doi.org/10.1002/3527605118]
[3]
Weber, L.; Illgen, K.; Almstetter, M. Discovery of new multi-component reactions with combinatorial methods. Synlett, 1999, 1999(03), 366-374.
[http://dx.doi.org/10.1055/s-1999-2612]
[4]
Chauder, B.A.; Kalinin, A.V.; Taylor, N.J.; Snieckus, V. Directed metalation linked to transition metal catalyzed cascade reactions: two total syntheses of plicadin, the alleged coumestan from Psoralea plicata. Angew. Chem. Int. Ed. Engl., 1999, 38(10), 1435-1438.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19990517)38:10<1435:AID-ANIE1435>3.0.CO;2-B] [PMID: 29711591]
[5]
Hao, L.; Zhan, Z.P. The construction of five-membered heterocycles by transition metal-catalyzed cyclization of propargylic compounds. Curr. Org. Chem., 2011, 15, 1625-1643.
[http://dx.doi.org/10.2174/138527211795378100]
[6]
Malacria, M. Selective preparation of complex polycyclic molecules from acyclic precursors via radical mediated or transition metal-catalyzed cascade reactions. Chem. Rev., 1996, 96(1), 289-306.
[http://dx.doi.org/10.1021/cr9500186] [PMID: 11848754]
[7]
Sharma, R.; Kour, P.; Kumar, A. A review on transition-metal mediated synthesis of quinolines. J. Chem. Sci., 2018, 73, 1-25.
[http://dx.doi.org/10.1007/s12039-018-1466-8]
[8]
Wipf, P.; Stephenson, C.R.J.; Okumura, K. Transition-metal-mediated cascade reactions: C,C-dicyclopropylmethylamines by way of double C,C-σ-bond insertion into bicyclobutanes. J. Am. Chem. Soc., 2003, 125(48), 14694-14695.
[http://dx.doi.org/10.1021/ja038623a] [PMID: 14640630]
[9]
Kazem Shiroodi, R.; Gevorgyan, V. Metal-catalyzed double migratory cascade reactions of propargylic esters and phosphates. Chem. Soc. Rev., 2013, 42(12), 4991-5001.
[http://dx.doi.org/10.1039/c3cs35514d] [PMID: 23443274]
[10]
Ohno, H.; Inuk, S. Recent progress in palladium-catalyzed cascade cyclizations for natural product synthesis. Synthesis, 2018, 50(04), 700-710.
[http://dx.doi.org/10.1055/s-0036-1589165]
[11]
Ackermann, L.; Potukuchi, H.K.; Landsberg, D.; Vicente, R. Copper-catalyzed “click” reaction/direct arylation sequence: modular syntheses of 1,2,3-triazoles. Org. Lett., 2008, 10(14), 3081-3084.
[http://dx.doi.org/10.1021/ol801078r] [PMID: 18549230]
[12]
Menendez, J.C. Multi-component reactions. Synthesis, 2006, 2624-2624.
[http://dx.doi.org/10.1055/s-2006-949153]
[13]
Nakamura, I.; Yamamoto, Y. Transition-metal-catalyzed reactions in heterocyclic synthesis. Chem. Rev., 2004, 104(5), 2127-2198.
[http://dx.doi.org/10.1021/cr020095i] [PMID: 15137788]
[14]
Cioc, R.C.; Ruijter, E.; Orru, R.V.A. Multi-component reactions: advanced tools for sustainable organic synthesis. Green Chem., 2014, 16, 2958-2975.
[http://dx.doi.org/10.1039/C4GC00013G]
[15]
Ruijter, E.; Scheffelaar, R.; Orru, R.V. Multicomponent reaction design in the quest for molecular diversity & complexity. Angew. Chem. Int. Ed., 2011, 50, 6324-6346.
[http://dx.doi.org/10.1002/anie.201006515]
[16]
Ganem, B. Strategies for innovation in multicomponent reaction design. Acc. Chem. Res., 2009, 42(3), 463-472.
[http://dx.doi.org/10.1021/ar800214s] [PMID: 19175315]
[17]
Bharti, R.; Kumari, P.; Parvin, T.; Lokman, H. Choudhury. Recent advances of aminopyrimidines in multi-component reactions. Curr. Org. Chem., 2018, 22(5), 417-445.
[http://dx.doi.org/10.2174/1385272822666171212152406]
[18]
Rotstein, B.H.; Zaretsky, S.; Rai, V.; Yudin, A.K. Small heterocycles in multicomponent reactions. Chem. Rev., 2014, 114(16), 8323-8359.
[http://dx.doi.org/10.1021/cr400615v] [PMID: 25032909]
[19]
Biggs-Houck, J.E.; Younai, A.; Shaw, J.T. Recent advances in multicomponent reactions for diversity-oriented synthesis. Curr. Opin. Chem. Biol., 2010, 14(3), 371-382.
[http://dx.doi.org/10.1016/j.cbpa.2010.03.003] [PMID: 20392661]
[20]
Touré, B.B.; Hall, D.G. Natural product synthesis using multicomponent reaction strategies. Chem. Rev., 2009, 109(9), 4439-4486.
[http://dx.doi.org/10.1021/cr800296p] [PMID: 19480390]
[21]
Wessjohann, L.A.; Rivera, D.G.; Vercillo, O.E. Multiple multicomponent macrocyclizations (MiBs): a strategic development toward macrocycle diversity. Chem. Rev., 2009, 109(2), 796-814.
[http://dx.doi.org/10.1021/cr8003407] [PMID: 19166290]
[22]
Dondoni, A.; Massi, A. Design and synthesis of new classes of heterocyclic C-glycoconjugates and carbon-linked sugar and heterocyclic amino acids by asymmetric multicomponent reactions (AMCRs). Acc. Chem. Res., 2006, 39(7), 451-463.
[http://dx.doi.org/10.1021/ar068023r] [PMID: 16846209]
[23]
Kim, Y.; Kumar, M.R.; Park, N.; Heo, Y.; Lee, S. Copper-catalyzed, one-pot, three-component synthesis of benzimidazoles by condensation and C-N bond formation. J. Org. Chem., 2011, 76(23), 9577-9583.
[http://dx.doi.org/10.1021/jo2019416] [PMID: 22034860]
[24]
Mihovilovic, M.D.; Stanetty, P. Metal-assisted multicomponent reactions involving carbon monoxide--towards heterocycle synthesis. Angew. Chem. Int. Ed. Engl., 2007, 46(20), 3612-3615.
[http://dx.doi.org/10.1002/anie.200604743] [PMID: 17437310]
[25]
Gao, F.; Zhou, Y.; Liu, H. Recent advances in the synthesis of heterocycles via gold-catalyzed cascade reactions: a review. Curr. Org. Chem., 2017, 21, 1530-1566.
[http://dx.doi.org/10.2174/1385272821666170102144500]
[26]
Ibarra, I.A.; Islas-Jácome, A.; González-Zamora, E. Synthesis of polyheterocycles via multicomponent reactions. Org. Biomol. Chem., 2018, 16(9), 1402-1418.
[http://dx.doi.org/10.1039/C7OB02305G] [PMID: 29238790]
[27]
Jiang, B.; Rajale, T.; Wever, W.; Tu, S.J.; Li, G. Multicomponent reactions for the synthesis of heterocycles. Chem. Asian J., 2010, 5(11), 2318-2335.
[http://dx.doi.org/10.1002/asia.201000310] [PMID: 20922748]
[28]
Ruijter, E.; Orru, R.V.A. Multi-component reactions - opportunities for the pharmaceutical industry. Spring, 2013, 10(1), e15-20.
[29]
Slobbe, P.; Ruijter, E.; Orru, R.V.A. Recent applications of multi-component reactions in medicinal chemistry. MedChemComm, 2012, 3, 1189-1218.
[http://dx.doi.org/10.1039/c2md20089a]
[30]
Seyfi, S.; Hossaini, Z.; Rostami-Charati, F. Multicomponent reactions for the synthesis of functionalized imidazoles. Comb. Chem. High Throughput Screen., 2013, 16(8), 652-656.
[http://dx.doi.org/10.2174/13862073113169990005] [PMID: 23713458]
[31]
Medimagh, R.; Marque, S.; Prim, D.; Marrot, J.; Chatti, S. Concise synthesis of tricyclic isoindolinones via one-pot cascade multicomponent sequences. Org. Lett., 2009, 11(8), 1817-1820.
[http://dx.doi.org/10.1021/ol9003965] [PMID: 19354322]
[32]
Jiang, B.; Tu, S-J.; Kaur, P.; Wever, W.; Li, G. Four-component domino reaction leading to multifunctionalized quinazolines. J. Am. Chem. Soc., 2009, 131(33), 11660-11661.
[http://dx.doi.org/10.1021/ja904011s] [PMID: 19722590]
[33]
Liéby-Muller, F.; Constantieux, T.; Rodriguez, J. Multicomponent domino reaction from β-ketoamides: highly efficient access to original polyfunctionalized 2,6-diazabicyclo[2.2.2]octane cores. J. Am. Chem. Soc., 2005, 127(49), 17176-17177.
[http://dx.doi.org/10.1021/ja055885z] [PMID: 16332052]
[34]
Hashmi, A.S.K. Gold-catalyzed synthesis of N, O-heterocycles. Pure Appl. Chem., 2010, 82, 657-668.
[http://dx.doi.org/10.1351/PAC-CON-09-10-17]
[35]
Le Gall, E.; Sengmany, S.; Samb, I.; Benakrour, S.; Colin, C.; Pignon, A.; Léonel, E. A multicomponent approach to the synthesis of N-sulfonyl β(2,3)-amino esters. Org. Biomol. Chem., 2014, 12(21), 3423-3426.
[http://dx.doi.org/10.1039/c3ob42353k] [PMID: 24740306]
[36]
Ikeda, S. Nickel-catalyzed coupling of carbonyl compounds and alkynes or 1,3-dienes: an efficient method for the preparation of allylic, homoallylic, and bishomoallylic alcohols. Angew. Chem. Int. Ed. Engl., 2003, 42(42), 5120-5122.
[http://dx.doi.org/10.1002/anie.200301673] [PMID: 14601162]
[37]
Ugi, I.; Domling, A.; Horl, W. Multi-component reactions in organic chemistry. Endeavour, 1994, 18, 115-122.
[http://dx.doi.org/10.1016/S0160-9327(05)80086-9]
[38]
Tietze, L.F.; Modi, A. Multicomponent domino reactions for the synthesis of biologically active natural products and drugs. Med. Res. Rev., 2000, 20(4), 304-322.
[http://dx.doi.org/10.1002/1098-1128(200007)20:4<304::AID-MED3>3.0.CO;2-8] [PMID: 10861729]
[39]
Elie, B.T.; Levine, C.; Ubarretxena-Belandia, I.; Varela-Ramírez, A.; Aguilera, R.J.; Ovalle, R.; Contel, M. Water-soluble (phosphane)-gold(I) complexes- applications as recyclable catalysts in a three-component coupling reaction and as antimicrobial and anticancer agents. Eur. J. Inorg. Chem., 2009, 2009(23), 3421-3430.
[http://dx.doi.org/10.1002/ejic.200900279] [PMID: 23524957]
[40]
Merkul, E.; Müller, T.J.J. A new consecutive three-component oxazole synthesis by an amidation-coupling-cycloisomerization (ACCI) sequence. Chem. Commun. (Camb.), 2006, (46), 4817-4819.
[http://dx.doi.org/10.1039/B610839C] [PMID: 17345739]
[41]
Evano, G.; Blanchard, N.; Toumi, M. Copper-mediated coupling reactions and their applications in natural products and designed biomolecules synthesis. Chem. Rev., 2008, 108(8), 3054-3131.
[http://dx.doi.org/10.1021/cr8002505] [PMID: 18698737]
[42]
Yan, B.; Liu, Y. Gold-catalyzed multicomponent synthesis of aminoindolizines from aldehydes, amines, and alkynes under solvent-free conditions or in water. Org. Lett., 2007, 9(21), 4323-4326.
[http://dx.doi.org/10.1021/ol701886e] [PMID: 17854200]
[43]
Schultz, D.M.; Babij, N.R.; Wolfe, J.P. Intermolecular gold(I)-catalyzed alkyne carboalkoxylation reactions for the multi-component assembly of β-alkoxy ketones. Adv. Synth. Catal., 2012, 354, 3451-3455.
[http://dx.doi.org/10.1002/adsc.201200825]
[44]
Motti, E.; Rossetti, M.; Bocelli, G.; Catellani, M. Palladium-catalyzed multi-component reactions in ordered sequence: new syntheses of o, o -dialkylsubstituted diarylacetylenes and diarylalkylidenehexahydromethanofluorenes. J. Organomet. Chem., 2004, 689, 3741-3749.
[http://dx.doi.org/10.1016/j.jorganchem.2004.05.035]
[45]
Saranya, S.; Rohit, K.R.; Radhika, S.; Anilkumar, G. Palladium-catalyzed multicomponent reactions: an overview. Org. Biomol. Chem., 2019, 17(35), 8048-8061.
[http://dx.doi.org/10.1039/C9OB01538H] [PMID: 31410440]
[46]
Dhawan, R.; Dghaym, R.D.; St Cyr, D.J.; Arndtsen, B.A. Direct, palladium-catalyzed, multicomponent synthesis of β-lactams from imines, acid chloride, and carbon monoxide. Org. Lett., 2006, 8(18), 3927-3930.
[http://dx.doi.org/10.1021/ol061308j] [PMID: 16928040]
[47]
Campbell, M.J.; Toste, F.D. Enantioselective synthesis of cyclic carbamimidates via a three-component reaction of imines, terminal alkynes, and p-toluenesulfonylisocyanate using a monophosphine gold(I) catalyst(). Chem. Sci. (Camb.), 2011, 2(7), 1369-1378.
[http://dx.doi.org/10.1039/c1sc00160d] [PMID: 22712050]
[48]
Sharma, R.K.; Yadav, S.; Sharma, S.; Dutta, S.; Sharma, A. Expanding the horizon of multicomponent oxidative coupling reaction via the design of a unique, 3D copper isophthalate MOF-based catalyst decorated with mixed spinel CoFe2O4 nanoparticles. ACS Omega, 2018, 3(11), 15100-15111.
[http://dx.doi.org/10.1021/acsomega.8b02061] [PMID: 31458175]
[49]
Wei, D.; Ma, H.; Zhou, X.; Shi, C.; Luo, X.; Huang, G. Cobalt and copper co-catalyzed three-component reactions for the synthesis of 1,3,4-trisubstituted pyrazoles. ChemistrySelect, 2017, 2, 6231-6234.
[http://dx.doi.org/10.1002/slct.201700987]
[50]
Erver, F.; Hilt, G. Double- and triple-cobalt catalysis in multicomponent reactions. Org. Lett., 2012, 14(7), 1884-1887.
[http://dx.doi.org/10.1021/ol300504f] [PMID: 22432934]
[51]
Standley, E.A.; Tasker, S.Z.; Jensen, K.L.; Jamison, T.F. Nickel catalysis: synergy between method development and total synthesis. Acc. Chem. Res., 2015, 48(5), 1503-1514.
[http://dx.doi.org/10.1021/acs.accounts.5b00064] [PMID: 25905431]
[52]
Balme, G.; Bossharth, E.; Monteiro, N. Pd-assisted multi-component synthesis of heterocycles. Eur. J. Org. Chem., 2003, 2003(21), 4101-4111.
[http://dx.doi.org/10.1002/ejoc.200300378]
[53]
Strecker, A. Ueber die künstliche bildung der milchsäure und einen neuen, dem glycocoll homologen körper. Ann. Chem. Pharm., 1850, 75(1), 27-45.
[http://dx.doi.org/10.1002/jlac.18500750103]
[54]
Wang, J.; Liu, X.; Feng, X. Asymmetric strecker reactions. Chem. Rev., 2011, 111(11), 6947-6983.
[http://dx.doi.org/10.1021/cr200057t] [PMID: 21851054]
[55]
Zuend, S.J.; Coughlin, M.P.; Lalonde, M.P.; Jacobsen, E.N. Scaleable catalytic asymmetric Strecker syntheses of unnatural α-amino acids. Nature, 2009, 461(7266), 968-970.
[http://dx.doi.org/10.1038/nature08484] [PMID: 19829379]
[56]
Yan, H.; Suk Oh, J.; Lee, J.W.; Eui Song, C. Scalable organocatalytic asymmetric Strecker reactions catalysed by a chiral cyanide generator. Nat. Commun., 2012, 3, 1212.
[http://dx.doi.org/10.1038/ncomms2216] [PMID: 23169053]
[57]
Dong, X-Y.; Gao, Z-W.; Yang, K-F.; Zhang, W-Q.; Xu, L-W. Nanosilver as a new generation of silver catalysts in organic transformations for efficient synthesis of fine chemicals. Catal. Sci. Technol., 2015, 5, 2554-2574.
[http://dx.doi.org/10.1039/C5CY00285K]
[58]
Wei, C.; Li, Z.; Li, C.J. The first silver-catalyzed three-component coupling of aldehyde, alkyne, and amine. Org. Lett., 2003, 5(23), 4473-4475.
[http://dx.doi.org/10.1021/ol035781y] [PMID: 14602028]
[59]
Lauder, K.; Toscani, A.; Scalacci, N.; Castagnolo, D. Synthesis and reactivity of propargylamines in organic chemistry. Chem. Rev., 2017, 117(24), 14091-14200.
[http://dx.doi.org/10.1021/acs.chemrev.7b00343] [PMID: 29166000]
[60]
Sreedhar, B.; Kumar, A.S.; Reddy, P.S. Magnetically separable Fe3O4 nanoparticles: an efficient catalyst for the synthesis of propargylamines. Tetrahedron Lett., 2010, 51, 1891-1895.
[http://dx.doi.org/10.1016/j.tetlet.2010.02.016]
[61]
Chng, L.L.; Yang, J.; Wei, Y.; Ying, J.Y. Semiconductor-gold nanocomposite catalysts for the efficient three-component coupling of aldehyde, amine and alkyne in water. Adv. Synth. Catal., 2009, 351, 2887-2896.
[http://dx.doi.org/10.1002/adsc.200900518]
[62]
Samai, S.; Nandi, G.C.; Singh, M.S. An efficient and facile one-pot synthesis of propargylamines by three-component coupling of aldehydes, amines, and alkynes via C-H activation catalyzed by NiCl2. Tetrahedron Lett., 2010, 51, 5555-5558.
[http://dx.doi.org/10.1016/j.tetlet.2010.08.043]
[63]
Chen, W-W.; Bi, H-P.; Li, C-J. The first cobalt-catalyzed transformation of alkynyl C-H bond: aldehyde-alkyne-amine (A3) coupling. Synlett, 2010, 2010(3), 475-479.
[64]
Eagalapati, N.P.; Rajack, A.; Murthy, Y.L.N. Nano-size ZnS: a novel, efficient and recyclable catalyst for A3-coupling reaction of propargylamines. J. Mol. Catal. Chem., 2014, 381, 126-131.
[http://dx.doi.org/10.1016/j.molcata.2013.10.009]
[65]
Dömling, A.; Wang, W.; Wang, K. Chemistry and biology of multicomponent reactions. Chem. Rev., 2012, 112(6), 3083-3135.
[http://dx.doi.org/10.1021/cr100233r] [PMID: 22435608]
[66]
Dömling, A. Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem. Rev., 2006, 106(1), 17-89.
[http://dx.doi.org/10.1021/cr0505728] [PMID: 16402771]
[67]
(a)Abbiati, G.; Rossi, E. Silver and gold-catalyzed multicomponent reactions. Beilstein J. Org. Chem., 2014, 10, 481-513.
(b)Ugi, I. Recent progress in the chemistry of multi-component reactions. Pure Appl. Chem., 2001, 73, 187-191.
[68]
Song, X.; Xu, C.; Du, D.; Zhao, Z.; Zhu, D.; Wang, M. Ring-opening diarylation of siloxydifluorocyclopropanes by Ag(I) catalysis: stereoselective construction of 2-fluoroallylic scaffold. Org. Lett., 2017, 19(24), 6542-6545.
[http://dx.doi.org/10.1021/acs.orglett.7b03254] [PMID: 29206464]
[69]
Liu, B.; Ning, Y.; Virelli, M.; Zanoni, G.; Anderson, E.A.; Bi, X. Direct transformation of terminal alkynes into amidines by a silver-catalyzed four-component reaction. J. Am. Chem. Soc., 2019, 141(4), 1593-1598.
[http://dx.doi.org/10.1021/jacs.8b11039] [PMID: 30667220]
[70]
Li, P.; Wang, L.; Zhang, Y.; Wang, M. Highly efficient three-component (aldehyde-alkyne-amine) coupling reactions catalyzed by a reusable PS-supported NHC–Ag(I) under solvent-free reaction conditions. Tetrahedron Lett., 2008, 49, 6650-6654.
[http://dx.doi.org/10.1016/j.tetlet.2008.09.026]
[71]
Zhao, Y.; Zhou, X.; Okamura, T.A.; Chen, M.; Lu, Y.; Sun, W.Y.; Yu, J.Q. Silver supramolecule catalyzed multicomponent reactions under mild conditions. Dalton Trans., 2012, 41(19), 5889-5896.
[http://dx.doi.org/10.1039/c2dt30134b] [PMID: 22460624]
[72]
Pandit, R.P.; Lee, Y.R. Efficient synthesis of β-acetamido ketones by silver(I) triflate-catalyzed multi-component reactions. Bull. Korean Chem. Soc., 2012, 33(11), 3559-3564.
[http://dx.doi.org/10.5012/bkcs.2012.33.11.3559]
[73]
Chen, X.; Chen, T.; Zhou, Y.; Au, C.T.; Han, L.B.; Yin, S.F. Efficient synthesis of propargylamines from terminal alkynes, dichloromethane and tertiary amines over silver catalysts. Org. Biomol. Chem., 2014, 12(2), 247-250.
[http://dx.doi.org/10.1039/C3OB41878B] [PMID: 24264798]
[74]
Pedrazzini, T.; Pirovano, P.; Dell’Acqua, M.; Ragaini, F.; Illiano, P.; Macchi, P.; Abbiati, G.; Caselli, A. Organometallic reactivity of [silver(I)(pyridine-containing ligand)] complexes relevant to catalysis. Eur. J. Inorg. Chem., 2015, 30, 5089-5098.
[http://dx.doi.org/10.1002/ejic.201500771]
[75]
Estévez, V.; Villacampa, M.; Menéndez, J.C. Three-component access to pyrroles promoted by the CAN-silver nitrate system under high-speed vibration milling conditions: a generalization of the Hantzsch pyrrole synthesis. Chem. Commun. (Camb.), 2013, 49(6), 591-593.
[http://dx.doi.org/10.1039/C2CC38099D] [PMID: 23212352]
[76]
Gajengi, A.L.; Fernandes, C.S.; Bhanage, B.M. Synthesis of Cu2O/Ag nanocomposite and their catalytic application for the one-pot synthesis of substituted pyrroles. Molecular. Catalysis, 2018, 451, 13-19.
[http://dx.doi.org/10.1016/j.mcat.2017.10.010]
[77]
Selva, E.; Castello, L.M.; Aracil, J.M.; Selva, V.; Najera, C.; Foubelo, F.; Sansano, J.M. Synthesis of pharmacophores containing a prolinate core using a multi-component 1,3-dipolar cycloaddition of azomethine ylides. Tetrahedron, 2017, 73, 6840-6846.
[http://dx.doi.org/10.1016/j.tet.2017.10.030]
[78]
Pereshivko, O.P.; Peshkov, V.A.; Ermolatev, D.S.; Hove, S.V.; Hecke, K.V.; Meervelt, L.V.; Eycken, E.V.V. Diversity-oriented silver(I)-mediated synthesis of spiro-2-aminoimidazoles. Synthesis, 2011, 10, 1587-1594.
[79]
Wang, C.; Lai, J.; Chen, C.; Li, X.; Cao, H. Ag-catalyzed tandem three-component reaction toward the synthesis of multisubstituted imidazoles. J. Org. Chem., 2017, 82(24), 13740-13745.
[http://dx.doi.org/10.1021/acs.joc.7b02612] [PMID: 29161038]
[80]
Lian, G.Y.; Lin, F.; Yu, J.D.; Zhang, D.W. Efficient multi-component reaction for the synthesis of piperidine derivatives: Yb(OTf)3/AgOTf cocatalyzed preparation of trimethyl 3,5,5-piperidonetricarboxylate. Synth. Commun., 2008, 38, 4321-4327.
[http://dx.doi.org/10.1080/00397910802323122]
[81]
Xiao, J.; Chen, Y.; Zhu, S.; Wang, L.; Xu, L.; Wei, H. Diversified construction of chromeno[3,4-c]pyridin-5-one and benzo[c]chromen-6-one derivatives by domino reaction of 4-alkynyl-2-oxo-2H-chromene-3-carbaldehydes. Adv. Synth. Catal., 2014, 356(8), 1835-1845.
[http://dx.doi.org/10.1002/adsc.201301171]
[82]
Ghasemzadeh, M.A.; Ghomi, J.S. An efficient, one-pot synthesis of polyfunctionalised dihydropyridines catalyzed by AgI nanoparticles. J. Chem. Res., 2014, 38, 313-316.
[http://dx.doi.org/10.3184/174751914X13976454726953]
[83]
Kankala, S.; Pagadala, R.; Maddila, S.; Vasam, C.C.; Jonnalagadda, S.B. Silver(I)-N-heterocyclic carbene catalyzed multi-component reactions: a facile synthesis of multisubstituted pyridines. RSC Advances, 2015, 5, 105446-105452.
[http://dx.doi.org/10.1039/C5RA16582B]
[84]
Iordanidou, D.; Zarganes-Tzitzikas, T.; Neochoritis, C.G.; Dömling, A.; Lykakis, I.N. Application of silver nanoparticles in the multicomponent reaction domain: a combined catalytic reduction methodology to efficiently access potential hypertension or inflammation inhibitors. ACS Omega, 2018, 3(11), 16005-16013.
[http://dx.doi.org/10.1021/acsomega.8b02749] [PMID: 30533584]
[85]
Koneni, V.S.; Singh, L.R.; Choudhary, D.; Arun, A.; Gupta, S.; Adhikary, S.; Palnati, G.R.; Konwar, R.; Trivedi, R. Design, synthesis and in-vitro evaluation of coumarin-imidazo[1,2-a]pyridine derivatives against cancer induced osteoporosis. RSC Advances, 2016, 6, 80037-80048.
[http://dx.doi.org/10.1039/C6RA15674F]
[86]
Ding, Q.; Wu, J. Lewis acid- and organocatalyst-cocatalyzed multicomponent reactions of 2-alkynylbenzaldehydes, amines, and ketones. Org. Lett., 2007, 9(24), 4959-4962.
[http://dx.doi.org/10.1021/ol7020669] [PMID: 17960938]
[87]
Bai, Y.; Zeng, J.; Ma, J.; Gorityala, B.K.; Liu, X.W. Quick access to druglike heterocycles: facile silver-catalyzed one-pot multicomponent synthesis of aminoindolizines. J. Comb. Chem., 2010, 12(5), 696-699.
[http://dx.doi.org/10.1021/cc100086h] [PMID: 20831266]
[88]
Holzer, W.; Vilkauskaitė, G.; Arbačiauskienė, E.; Sačkus, A. Dipyrazolo[1,5-a:4′,3′-c]pyridines - a new heterocyclic system accessed via multicomponent reaction. Beilstein J. Org. Chem., 2012, 8, 2223-2229.
[http://dx.doi.org/10.3762/bjoc.8.251] [PMID: 23365633]
[89]
Zahid, M.; Iaroshenko, V.O.; Saghyan, A.S.; Fischer, C.; Langer, P. Convenient synthesis of benzo [b] pyrazolo [5,1-f][1,6] naphthyridines by silver triflate-catalyzed three-component reaction of 2-alkynyl-3-formylquinolines, tosylhydrazine and carbonyl compounds. Tetrahedron, 2013, 69(16), 3451-3458.
[http://dx.doi.org/10.1016/j.tet.2013.02.060]
[90]
Aracil, J.M.; Nájera, C.; Sansano, J.M. Binap-silver-catalyzed enantioselective multi-component 1,3-dipolar cycloaddition of azomethines ylides derived from ethyl glyoxylate. Tetrahedron Asymmetry, 2015, 26, 674-678.
[http://dx.doi.org/10.1016/j.tetasy.2015.05.005]
[91]
Aracil, J.M.; Cayuelas, A.; Najera, C.; Sansano, J.M. Silver-catalysed multi-component 1,3-dipolar cycloaddition of 2-oxoaldehydes-derived azomethine ylides. Tetrahedron, 2015, 71, 8804-8816.
[http://dx.doi.org/10.1016/j.tet.2015.09.039]
[92]
Hao, W.J.; Wu, Y.N.; Gao, Q.; Wang, S.L.; Tu, S.J.; Jiang, B. Dual cobalt(II)/silver catalysis: synthesis of aryliminated pyrrolo[2,3-b]indoles via multi-component bicyclization cascades. Tetrahedron Lett., 2016, 57, 4767-4769.
[http://dx.doi.org/10.1016/j.tetlet.2016.09.046]
[93]
Vasconcelos, S.N.S.; Silva, V.H.M.; Braga, A.A.C.; Shamim, A.; Souza, F.B.; Pimenta, D.C.; Stefani, H.A. 3-Alkenyltyrosines accessed by Suzuki-Miyaura coupling: a key intermediate in the synthesis and mechanistic study of povarov multi-component reactions. Asian J. Org. Chem., 2017, 6, 913-920.
[http://dx.doi.org/10.1002/ajoc.201700154]
[94]
Fernández, P.; Fañanás, F.J.; Rodríguez, F. Nitrogenated azaphilone derivatives through a silver-catalysed reaction of imines from ortho-alkynylbenzaldehydes. Chemistry, 2017, 23(13), 3002-3006.
[http://dx.doi.org/10.1002/chem.201700170] [PMID: 28093872]
[95]
Zhou, Z.H.; Song, Q.W.; Xie, J.N.; Ma, R.; He, L.N. Silver(I)-catalyzed three-component reaction of propargylic alcohols, carbon dioxide and monohydric alcohols: thermodynamically feasible access to β-oxopropyl carbonates. Chem. Asian J., 2016, 11(14), 2065-2071.
[http://dx.doi.org/10.1002/asia.201600600] [PMID: 27237704]
[96]
Eghbali, N.; Eddy, J.; Anastas, P.T. Silver-catalyzed one-pot synthesis of arylnaphthalene lactones. J. Org. Chem., 2008, 73(17), 6932-6935.
[http://dx.doi.org/10.1021/jo801213m] [PMID: 18681406]
[97]
Mohammadi, R.; Eidi, E.; Ghavami, M.; Kassaee, M.Z. Chitosan synergistically enhanced by successive Fe3O4 and silver nanoparticles as a novel green catalyst in one-pot, three-component synthesis of tetrahydrobenzo[α]xanthene-11-ones. J. Mol. Catal., 2014, 393, 309-316.
[http://dx.doi.org/10.1016/j.molcata.2014.06.005]
[98]
Qi, C.; Yan, D.; Xiong, W.; Jiang, H. Silver-catalyzed three-component coupling of carbon dioxide, amines and α-diazoesters. Chin. J. Chem., 2018, 36(5), 399-405.
[http://dx.doi.org/10.1002/cjoc.201700808]
[99]
Tong, S.; Piemontesi, C.; Wang, Q.; Wang, M.X.; Zhu, J. Silver-catalyzed three-component 1,1-aminoacylation of homopropargylamines: α-additions for both terminal alkynes and isocyanides. Angew. Chem. Int. Ed. Engl., 2017, 56(27), 7958-7962.
[http://dx.doi.org/10.1002/anie.201704727] [PMID: 28493495]
[100]
Wang, Q.; Xiong, W.; Deng, X.; Zhou, X.; Qi, C.; Hu, J. Silver-nanowire-catalyzed three-component coupling of carbon dioxide, amines and propargylic alcohols for the synthesis of β-oxopropyl carbamates. Asian J. Org. Chem., 2019, 8, 179-184.
[101]
Salam, N.; Sinha, A.; Roy, A.S.; Mondal, P.; Jana, N.R.; Islam, S.M. Synthesis of silver-graphene nanocomposite and its catalytic application for the one-pot three-component coupling reaction and one-pot synthesis of 1,4-disubstituted 1,2,3-triazoles in water. RSC Advances, 2014, 4, 10001-10012.
[http://dx.doi.org/10.1039/c3ra47466f]
[102]
Thombal, R.S.; Lee, Y.R. Synergistic indium and silver dual catalysis: a regioselective [2 + 2 + 1]-oxidative N-annulation approach for the diverse and polyfunctionalized N-arylpyrazoles. Org. Lett., 2018, 20(15), 4681-4685.
[http://dx.doi.org/10.1021/acs.orglett.8b02008] [PMID: 30044635]
[103]
Wu, R.; Gao, S.; Chen, X.; Yang, G.; Pan, L.; Hu, G.; Jia, P.; Zhong, W.; Yu, C. Synthesis of 1-(1H-tetrazol-5-yl)-2H-isoindole derivatives through Ugi four-component and silver-catalyzed reactions. Eur. J. Org. Chem., 2014, 16, 3379-3386.
[http://dx.doi.org/10.1002/ejoc.201402098]
[104]
Mahdjoub, S.; Boulcina, R.; Yildirim, M.; Lakehal, S.; Boulebd, H.; Debache, A. A silver nanoparticles-catalyzed efficient three-component synthesis of polysubstituted 4H-chromenylphosphonates and their antioxidant activity. Synth. Commun., 2018, 48(18), 2366-2381.
[http://dx.doi.org/10.1080/00397911.2018.1484487]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy