Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Tetrazoloquinolines: Synthesis, Reactions, and Applications

Author(s): Rizk E. Khidre*, Tahah A. Ameen and Mounir A. I. Salem

Volume 24, Issue 4, 2020

Page: [439 - 464] Pages: 26

DOI: 10.2174/1385272824666200217095341

Price: $65

Abstract

This review summarizes the synthesis, reactions, and biological activities of tetrazolo[1,5-a]quinoline derivatives. These derivatives were synthesized by several methods such as i) from the reaction of 2-chloroquinoline with sodium azide ii) from diazotization 2-hydrazinylquinoline derivatives, and iii) from intramolecular cyclocondensation of 2-azidoarylidenes. Also, the chemical reactions and pharmacological activities of some tetrazoloquinolines such as tetrazolo[1,5-a]quinoline-4-carbaldehyde, 5-chlorotetrazolo[ 1,5-a]quinoline, 4-(chloromethyl)tetrazolo[1,5-a]quinoline, tetrazolo[1,5- a]quinoline-4-carboxylic acid, and 5-azidotetrazolo[1,5-a]quinoline were discussed.

Keywords: Quinoline, tetrazoloquinoline, pyrimidine, pyrazole, heterocycles, pharmacological activities.

Graphical Abstract
[1]
Michael, J.P. Quinoline, quinazoline and acridone alkaloids. Nat. Prod. Rep., 2008, 25(1), 166-187.
[http://dx.doi.org/10.1039/B612168N] [PMID: 18250901]
[2]
Gomtsyan, A. Heterocycles in drugs and drug discovery. Chem. Heterocycl. Compd., 2012, 48, 7-10.
[http://dx.doi.org/10.1007/s10593-012-0960-z]
[3]
Pozharsky, A.F.; Soldatenkov, A.T.; Katritzky, A.R. Heterocycles in Life and Society: An Introduction to Heterocyclic Chemistry, Biochemistry and Applications; John Wiley: Chichester, UK, 2011.
[http://dx.doi.org/10.1002/9781119998372]
[4]
Desai, N.C.; Kotadiya, G.M.; Trivedi, A.R. Studies on molecular properties prediction, antitubercular and antimicrobial activities of novel quinoline based pyrimidine motifs. Bioorg. Med. Chem. Lett., 2014, 24(14), 3126-3130.
[http://dx.doi.org/10.1016/j.bmcl.2014.05.002] [PMID: 24856067]
[5]
Sangani, C.B.; Makawana, J.A.; Zhang, X.; Teraiya, S.B.; Lin, L.; Zhu, H.L. Design, synthesis and molecular modeling of pyrazole-quinoline-pyridine hybrids as a new class of antimicrobial and anticancer agents. Eur. J. Med. Chem., 2014, 76, 549-557.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.018] [PMID: 24607998]
[6]
Patel, S.R.; Gangwal, R.; Sangamwar, A.T.; Jain, R. Synthesis, biological evaluation and 3D QSAR study of 2,4-disubstituted quinolines as anti-tuberculosis agents. Eur. J. Med. Chem., 2015, 93, 511-522.
[http://dx.doi.org/10.1016/j.ejmech.2015.02.034] [PMID: 25747550]
[7]
Leena, K. Salahuddin; Avijit, M.; Daman, P.; Mohammad S.Y., Rajnish, K.; Rupa, M.; Mohammad, S; Jawed, A.M.; Vivek, K.; Sushma, G. Synthesis and biological potentials of quinoline analogues: a review of literature. Mini Rev. Org. Chem., 2019, 16, 653-688.
[8]
Uttarwar, R.B.; Nawale, R.B.; Shamkuwar, P.B. Synthesis and pharmacological screening of derivatives of benzimidazole linked with quinoline and tetrazole. J. Chem. Pharm. Res., 2013, 5, 41-46.
[9]
Bekhit, A.A.; El-Sayed, O.A.; Aboulmagd, E.; Park, J.Y. Tetrazolo[1,5-a]quinoline as a potential promising new scaffold for the synthesis of novel anti-inflammatory and antibacterial agents. Eur. J. Med. Chem., 2004, 39(3), 249-255.
[http://dx.doi.org/10.1016/j.ejmech.2003.12.005] [PMID: 15051173]
[10]
Mahajan, P.S.; Nikam, M.D.; Khedkar, V.M.; Jha, P.C.; Sarkar, D.; Gill, C.H. Synthesis, biological evaluation and molecular docking studies of N-acylheteroaryl hydrazone derivatives as antioxidant and anti-inflammatory agents. Res. Chem. Intermed., 2016, 42, 2707-2729.
[http://dx.doi.org/10.1007/s11164-015-2176-1]
[11]
Gupta, S.K.; Mishra, A. Synthesis and biological evaluation of quinoline derivatives bearing thiazolidinones scaffolds as potent anti-inflammatory and analgesic agents. Indian J. Heterocycl. Chem., 2016, 25, 263-268.
[12]
Kouznetsov, V.V.; Rojas Ruíz, F.A.; Vargas Méndez, L.Y.; Gupta, M.P. Simple C-2-substituted quinolines and their anticancer activity. Lett. Drug Des. Discov., 2012, 9, 680-686.
[http://dx.doi.org/10.2174/157018012801319544]
[13]
Antypenko, O.M.; Antypenko, L.M.; Kovalenko, S.I.; Katsev, A.M.; Achkasova, O.M. Potential of N-aryl(benzyl,heteryl)-2-(tetrazolo[1,5-c]quinazolin-5-ylthio)acetamides as anticancer and antimicrobial agents. Arab. J. Chem., 2016, 9, 792-805.
[http://dx.doi.org/10.1016/j.arabjc.2014.09.009]
[14]
Bekhit, A.A.; El-Sayed, O.A.; Al-Allaf, T.A.K.; Aboul-Enein, H.Y.; Kunhi, M.; Pulicat, S.M.; Al-Hussain, K.; Al-Khodairy, F.; Arif, J. Synthesis, characterization and cytotoxicity evaluation of some new platinum(II) complexes of tetrazolo[1,5-a]quinolines. Eur. J. Med. Chem., 2004, 39(6), 499-505.
[http://dx.doi.org/10.1016/j.ejmech.2004.03.003] [PMID: 15183908]
[15]
Radini, I.A.M.; Elsheikh, T.M.Y.; El-Telbani, E.M.; Khidre, R.E. New potential antimalarial agents: design, synthesis and biological evaluation of some novel quinoline derivatives as antimalarial agents. Molecules, 2016, 21, 909.
[http://dx.doi.org/10.3390/molecules21070909]
[16]
Swamy, B.H.M.J.; Nandini, H.G.M.; Pramod, N. Synthesis, characterization and antifungal activity of coumarin carbohydrazide containing quinoline derivatives. Int. J. Res. Pharm. Nano Sci., 2013, 2, 195-202.
[17]
Dreikorn, B.A. Ditetrazolo(1,5-a:5',1'-c)quinoxalines for control of soilborne phytopathogens. U.S. Patent 3988455. 1976.
[18]
Wright, T.L. Preparation of 2-chloro-3-cyano-quinolines. U.S. Patent 4540786. 1985.
[19]
Mehdi, F-M. A review on quinoline derived scaffolds as anti-HIV agents. Mini Rev. Org. Chem., 2017, 14, 187-196.
[20]
Upadhayaya, R.S.; Shinde, P.D.; Sayyed, A.Y.; Kadam, S.A.; Bawane, A.N.; Poddar, A.; Plashkevych, O.; Földesi, A.; Chattopadhyaya, J. Synthesis and structure of azole-fused indeno[2,1-c]quinolines and their anti-mycobacterial properties. Org. Biomol. Chem., 2010, 8(24), 5661-5673.
[http://dx.doi.org/10.1039/c0ob00445f] [PMID: 20927480]
[21]
Sangani, C.B.; Makawana, J.A.; Duan, Y.T.; Yin, Y.; Teraiya, S.B.; Thumar, N.J.; Zhu, H.L. Design, synthesis and molecular modeling of biquinoline-pyridine hybrids as a new class of potential EGFR and HER-2 kinase inhibitors. Bioorg. Med. Chem. Lett., 2014, 24(18), 4472-4476.
[http://dx.doi.org/10.1016/j.bmcl.2014.07.094] [PMID: 25172421]
[22]
Marganakop, S.B.; Kamble, R.R.; Hoskeri, J.; Prasad, D.J.; Meti, G.Y. Facile synthesis of novel quinoline derivatives as anticancer agents. Med. Chem. Res., 2014, 23, 2727-2735.
[http://dx.doi.org/10.1007/s00044-013-0855-2]
[23]
Sujeet, K.G.; Ashutosh, M. Synthesis, characterization & screening for anti-inflammatory & analgesic activity of quinoline derivatives bearing azetidinones scaffolds. Anti-inflammatory & anti-allergy agents. Med. Chem., 2016, 15, 31-43.
[24]
Mungra, D.C.; Kathrotiya, H.G.; Ladani, N.K.; Patel, M.P.; Patel, R.G. Molecular iodine catalyzed synthesis of tetrazolo[1,5-a]-quinoline based imidazoles as a new class of antimicrobial and antituberculosis agents. Chin. Chem. Lett., 2012, 23, 1367-1370.
[http://dx.doi.org/10.1016/j.cclet.2012.11.007]
[25]
Subhedar, D.D.; Shaikh, M.H.; Shingate, B.B.; Nawale, L.; Sarkar, D.; Khedkar, V.M. Novel tetrazoloquinoline-thiazolidinone conjugates as possible antitubercular agents: synthesis and molecular docking. MedChemComm, 2016, 7, 1832-1848.
[http://dx.doi.org/10.1039/C6MD00278A]
[26]
Mungra, D.C.; Kathrotiya, H.G.; Ladani, N.K.; Patel, M.P.; Patel, R.G. Molecular iodine catalyzed synthesis of tetrazolo[1,5-a]quinoline based imidazoles as a new class of antimicrobial and antituberculosis agents. Chin. Chem. Lett., 2012, 23, 1367-1370.
[http://dx.doi.org/10.1016/j.cclet.2012.11.007]
[27]
Al-Marhabi, A.R.; Abbas, H-A.S.; Ammar, Y.A. Synthesis, characterization and biological evaluation of some quinoxaline derivatives: a promising and potent new class of antitumor and antimicrobial agents. Molecules, 2015, 20(11), 19805-19822.
[http://dx.doi.org/10.3390/molecules201119655] [PMID: 26540036]
[28]
Mukherjee, A.; Akhtar, M.S.; Sharma, V.L.; Seth, M.; Bhaduri, A.P.; Agnihotri, A.; Mehrotra, P.K.; Kamboj, V.P. Syntheses and bioevaluation of substituted dihydropyridines for pregnancy-interceptive activity in hamsters. J. Med. Chem., 1989, 32(10), 2297-2300.
[http://dx.doi.org/10.1021/jm00130a012] [PMID: 2795601]
[29]
Liu, S.; Lentz, D.; Tzschucke, C.C. Conversion of pyridine N-oxides to tetrazolopyridines. J. Org. Chem., 2014, 79(7), 3249-3254.
[http://dx.doi.org/10.1021/jo500231m] [PMID: 24621451]
[30]
Ismail, M.M.; Abass, M.; Hassan, M.M. Chemistry of substituted quinolinones. Part VI. Synthesis and nucleophilic reactions of 4-chloro-8-methylquinolin-2 (1H)-one and its thione analogue. Molecules, 2000, 5, 1224-1239.
[http://dx.doi.org/10.3390/51201224]
[31]
Porter, T.C.; Smalley, R.K.; Teguiche, M.; Purwono, B. Tetrazolo [1, 5-a] quinolines and 1, 2, 3-triazolo [1,5-a] quinazolines by the action of cyanocarbanions on 2-azidoarylcarbonyl compounds. Synthesis, 1997, 7, 773-777.
[http://dx.doi.org/10.1055/s-1997-1416]
[32]
Khaikate, O.; Soorukram, D.; Leowanawat, P.; Pohmakotr, M.; Reutrakul, V.; Kuhakarn, C. Azide-triggered bicyclization of o-alkynylisocyanobenzenes: synthesis of tetrazolo[1,5-a]quinolines. Eur. J. Org. Chem., 2019, 42, 7050-7057.
[http://dx.doi.org/10.1002/ejoc.201901209]
[33]
Liu, T.; Ji, Y.G.; Wu, L. tert-Butyl nitrite-mediated radical cyclization of tetrazole amines and alkynes toward tetrazolo[1,5-a]quinolines. Org. Biomol. Chem., 2019, 17(10), 2619-2623.
[http://dx.doi.org/10.1039/C9OB00169G] [PMID: 30766975]
[34]
Khidre, R.E.; Abdou, W.M. Wittig-Horner reagents: powerful tools in the synthesis of 5-and 6-heterocyclic compounds; shedding light on their application in pharmaceutical chemistry. Turk. J. Chem., 2016, 40, 225-247.
[http://dx.doi.org/10.3906/kim-1502-56]
[35]
Khidre, R.E.; Abdel-Wahab, B.F. Application of benzoylaceteonitrile in the synthesis of pyridines derivatives. Curr. Org. Chem., 2013, 17, 430-445.
[http://dx.doi.org/10.2174/1385272811317040009]
[36]
Radini, I.A.M.; Abdel-Wahab, B.F.; Khidre, R.E. Synthetic routes to imidazothiazines. Phosphorus Sulfur Silicon Relat. Elem., 2016, 191, 844-856.
[http://dx.doi.org/10.1080/10426507.2015.1119148]
[37]
Khidre, R.E.; Radini, I.A.M.; Mostafa, M.S.; Ameen, T.A. Synthetic applications of 2-diazo-1,3-indanedione. Indian J. Heterocycl. Chem., 2019, 29, 167-179.
[38]
Khidre, R.E.; Radini, I.A.M.; Ibrahim, D.A. Synthetic approaches of pyrazolyl quinolines. Mini Rev. Org. Chem., 2019, 16(4), 353-360.
[39]
Abdou, W.M.; Khidre, R.E. Overview of the chemical reactivity of phosphonyl carbanions toward some carbon-nitrogen systems. Curr. Org. Chem., 2012, 16, 913-930.
[http://dx.doi.org/10.2174/138527212800194782]
[40]
Tazeem; Bhat, A. R.; Han, X.; Athar, F. Synthesis, structure-activity relationship and antimicrobial evaluation of methyl-substituted tetrazoloquinoline-based pyrazolinethioamides. Chem. Select, 2016, 1, 5917-5922.
[41]
Deng, X-Q.; Wei, C-X.; Song, M-X.; Chai, K-Y.; Sun, Z-G.; Quan, Z-S. Synthesis and studies on anticonvulsant and antidepressant activities of 5-alkoxy-tetrazolo[1,5-a]quinolines. Bull. Korean Chem. Soc., 2010, 31, 447-452.
[http://dx.doi.org/10.5012/bkcs.2010.31.02.447]
[42]
Kulkarni, G.M.; Patil, V.D.; Kulkarni, M.V. Heterocycles with bridgehead nitrogen: synthesis, high resolution NMR and mass spectra of 5-aryloxymethyltetrazolo[1,5-a]quinolines. J. Indian Chem. Soc., 1997, 74, 502-503.
[43]
Bhalekar, S.M.; Parab, H.M. Synthesis of new heterocyclic compounds derived from 2-(2,4-dichloroquinolin-6-yl)-4H-1-benzopyran-4-one and their biological evaluation. Indian J. Heterocycl. Chem., 2011, 20, 301-304.
[44]
Unnamatla, M.V.B.; Islas-Jácome, A.; Quezada-Soto, A.; Ramírez-López, S.C.; Flores-Álamo, M.; Gámez-Montaño, R. Multicomponent one-pot synthesis of 3-tetrazolyl and 3-imidazo[1,2-a]pyridin tetrazolo[1,5-a]quinolines. J. Org. Chem., 2016, 81(21), 10576-10583.
[http://dx.doi.org/10.1021/acs.joc.6b01576] [PMID: 27560617]
[45]
Steinschifter, W.; Stadlbauer, W. Organic azides in heterocyclic syntheses. 18. Regioselective azidization of 2,4-dichloroquinolines. J. Prakt. Chem., 1994, 336, 311-318.
[46]
Ismail, M.M.; Abass, M.; Hassan, M.M. Chemistry of substituted quinolinones. V. Synthesis and use of quinolinylphosphazenes in amination of 8-methylquinoline. Phosphorus Sulfur Silicon Relat. Elem., 2000, 167, 275-288.
[http://dx.doi.org/10.1080/10426500008082406]
[47]
Wright, T.L. (1H-Tetrazol-5-yl)tetrazolo [1,5-a]quinolines and related compounds. E. Patent 120484. 1984.
[48]
Shivanyuk, A.F.; Lozinskii, M.O.; Kalinin, V.N. 9,14-Dihydrotetrazolo[1′,5′:1,2]quinolino[3,4-b]quinoxaline as a new heteroaromatic system. Chem. Heterocycl. Compd., 1983, 19, 222.
[http://dx.doi.org/10.1007/BF00506442]
[49]
Dreikorn, B.A. Combating phytopatholgenic organisms with tetrazolo[1,5- a]quinolines. D.E. Patent 2134146. 1972.
[50]
Yanborisova, O.A.; Konshin, M.E. Synthesis of 1,2,4-triazolo[4,3-a]quinoline-9-,1,2,3,4-tetrazolo[4,3-a]quinoline-9-, and 1,2,4-triazino[4,3-a]quinoline-10-carboxylic acids based on 2-chloro- and 2-hydrazinocinchoninic acids. Chem. Heterocycl. Compd., 1991, 27, 986-988.
[http://dx.doi.org/10.1007/BF00484363]
[51]
Shehata, I.A. Synthesis of some fused quinoline derivatives. Monatsh. Chem., 1990, 121, 1017-1021.
[http://dx.doi.org/10.1007/BF00809251]
[52]
Grishchuk, L.V.; Ivanov, E.I.; Kuz’min, V.E.; Turyanskaya, A.M.; Ivanova, R.Y. Reactions of 4-aryl-2-hydrazino-3-nitroquinolines with HNO2. Chem. Heterocycl. Compd., 2003, 39, 340-343.
[http://dx.doi.org/10.1023/A:1023966827299]
[53]
Desos, P.; Schlewer, G.; Wermuth, C.G. Synthesis of triazolo- and tetrazoloquinoline derivatives with antithrombotic activity. Heterocycles, 1989, 28, 1085-1099.
[http://dx.doi.org/10.3987/COM-88-S130]
[54]
Rees, C.W.; Reeves, D.L.R.; Storr, R.C. The imputed formation of 1,2,3-triazoles, triazines, and triazepines from hydrazinobenzoquinolines and nitrous acid. A correction. J. Chem. Soc., Perkin Trans. 1, 1976, 20, 2178-2182.
[http://dx.doi.org/10.1039/p19760002178]
[55]
Porter, T.C.; Smalley, R.K.; Teguiche, M.; Purwono, B. Tetrazolo[1,5-a]quinolines and 1,2,3-triazolo[1,5-a]quinazolines by the action of cyano carbanions on 2-azidoaryl carbonyl compounds. Synthesis, 1997, 7, 773-777.
[http://dx.doi.org/10.1055/s-1997-1416]
[56]
Garanti, L.; Zecchi, G. Thermochemical behavior of o-azidocinnamonitriles. J. Org. Chem., 1980, 45, 4767-4769.
[http://dx.doi.org/10.1021/jo01311a044]
[57]
Konwar, D.; Boruah, R.C. Synthesis of 4-substituted-benzo[h]tetrazolo[1,5-a]-6,7-dihydroquinolines. Ind. J. Chem. B, 1997, 36B, 918-919.
[58]
Filimonov, V.O.; Abaev, V.T.; Beryozkina, T.V.; Galata, K.A.; Slepukhin, P.A.; Kostenko, M.A.; Berseneva, V.S. tandem knoevenagel condensation and intramolecular cycloaddition reactions of 2-azidobenzaldehydes with 2-cyanoacetamides in the synthesis of 4-thiocarbamoyltetrazolo[1,5-a]quinolines. Chem. Heterocycl. Compd., 2016, 52, 721-726.
[http://dx.doi.org/10.1007/s10593-016-1954-z]
[59]
Lee, C.H.; Song, Y.S.; Cho, H.I.; Yang, J.W.; Lee, K-J. Synthesis of 4H-tetrazolo[1,5-a][1]benzazepines from the Baylis-Hillman adducts of 2-azidobenzaldehyde. J. Heterocycl. Chem., 2003, 40, 1103-1106.
[http://dx.doi.org/10.1002/jhet.5570400622]
[60]
Reddy, K.S.; Iyengar, D.S.; Bhalerao, U.T. The reaction of pyridine N-oxide and its benzo analogs with arenesulfonyl azides: novel synthesis of tetrazoloazines. Chem. Lett., 1983, 11, 1745-1748.
[http://dx.doi.org/10.1246/cl.1983.1745]
[61]
Zyryanov, V.A.; Rusinov, V.L.; Postovskii, I.Y. Heterocyclization of 1-(2′-carbethoxyphenyl)-5-methyltetrazole. Chem. Heterocycl. Compd., 1980, 16, 1286-1288.
[http://dx.doi.org/10.1007/BF00501837]
[62]
Pearce, D.S.; Locke, M.J.; Moore, H.W. Rearrangements of azidoquinones. XV. Thermal rearrangement of 2,3-diazido-1,4-quinones to 2-aza-3-cyano-1,4-quinones. J. Am. Chem. Soc., 1975, 97, 6181-6186.
[http://dx.doi.org/10.1021/ja00854a040]
[63]
Vartale, S.P.; Kadam, D.B.; Halikar, N.K. Synthesis of novel 4-thiazolidinone derivatives incorporated with benzothiazole and its antimicrobial activity. Pharma Chem., 2011, 36, 213-223.
[64]
Subhedar, D.D.; Shaikh, M.H.; Shingate, B.B.; Nawale, L.; Sarkar, D.; Khedkar, V.M. Novel tetrazoloquinoline-thiazolidinone conjugates as possible antitubercular agents: synthesis and molecular docking. MedChemComm, 2016, 7, 1832-1848.
[http://dx.doi.org/10.1039/C6MD00278A]
[65]
Kumaran, P.M.; Devi, K.S. mouli, C. H. M.; Manjula, M.; Rani, S. S. A.; Krishnamalar, G. Synthesis, characterization and wound healing activity of tetrazoloquinoline thiocarbohydrazide derivatives. Int. J. Res. Pharm. Nano Sci., 2012, 1, 70-79.
[66]
Kategaonkar, A.H.; Sonar, S.S.; Sapkal, S.B.; Gawali, V.U.; Shingate, B.B.; Shingare, M.S. Synthesis and in vitro antimicrobial activity of new a-aminophosphonates via tetrazolo[1,5-a]quinoline derivatives. Phosphorus Sulfur Silicon Relat. Elem., 2010, 185, 2113-2121.
[http://dx.doi.org/10.1080/10426500903530867]
[67]
Mungra, D.C.; Patel, M.P.; Patel, R.G. Microwave-assisted synthesis of some new tetrazolo[1,5-a]quinoline-based benzimidazoles catalyzed by p-TsOH and investigation of their antimicrobial activity. Med. Chem. Res., 2011, 20, 782-789.
[http://dx.doi.org/10.1007/s00044-010-9388-0]
[68]
Kategaonkar, A.H.; Labade, V.B.; Shinde, P.V.; Kategaonkar, A.H.; Shingate, B.B.; Shingare, M.S. Synthesis and antimicrobial activity of tetrazolo[1,5-a]quinoline-4-carbonitrile derivatives. Monatsh. Chem., 2010, 141, 787-791.
[http://dx.doi.org/10.1007/s00706-010-0324-2]
[69]
Gupta, R.; Gupta, A.K.; Paul, S.; Somal, P. Microwave-assisted synthesis and biological activities of some 7/9-substituted-4-(3-alkyl/aryl-5,6-dihydro-striazolo[3, 4-b] [1, 3, 4] thiadiazol-6-yl)-tetrazolo[1,5-a]quinolines. Ind. J. Chem. B, 2000, 39B, 847-852.
[70]
Ladani, N.K.; Patel, M.P.; Patel, R.G. An efficient three component one-pot synthesis of some new octahydroquinazolinone derivatives and investigation of their antimicrobial activities. ARKIVOC, 2009, 7, 292-302.
[71]
Radini, I.A.M.; Khidre, R.E.; El-Telbani, E.M. Synthesis and antimicrobial evaluation of new pyrazoline and pyrazolinyl thiazole derivatives bearing tetrazolo[1,5-a]quinoline moiety. Lett. Drug Des. Discov., 2016, 13, 921-931.
[http://dx.doi.org/10.2174/1570180813666160712234454]
[72]
Nikam, M.D.; Mahajan, P.S.; Damale, M.G.; Sangshetti, J.N.; Dabhade, S.K.; Shinde, D.W.; Gill, C.H. Synthesis, molecular docking and biological evaluation of some novel tetrazolo[1,5-a]quinoline incorporated pyrazoline and isoxazoline derivatives. Med. Chem. Res., 2015, 24, 3372-3386.
[http://dx.doi.org/10.1007/s00044-015-1385-x]
[73]
Ashok, D.; Rao, V.H.; Sreenivas, P. Microwave-assisted synthesis of 2-(4,5-dihydro-5-(tetrazolo[1,5-a]quinoline-4-yl)-1H-pyrazol-3-yl)-substituted phenols. Heterocycl. Commun., 2013, 19, 363-367.
[http://dx.doi.org/10.1515/hc-2013-0046]
[74]
Bhuva, S.V.; Patel, M.P. A three component one-pot synthesis and biological studies of some new octahydroacridine-1,8-dione derivatives containing tetrazolo[1,5-a]quinoline moiety. Ind. J. Chem. B, 2012, 51B, 1388-1395.
[75]
Ladani, N.K.; Mungra, D.C.; Patel, M.P.; Patel, R.G. Microwave-assisted synthesis of novel Hantzsch 1,4-dihydropyridines, acridine-1,8-diones and polyhydroquinolines bearing the tetrazolo[1,5-a]quinoline moiety and their antimicrobial activity assess. Chin. Chem. Lett., 2011, 22, 1407-1410.
[http://dx.doi.org/10.1016/j.cclet.2011.07.009]
[76]
Kategaonkar, A.H.; Sadaphal, S.A.; Shelke, K.F.; Kategaonkar, A.H.; Shingate, B.B.; Shingare, M.S. Synthesis and in vitro antimicrobial activity of new ethyl 2-(ethoxyphosphono)-1-cyano-2-(substituted tetrazolo[1,5-a]quinolin-4-yl)ethanoate derivatives. Chin. J. Chem., 2010, 28, 243-249.
[http://dx.doi.org/10.1002/cjoc.201090060]
[77]
Nasr, E.E.; Mostafa, A.S.; El-Sayed, M.A.A.; Massoud, M.A.M. Design, synthesis, and docking study of new quinoline derivatives as antitumor agents. Arch. Pharm. Chem. Life Sci., 2019, 352(7)e1800355
[http://dx.doi.org/10.1002/ardp.201800355]
[78]
Mungra, D.C.; Patel, M.P. Patel, Ranjan G. An efficient one-pot synthesis and in vitro antimicrobial activity of new pyridine derivatives bearing the tetrazoloquinoline nucleus. ARKIVOC, 2009, 14, 64-74.
[79]
Subhedar, D.D.; Shaikh, M.H.; Nawale, L.; Yeware, A.; Sarkar, D.; Khan, F. A K.; Sangshetti, J.N.; Shingate, B.B. Novel tetrazoloquinoline-rhodanine conjugates: Highly efficient synthesis and biological evaluation. Bioorg. Med. Chem. Lett., 2016, 26(9), 2278-2283.
[http://dx.doi.org/10.1016/j.bmcl.2016.03.045] [PMID: 27013391]
[80]
Kategaonkar, A.H.; Sapkal, S.B.; Madje, B.R.; Shingate, B.B.; Shingare, M.S. Synthesis of new 4-(4,5-diphenyl-1H-imidazol-2-yl)tetrazolo[1,5-a]quinolines from tetrazolo[1,5-a]quinolines. Chem. Heterocycl. Compd., 2010, 46, 754-758.
[http://dx.doi.org/10.1007/s10593-010-0579-x]
[81]
Kategaonkar, A.H.; Pokalwar, R.U.; Sonar, S.S.; Gawali, V.U.; Shingate, B.B.; Shingare, M.S. Synthesis, in vitro antibacterial and antifungal evaluations of new α-hydroxyphosphonate and new α-acetoxyphosphonate derivatives of tetrazolo [1, 5-a] quinoline. Eur. J. Med. Chem., 2010, 45(3), 1128-1132.
[http://dx.doi.org/10.1016/j.ejmech.2009.12.013] [PMID: 20036039]
[82]
Abdou, W.M.; Khidre, R.E.; Shaddy, A.A. Synthesis of tetrazoloquinoline-based mono- and bisphosphonate esters as potent anti-inflammatory agents. J. Heterocycl. Chem., 2013, 50, 33-41.
[http://dx.doi.org/10.1002/jhet.968]
[83]
Kategaonkar, A.H.; Pokalwar, R.U.; Sadaphal, S.A.; Shinde, P.V.; Shingate, B.B.; Shingare, M.S. Synthesis and characterization of new O,O-diethyl phosphorothioates derived from substituted tetrazolo[1,5-a]quinolin- 4-ylmethanol derivatives. Heteroatom Chem., 2010, 20, 436-441.
[84]
Aghaalizadeh, T.; Nasiri, F. Regioselective four-component synthesis of new tetrazolo[1,5-a]quinoline-based 2-amino-1,4-dihydropyridine and pyridin-2(1H)-one derivatives using nano-ZnO catalysis. Mol. Divers., 2018, 22(4), 907-917.
[http://dx.doi.org/10.1007/s11030-018-9844-1] [PMID: 29951884]
[85]
Madalageri, P.M.; Rajinikanth, V.; Ravindra, S.; Kumar, K.M.; Kotresh, O. Synthesis and biological evaluation of new 5-amino tetrazolo[1,5-a]quinoline. Pharma Chem., 2016, 8, 207-212.
[86]
Patel, A.J.; Patel, M.P. Ultrasound promoted efficient synthesis of new tetrazolo[1,5-a]quinoline derivatives and their comparative antimicrobial and antitubercular study. Heterocycl. Lett., 2016, 6, 185-194.
[87]
Sonar, S.S.; Sadaphal, S.A.; Pokalwar, R.U.; Shingate, B.B. hingare, M. S. Synthesis and antibacterial screening of new 4-((5-(difluoromethoxy)-1H-benzo[d]imidazol-2-ylthio)methyl)tetrazolo[1,5-a]quinoline derivatives. J. Heterocycl. Chem., 2010, 47, 441-445.
[88]
Deshmukh, A.R.; Bhosle, M.R.; Khillare, L.D.; Dhumal, S.T.; Mishra, A.; Srivastava, A.K.; Mane, R.A. New tetrazoloquinolinyl methoxyphenyl-4-thiazolidinones: synthesis and antihyperglycemic evaluation. Res. Chem. Intermed., 2017, 43, 1107-1120.
[http://dx.doi.org/10.1007/s11164-016-2686-5]
[89]
Cappelli, A.; Giuliani, G.; Anzini, M.; Vomera, S. Preparation of heterotricyclic carboxamides as neurokinin-1 (NK1) receptor ligands. WO Patent 2007, 074491. 2007.
[90]
Thota, S.; Argade, A.; Singh, R.; Lu, H.H.; Huang, P. Preparation of tetrazoloquinoline derivatives as inhibitors of HCV. WO Patent 2005030774. 2005.
[91]
Ellanki, A.R.; Islam, A.; Rama, V.S.; Pulipati, R.P.; Rambabu, D.; Krishna, G.R.; Reddy, C.M.; Mukkanti, K.; Vanaja, G.R.; Kalle, A.M.; Kumar, K.S.; Pal, M. Solvent effect on copper-catalyzed azide-alkyne cycloaddition (CuAAC): synthesis of novel triazolyl substituted quinolines as potential anticancer agents. Bioorg. Med. Chem. Lett., 2012, 22(10), 3455-3459.
[http://dx.doi.org/10.1016/j.bmcl.2012.03.091] [PMID: 22516283]
[92]
Mekheimer, R.A.; Elgemeie, G.H.; Kappe, T. Synthesis of some novel azido- and tetrazoloquinoline-3-carbonitriles and their conversion into 2,4-diaminoquinoline-3-carbonitriles. J. Chem. Res., 2005, 2, 82-85.
[http://dx.doi.org/10.3184/0308234054497100]
[93]
Mekheimer, R. Synthesis and reactions of 2-aminoquinoline-3-carbonitriles. Bull. Soc. Chim. Fr., 1994, 131, 279-283.
[94]
Mekheimer, R.; Ahmed, E.Kh.; Khattab, A.F. Synthesis of 2,4-diaminoquinoline-3-carbonitriles from tetrazolo[1,5-a]quinoline-4-carbonitriles. Afinidad, 1994, 51, 233-236.
[95]
Wentrup, C. Heterocyclic rearrangements: new cumulenes and acetylenes. Bull. Soc. Chim. Belg., 1982, 91, 997-1002.
[http://dx.doi.org/10.1002/bscb.19820911206]
[96]
Wentrup, C.; Winter, H.W. Isolation of diazacycloheptatetraenes from thermal nitrene-nitrene rearrangements. J. Am. Chem. Soc., 1980, 102, 6159-6161.
[http://dx.doi.org/10.1021/ja00539a039]
[97]
Brown, R.F.C.; Irvine, F.; Smith, R.J. Rearrangement of 8-phenyl-2-quinolyl nitrene at 530°. Aust. J. Chem., 1973, 26, 2213-2219.
[http://dx.doi.org/10.1071/CH9732213]
[98]
Dreikorn, B.A. Tetrazolo[1,5-a]quinoline derivatives. R.O. Patent 19780315. 1978.
[99]
Messmer, A.; Hajos, G.; Juhasz-Riedl, Z.; Sohar, P. Alkylation of tetrazolo [1, 5-a]pyridine and its benzolog3s (annelation effect). J. Org. Chem., 1988, 53, 973-975.
[http://dx.doi.org/10.1021/jo00240a007]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy