Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Perturbation of HSP Network in MCF-7 Breast Cancer Cell Line Triggers Inducible HSP70 Expression and Leads to Tumor Suppression

Author(s): Mustafa Ergul, Fugen Aktan, Mehmet T. Yildiz and Yusuf Tutar*

Volume 20, Issue 9, 2020

Page: [1051 - 1060] Pages: 10

DOI: 10.2174/1871520620666200213102210

Price: $65

Abstract

Background: Heat shock protein 70 (HSP70) is constitutively expressed in normal cells but aberrantly expressed in several types of tumor cells, helping their survival in extreme conditions. Thus, specific inhibition of HSP70 in tumor cells is a promising strategy in the treatment of cancer. HSP70 has a variety of isoforms in the cellular organelles and form different functions by coordinating and cooperating with cochaperones. Cancer cells overexpress HSPs during cell growth and proliferation and HSP network provides resistance against apoptosis. The present study aimed to evaluate quantitative changes in HSPs- and cancerassociated gene expressions and their interactions in the presence of 2-phenylethyenesulfonamide (PES) in MCF-7 cells.

Methods: Antiproliferative activity of PES was evaluated using the XTT assay. Inducible HSP70 (HSP70i) levels in the PES-treated cells were determined using the ELISA kit. PCR Array was performed to assess the HSPs- and cancer-pathway focused gene expression profiling. Gene network analysis was performed using the X2K, yEd (V.3.18.1) programs, and web-based gene list enrichment analysis tool Enrichr.

Results: The results demonstrated that PES exposure increased the amount of both HSP70i gene and protein expression surprisingly. However, the expression of HSP70 isoforms as well as other co-chaperones, and 17 cancer-associated genes decreased remarkably as expected. Additionally, interaction network analysis revealed a different mechanism; PES induction of HSP70i employs a cell cycle negative regulator, RB1, which is a tumor suppressor gene.

Conclusion: PES treatment inhibited MCF-7 cell proliferation and changed several HSPs- and cancer-related gene expressions along with their interactions through a unique mechanism although it causes an interesting increase at HSP70i gene and protein expressions. RB1 gene expression may play an important role in this effect as revealed by the interaction network analysis.

Keywords: HSP70, pifithrin-μ, PCR array, human breast cancer cell, ELISA, PES induction.

Graphical Abstract
[1]
Horibe, T.; Torisawa, A.; Kohno, M.; Kawakami, K. Synergetic cytotoxic activity toward breast cancer cells enhanced by the combination of Antp-TPR hybrid peptide targeting Hsp90 and Hsp70-targeted peptide. BMC Cancer, 2014, 14(14), 615.
[http://dx.doi.org/10.1186/1471-2407-14-615] [PMID: 25159299]
[2]
Howell, A.; Anderson, A.S.; Clarke, R.B.; Duffy, S.W.; Evans, D.G.; Garcia-Closas, M.; Gescher, A.J.; Key, T.J.; Saxton, J.M.; Harvie, M.N. Risk determination and prevention of breast cancer. Breast Cancer Res., 2014, 16(5), 446.
[http://dx.doi.org/10.1186/s13058-014-0446-2] [PMID: 25467785]
[3]
Sharma, D.; Masison, D.C. Hsp70 structure, function, regulation and influence on yeast prions. Protein Pept. Lett., 2009, 16(6), 571-581.
[http://dx.doi.org/10.2174/092986609788490230] [PMID: 19519514]
[4]
McKeon, A.M.; Egan, A.; Chandanshive, J.; McMahon, H.; Griffith, D.M. Novel improved synthesis of HSP70 inhibitor, pifithrin-μ. In vitro synergy quantification of pifithrin-μ combined with Pt drugs in prostate and colorectal cancer cells. Molecules, 2016, 21(7), 949.
[http://dx.doi.org/10.3390/molecules21070949] [PMID: 27455212]
[5]
Garrido, C.; Schmitt, E.; Candé, C.; Vahsen, N.; Parcellier, A.; Kroemer, G. HSP27 and HSP70: Potentially oncogenic apoptosis inhibitors. Cell Cycle, 2003, 2(6), 579-584.
[http://dx.doi.org/10.4161/cc.2.6.521] [PMID: 14512773]
[6]
Sherman, M.Y.; Gabai, V.L. Hsp70 in cancer: Back to the future. Oncogene, 2015, 34(32), 4153-4161.
[http://dx.doi.org/10.1038/onc.2014.349] [PMID: 25347739]
[7]
Mayer, M.P.; Bukau, B. Hsp70 chaperones: cellular functions and molecular mechanism. Cell. Mol. Life Sci., 2005, 62(6), 670-684.
[http://dx.doi.org/10.1007/s00018-004-4464-6] [PMID: 15770419]
[8]
Rousaki, A.; Miyata, Y.; Jinwal, U.K.; Dickey, C.A.; Gestwicki, J.E.; Zuiderweg, E.R. Allosteric drugs: The interaction of antitumor compound MKT-077 with human Hsp70 chaperones. J. Mol. Biol., 2011, 411(3), 614-632.
[http://dx.doi.org/10.1016/j.jmb.2011.06.003] [PMID: 21708173]
[9]
Leu, J.I.; Pimkina, J.; Frank, A.; Murphy, M.E.; George, D.L. A small molecule inhibitor of inducible heat shock protein 70. Mol. Cell, 2009, 36(1), 15-27.
[http://dx.doi.org/10.1016/j.molcel.2009.09.023] [PMID: 19818706]
[10]
Kaiser, M.; Kühnl, A.; Reins, J.; Fischer, S.; Ortiz-Tanchez, J.; Schlee, C.; Mochmann, L.H.; Heesch, S.; Benlasfer, O.; Hofmann, W.K.; Thiel, E.; Baldus, C.D. Antileukemic activity of the HSP70 inhibitor pifithrin-μ in acute leukemia. Blood Cancer J., 2011, 1(7), e28.
[http://dx.doi.org/10.1038/bcj.2011.28] [PMID: 22829184]
[11]
Rodina, A.; Patel, P.D.; Kang, Y.; Patel, Y.; Baaklini, I.; Wong, M.J.; Taldone, T.; Yan, P.; Yang, C.; Maharaj, R.; Gozman, A.; Patel, M.R.; Patel, H.J.; Chirico, W.; Erdjument-Bromage, H.; Talele, T.T.; Young, J.C.; Chiosis, G. Identification of an allosteric pocket on human hsp70 reveals a mode of inhibition of this therapeutically important protein. Chem. Biol., 2013, 20(12), 1469-1480.
[http://dx.doi.org/10.1016/j.chembiol.2013.10.008] [PMID: 24239008]
[12]
Murphy, M.E. The HSP70 family and cancer. Carcinogenesis, 2013, 34(6), 1181-1188.
[http://dx.doi.org/10.1093/carcin/bgt111] [PMID: 23563090]
[13]
Zhou, Y.; Ma, J.; Zhang, J.; He, L.; Gong, J.; Long, C. Pifithrin-μ is efficacious against non-small cell lung cancer via inhibition of heat shock protein 70. Oncol. Rep., 2017, 37(1), 313-322.
[http://dx.doi.org/10.3892/or.2016.5286] [PMID: 28004121]
[14]
Ritchie, M.D.; Holzinger, E.R.; Li, R.; Pendergrass, S.A.; Kim, D. Methods of integrating data to uncover genotype-phenotype interactions. Nat. Rev. Genet., 2015, 16(2), 85-97.
[http://dx.doi.org/10.1038/nrg3868] [PMID: 25582081]
[15]
Jin, Y.; Ratnam, K.; Chuang, P.Y.; Fan, Y.; Zhong, Y.; Dai, Y.; Mazloom, A.R.; Chen, E.Y.; D’Agati, V.; Xiong, H.; Ross, M.J.; Chen, N.; Ma’ayan, A.; He, J.C. A systems approach identifies HIPK2 as a key regulator of kidney fibrosis. Nat. Med., 2012, 18(4), 580-588.
[http://dx.doi.org/10.1038/nm.2685] [PMID: 22406746]
[16]
Chen, E.Y.; Xu, H.; Gordonov, S.; Lim, M.P.; Perkins, M.H.; Ma’ayan, A. Expression2Kinases: mRNA profiling linked to multiple upstream regulatory layers. Bioinformatics, 2012, 28(1), 105-111.
[http://dx.doi.org/10.1093/bioinformatics/btr625] [PMID: 22080467]
[17]
Werner, H.M.; Mills, G.B.; Ram, P.T. Cancer systems biology: A peek into the future of patient care? Nat. Rev. Clin. Oncol., 2014, 11(3), 167-176.
[http://dx.doi.org/10.1038/nrclinonc.2014.6] [PMID: 24492837]
[18]
Likić, V.A.; McConville, M.J.; Lithgow, T.; Bacic, A. Systems biology: The next frontier for bioinformatics. Adv. Bioinformatics, 2010, 2010 , Article ID 268925
[19]
Lachmann, A.; Xu, H.; Krishnan, J.; Berger, S.I.; Mazloom, A.R.; Ma’ayan, A.ChE.A. Transcription factor regulation inferred from integrating genome-wide ChIP-X experiments. Bioinformatics, 2010, 26(19), 2438-2444.
[http://dx.doi.org/10.1093/bioinformatics/btq466] [PMID: 20709693]
[20]
Berger, S.I.; Posner, J.M.; Ma’ayan, A. Genes2Networks: Connecting lists of gene symbols using mammalian protein interactions databases. BMC Bioinformatics, 2007, 8(372), 372.
[http://dx.doi.org/10.1186/1471-2105-8-372] [PMID: 17916244]
[21]
Lachmann, A.; Ma’ayan, A. KEA: Kinase enrichment analysis. Bioinformatics, 2009, 25(5), 684-686.
[http://dx.doi.org/10.1093/bioinformatics/btp026] [PMID: 19176546]
[22]
Chen, E.Y.; Tan, C.M.; Kou, Y.; Duan, Q.; Wang, Z.; Meirelles, G.V.; Clark, N.R.; Ma’ayan, A. Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics, 2013, 14(128), 128.
[http://dx.doi.org/10.1186/1471-2105-14-128] [PMID: 23586463]
[23]
Kuleshov, M.V.; Jones, M.R.; Rouillard, A.D.; Fernandez, N.F.; Duan, Q.; Wang, Z.; Koplev, S.; Jenkins, S.L.; Jagodnik, K.M.; Lachmann, A.; McDermott, M.G.; Monteiro, C.D.; Gundersen, G.W.; Ma’ayan, A. Enrichr: A comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res., 2016, 44(W1), W90-7.
[http://dx.doi.org/10.1093/nar/gkw377] [PMID: 27141961]
[24]
Gümus, M.; Ozgur, A.; Tutar, L.; Disli, A.; Koca, I.; Tutar, Y. Design, synthesis, and evaluation of heat shock protein 90 inhibitors in human breast cancer and its metastasis. Curr. Pharm. Biotechnol., 2016, 17(14), 1231-1245.
[http://dx.doi.org/10.2174/1389201017666161031105815] [PMID: 27804852]
[25]
Daugaard, M.; Rohde, M.; Jäättelä, M. The heat shock protein 70 family: Highly homologous proteins with overlapping and distinct functions. FEBS Lett., 2007, 581(19), 3702-3710.
[http://dx.doi.org/10.1016/j.febslet.2007.05.039] [PMID: 17544402]
[26]
Andrews, P.D. Aurora kinases: Shining lights on the therapeutic horizon? Oncogene, 2005, 24(32), 5005-5015.
[http://dx.doi.org/10.1038/sj.onc.1208752] [PMID: 16049526]
[27]
Chieffi, P.; Cozzolino, L.; Kisslinger, A.; Libertini, S.; Staibano, S.; Mansueto, G.; De Rosa, G.; Villacci, A.; Vitale, M.; Linardopoulos, S.; Portella, G.; Tramontano, D. Aurora B expression directly correlates with prostate cancer malignancy and influence prostate cell proliferation. Prostate, 2006, 66(3), 326-333.
[http://dx.doi.org/10.1002/pros.20345] [PMID: 16267859]
[28]
Erpolat, O.P.; Gocun, P.U.; Akmansu, M.; Karakus, E.; Akyol, G. High expression of nuclear survivin and Aurora B predicts poor overall survival in patients with head and neck squamous cell cancer. Strahlenther. Onkol., 2012, 188(3), 248-254.
[http://dx.doi.org/10.1007/s00066-011-0042-7] [PMID: 22311150]
[29]
Tuncel, H.; Shimamoto, F.; Kaneko Guangying Qi, H.; Aoki, E.; Jikihara, H.; Nakai, S.; Takata, T.; Tatsuka, M. Nuclear Aurora B and cytoplasmic survivin expression is involved in lymph node metastasis of colorectal cancer. Oncol. Lett., 2012, 3(5), 1109-1114.
[http://dx.doi.org/10.3892/ol.2012.633] [PMID: 22783401]
[30]
Wang, N.N.; Li, Z.H.; Zhao, H.; Tao, Y.F.; Xu, L.X.; Lu, J.; Cao, L.; Du, X.J.; Sun, L.C.; Zhao, W.L.; Xiao, P.F.; Fang, F.; Su, G.H.; Li, Y.H.; Li, G.; Li, Y.P.; Xu, Y.Y.; Zhou, H.T.; Wu, Y.; Jin, M.F.; Liu, L.; Ni, J.; Wang, J.; Hu, S.Y.; Zhu, X.M.; Feng, X.; Pan, J. Molecular targeting of the oncoprotein PLK1 in pediatric acute myeloid leukemia: RO3280, a novel PLK1 inhibitor, induces apoptosis in leukemia cells. Int. J. Mol. Sci., 2015, 16(1), 1266-1292.
[http://dx.doi.org/10.3390/ijms16011266] [PMID: 25574601]
[31]
Liu, Z.; Sun, Q.; Wang, X. PLK1, a potential target for cancer therapY. Transl. Oncol., 2017, 10(1), 22-32.
[http://dx.doi.org/10.1016/j.tranon.2016.10.003] [PMID: 27888710]
[32]
Pezuk, J.A.; Brassesco, M.S.; de Oliveira, R.S.; Machado, H.R.; Neder, L.; Scrideli, C.A.; Tone, L.G. PLK1-associated microRNAs are correlated with pediatric medulloblastoma prognosis. Childs Nerv. Syst., 2017, 33(4), 609-615.
[http://dx.doi.org/10.1007/s00381-017-3366-5] [PMID: 28283778]
[33]
Zou, X.; Tsutsui, T.; Ray, D.; Blomquist, J.F.; Ichijo, H.; Ucker, D.S.; Kiyokawa, H. The cell cycle-regulatory CDC25A phosphatase inhibits apoptosis signal-regulating kinase 1. Mol. Cell. Biol., 2001, 21(14), 4818-4828.
[http://dx.doi.org/10.1128/MCB.21.14.4818-4828.2001] [PMID: 11416155]
[34]
Bo, L.; Wei, B.; Wang, Z.; Kong, D.; Gao, Z.; Miao, Z. Bioinformatics analysis of the CDK2 functions in neuroblastoma. Mol. Med. Rep., 2018, 17(3), 3951-3959.
[PMID: 29328425]
[35]
Lee, M.H.; Cho, Y.; Kim, D.H.; Woo, H.J.; Yang, J.Y.; Kwon, H.J.; Yeon, M.J.; Park, M.; Kim, S.H.; Moon, C.; Tharmalingam, N.; Kim, T.U.; Kim, J.B. Menadione induces G2/M arrest in gastric cancer cells by down-regulation of CDC25C and proteasome mediated degradation of CDK1 and cyclin B1. Am. J. Transl. Res., 2016, 8(12), 5246-5255.
[PMID: 28077999]
[36]
Liu, F.Y.; Wang, L.P.; Wang, Q.; Han, P.; Zhuang, W.P.; Li, M.J.; Yuan, H. miR-302b regulates cell cycles by targeting CDK2 via ERK signaling pathway in gastric cancer. Cancer Med., 2016, 5(9), 2302-2313.
[http://dx.doi.org/10.1002/cam4.818] [PMID: 27465546]
[37]
Kristjánsdóttir, K.; Rudolph, J. Cdc25 phosphatases and cancer. Chem. Biol., 2004, 11(8), 1043-1051.
[http://dx.doi.org/10.1016/j.chembiol.2004.07.007] [PMID: 15324805]
[38]
Hamy, A.S.; Bieche, I.; Lehmann-Che, J.; Scott, V.; Bertheau, P.; Guinebretière, J.M.; Matthieu, M.C.; Sigal-Zafrani, B.; Tembo, O.; Marty, M.; Asselain, B.; Spyratos, F.; de Cremoux, P. BIRC5 (survivin): A pejorative prognostic marker in stage II/III breast cancer with no response to neoadjuvant chemotherapy. Breast Cancer Res. Treat., 2016, 159(3), 499-511.
[http://dx.doi.org/10.1007/s10549-016-3961-2] [PMID: 27592112]
[39]
Sah, N.K.; Khan, Z.; Khan, G.J.; Bisen, P.S. Structural, functional and therapeutic biology of survivin. Cancer Lett., 2006, 244(2), 164-171.
[http://dx.doi.org/10.1016/j.canlet.2006.03.007] [PMID: 16621243]
[40]
Olie, R.A.; Simões-Wüst, A.P.; Baumann, B.; Leech, S.H.; Fabbro, D.; Stahel, R.A.; Zangemeister-Wittke, U. A novel antisense oligonucleotide targeting survivin expression induces apoptosis and sensitizes lung cancer cells to chemotherapy. Cancer Res., 2000, 60(11), 2805-2809.
[PMID: 10850418]
[41]
Schultz, N.; Lopez, E.; Saleh-Gohari, N.; Helleday, T. Poly(ADP-ribose) polymerase (PARP-1) has a controlling role in homologous recombination. Nucleic Acids Res., 2003, 31(17), 4959-4964.
[http://dx.doi.org/10.1093/nar/gkg703] [PMID: 12930944]
[42]
Godon, C.; Cordelières, F.P.; Biard, D.; Giocanti, N.; Mégnin-Chanet, F.; Hall, J.; Favaudon, V. PARP inhibition versus PARP-1 silencing: different outcomes in terms of single-strand break repair and radiation susceptibility. Nucleic Acids Res., 2008, 36(13), 4454-4464.
[http://dx.doi.org/10.1093/nar/gkn403] [PMID: 18603595]
[43]
Rojo, F.; García-Parra, J.; Zazo, S.; Tusquets, I.; Ferrer-Lozano, J.; Menendez, S.; Eroles, P.; Chamizo, C.; Servitja, S.; Ramírez-Merino, N.; Lobo, F.; Bellosillo, B.; Corominas, J.M.; Yelamos, J.; Serrano, S.; Lluch, A.; Rovira, A.; Albanell, J. Nuclear PARP-1 protein overexpression is associated with poor overall survival in early breast cancer. Ann. Oncol., 2012, 23(5), 1156-1164.
[http://dx.doi.org/10.1093/annonc/mdr361] [PMID: 21908496]
[44]
Dziaman, T.; Ludwiczak, H.; Ciesla, J.M.; Banaszkiewicz, Z.; Winczura, A.; Chmielarczyk, M.; Wisniewska, E.; Marszalek, A.; Tudek, B.; Olinski, R. PARP-1 expression is increased in colon adenoma and carcinoma and correlates with OGG1. PLoS One, 2014, 9(12), e115558.
[http://dx.doi.org/10.1371/journal.pone.0115558] [PMID: 25526641]
[45]
Newman, E.A.; Lu, F.; Bashllari, D.; Wang, L.; Opipari, A.W.; Castle, V.P. Alternative NHEJ pathway components are therapeutic targets in high-risk neuroblastoma. Mol. Cancer Res., 2015, 13(3), 470-482.
[http://dx.doi.org/10.1158/1541-7786.MCR-14-0337] [PMID: 25563294]
[46]
Tsourlakis, M.C.; Khosrawi, P.; Weigand, P.; Kluth, M.; Hube-Magg, C.; Minner, S.; Koop, C.; Graefen, M.; Heinzer, H.; Wittmer, C.; Sauter, G.; Krech, T.; Wilczak, W.; Huland, H.; Simon, R.; Schlomm, T.; Steurer, S. VEGFR-1 overexpression identifies a small subgroup of aggressive prostate cancers in patients treated by prostatectomy. Int. J. Mol. Sci., 2015, 16(4), 8591-8606.
[http://dx.doi.org/10.3390/ijms16048591] [PMID: 25894226]
[47]
Lee, H.K.; Chauhan, S.K.; Kay, E.; Dana, R. Flt-1 regulates vascular endothelial cell migration via a protein tyrosine kinase-7-dependent pathway. Blood, 2011, 117(21), 5762-5771.
[http://dx.doi.org/10.1182/blood-2010-09-306928] [PMID: 21460247]
[48]
Schmidt, M.; Voelker, H.U.; Kapp, M.; Dietl, J.; Kammerer, U. Expression of VEGFR-1 (Flt-1) in breast cancer is associated with VEGF expression and with node-negative tumour stage. Anticancer Res., 2008, 28(3A), 1719-1724.
[PMID: 18630531]
[49]
Chen, G.; Zhang, H.; Sun, L.; Jiang, Y.; Xu, Z.; Gu, H.; Xu, H.; Yang, J.; Wang, Y.; Xu, T.; Zhang, Y.; Liu, C. Prognostic significance of GSTP1 in patients with triple negative breast cancer. Oncotarget, 2017, 8(40), 68675-68680.
[http://dx.doi.org/10.18632/oncotarget.19824] [PMID: 28978147]
[50]
Yam, C.; Murthy, R.K.; Rauch, G.M.; Murray, J.L.; Walters, R.S.; Valero, V.; Brewster, A.M.; Bast, R.C., Jr; Booser, D.J.; Giordano, S.H.; Esteva, F.J.; Yang, W.; Hortobagyi, G.N.; Moulder, S.L.; Arun, B. A phase II study of imatinib mesylate and letrozole in patients with hormone receptor-positive metastatic breast cancer expressing c-kit or PDGFR-β. Invest. New Drugs, 2018, 36(6), 1103-1109.
[http://dx.doi.org/10.1007/s10637-018-0672-z] [PMID: 30311036]
[51]
Skliris, G.P.; Leygue, E.; Curtis-Snell, L.; Watson, P.H.; Murphy, L.C. Expression of oestrogen receptor-beta in oestrogen receptor-alpha negative human breast tumours. Br. J. Cancer, 2006, 95(5), 616-626.
[http://dx.doi.org/10.1038/sj.bjc.6603295] [PMID: 16880783]
[52]
Papoutsi, Z.; Zhao, C.; Putnik, M.; Gustafsson, J.A.; Dahlman-Wright, K. Binding of estrogen receptor alpha/beta heterodimers to chromatin in MCF-7 cells. J. Mol. Endocrinol., 2009, 43(2), 65-72.
[http://dx.doi.org/10.1677/JME-08-0177] [PMID: 19376833]
[53]
Toy, W.; Weir, H.; Razavi, P.; Lawson, M.; Goeppert, A.U.; Mazzola, A.M.; Smith, A.; Wilson, J.; Morrow, C.; Wong, W.L.; De Stanchina, E.; Carlson, K.E.; Martin, T.S.; Uddin, S.; Li, Z.; Fanning, S.; Katzenellenbogen, J.A.; Greene, G.; Baselga, J.; Chandarlapaty, S. Activating ESR1 mutations differentially affect the efficacy of ER antagonists. Cancer Discov., 2017, 7(3), 277-287.
[http://dx.doi.org/10.1158/2159-8290.CD-15-1523] [PMID: 27986707]
[54]
Champoux, J.J. DNA topoisomerases: Structure, function, and mechanism. Annu. Rev. Biochem., 2001, 70, 369-413.
[http://dx.doi.org/10.1146/annurev.biochem.70.1.369] [PMID: 11395412]
[55]
Panvichian, R.; Tantiwetrueangdet, A.; Angkathunyakul, N.; Leelaudomlipi, S. TOP2A amplification and overexpression in hepatocellular carcinoma tissues. BioMed Res. Int., 2015, 2015, , 381602.
[http://dx.doi.org/10.1155/2015/381602] [PMID: 25695068]
[56]
Chinnam, M.; Goodrich, D.W. RB1, development, and cancer. Curr. Top. Dev. Biol., 2011, 94, 129-169.
[http://dx.doi.org/10.1016/B978-0-12-380916-2.00005-X] [PMID: 21295686]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy