Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Process, Outcomes and Possible Elimination of Aggregation with Special Reference to Heme Proteins; Likely Remediations of Proteinopathies

Author(s): Mohammad Furkan and Rizwan Hasan Khan*

Volume 21, Issue 6, 2020

Page: [573 - 583] Pages: 11

DOI: 10.2174/1389203721666200204122732

Price: $65

Abstract

Protein folding is a natural phenomenon through which a linear polypeptide possessing necessary information attains three-dimension functionally active conformation. This is a complex and multistep process and therefore, the presence of several intermediary structures could be speculated as a result of protein folding. In in vivo, this folding process is governed by the assistance of other proteins called molecular chaperones and heat shock proteins. Due to the mechanism of protein folding, these intermediary structures remain major challenge for modern biology. Mutation in gene encoding amino acid can cause adverse environmental conditions which may result in misfolding of the linear polypeptide followed by the formation of aggregates and amyloidosis. Aggregation contributes to the pathophysiology of several maladies including diabetes mellitus, Huntington’s and Alzheimer’s disease. The propensity of native structure to form aggregated and fibrillar assemblies is a hallmark of amyloidosis. During aggregation of a protein, transition from α helix to β sheet is observed, and mainly β sheeted structure is visualised in a mature fibril. Heme proteins are very crucial for major life activities like transport of oxygen and carbon dioxide, synthesis of ATP, role in electron transport chain, and detoxification of free radicals formed during biochemical reactions. Any structural variation in the heme proteins may lead to a fatal response. Hence characterization of the folding intermediates becomes crucial. The characterization has been deciphered with the help of strong denaturants like acetonitrile and TFE. Moreover, possible role of elimination of these aggregates and prevention of protein denaturation is also discussed. Current review deals with the basic process and mechanism of the protein folding in general and the ultimate outcomes of the protein misfolding. Since Native conformation of heme proteins is essential for some vital activities as listed above, we have discussed possible prevention of denaturation and aggregation of heme proteins such as Hb, cyt c, catalase & peroxidase.

Keywords: Aggregation, amyloid inhibitors, anthroquinone, heme proteins, neurodegenerative diseases, polyphenols.

Graphical Abstract
[1]
Furkan, M.; Alam, M.T.; Rizvi, A.; Khan, K.; Ali, A. Shamsuzzaman; Naeem, A. Aloe emodin, an anthroquinone from Aloe vera acts as an anti aggregatory agent to the thermally aggregated hemoglobin. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2017, 179, 188-193.
[http://dx.doi.org/10.1016/j.saa.2017.02.014 ] [PMID: 28242448]
[2]
Furkan, M.; Rizvi, A.; Afsar, M.; Ajmal, M.R.; Khan, R.H.; Naeem, A. In vitro Elucidation of the Folding Intermediates and Aggregate Formation of Hemoglobin Induced by Acetonitrile: A Multispectroscopic Approach. Protein Pept. Lett., 2016, 23(10), 884-891.
[http://dx.doi.org/10.2174/0929866523666160831154706 ] [PMID: 27586184]
[3]
Furkan, M.; Fazili, N.A.; Afsar, M.; Naeem, A. Analysing cytochrome c aggregation and fibrillation upon interaction with acetonitrile: an in vitro study. J. Fluoresc., 2016, 26(6), 1959-1966.
[http://dx.doi.org/10.1007/s10895-016-1889-x ] [PMID: 27550168]
[4]
Chaturvedi, S.K.; Zaidi, N.; Alam, P.; Khan, J.M.; Qadeer, A.; Siddique, I.A.; Asmat, S.; Zaidi, Y.; Khan, R.H. Unraveling comparative anti-amyloidogenic behavior of pyrazinamide and D-cycloserine: a mechanistic biophysical insight. PLoS One, 2015, 10(8)e0136528
[http://dx.doi.org/10.1371/journal.pone.0136528 ] [PMID: 26312749]
[5]
Ansari, N.A. Moinuddin; Mir, A.R.; Habib, S.; Alam, K.; Ali, A.; Khan, R.H. Role of early glycation Amadori products of lysine-rich proteins in the production of autoantibodies in diabetes type 2 patients. Cell Biochem. Biophys., 2014, 70(2), 857-865.
[http://dx.doi.org/10.1007/s12013-014-9991-7 ] [PMID: 24789546]
[6]
Furkan, M.; Sidddiqi, M.K.; Khan, A.N.; Khan, R.H. An antibiotic (sulfamethoxazole) stabilizes polypeptide (human serum albumin) even under extreme condition (elevated temperature). Int. J. Biol. Macromol., 2019, 135, 337-343.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.05.152 ] [PMID: 31128176]
[7]
Furkan, M.; Siddiqi, M.K.; Zakariya, S.M.; Khan, F.I.; Hassan, M.I.; Khan, R.H. An In vitro elucidation of the antiaggregatory potential of Diosminover thermally induced unfolding of hen egg white lysozyme; A preventive quest for lysozyme amyloidosis. Int. J. Biol. Macromol., 2019, 129, 1015-1023.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.02.107 ] [PMID: 30794897]
[8]
Furkan, M.; Rizvi, A.; Alam, M.T.; Zaman, M.; Khan, R.H.; Naeem, A. Serotonin abrogates dopamine induced aggregation of cytochrome c. Int. J. Biol. Macromol., 2017, 102, 893-900.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.04.026 ] [PMID: 28396269]
[9]
Furkan, M.; Rizvi, A.; Alam, M.T.; Naeem, A. Peroxidase improves the activity of catalase by preventing aggregation during TFE-induced denaturation. J. Biomol. Struct. Dyn., 2018, 36(3), 551-560.
[http://dx.doi.org/10.1080/07391102.2017.1287007 ] [PMID: 28150569]
[10]
Davis, R.; Dobson, C.M.; Vendruscolo, M. Determination of the structures of distinct transition state ensembles for a β-sheet peptide with parallel folding pathways. J. Chem. Phys., 2002, 117, 9510-9517.
[http://dx.doi.org/10.1063/1.1516784]
[11]
Flynn, G.C.; Pohl, J.; Flocco, M.T.; Rothman, J.E. Peptide-binding specificity of the molecular chaperone BiP. Nature, 1991, 353(6346), 726-730.
[http://dx.doi.org/10.1038/353726a0 ] [PMID: 1834945]
[12]
Landry, S.J.; Jordan, R.; McMacken, R.; Gierasch, L.M. Different conformations for the same polypeptide bound to chaperones DnaK and GroEL. Nature, 1992, 355(6359), 455-457.
[http://dx.doi.org/10.1038/355455a0 ] [PMID: 1346469]
[13]
Gething, M.J.; Sambrook, J. Protein folding in the cell. Nature, 1992, 355(6355), 33-45.
[http://dx.doi.org/10.1038/355033a0 ] [PMID: 1731198]
[14]
Soto, C. Unfolding the role of protein misfolding in neurodegenerative diseases. Nat. Rev. Neurosci., 2003, 4(1), 49-60.
[http://dx.doi.org/10.1038/nrn1007 ] [PMID: 12511861]
[15]
Bryngelson, J.D.; Onuchic, J.N.; Socci, N.D.; Wolynes, P.G. Funnels, pathways, and the energy landscape of protein folding: a synthesis. Proteins, 1995, 21(3), 167-195.
[http://dx.doi.org/10.1002/prot.340210302 ] [PMID: 7784423]
[16]
Yon, J.M. Protein folding: concepts and perspectives. Cell. Mol. Life Sci., 1997, 53(7), 557-567.
[http://dx.doi.org/10.1007/s000180050072 ] [PMID: 9312402]
[17]
Yon, J.M.; Betton, J.M. Protein folding in vitro and in the cellular environment. Biol. Cell, 1991, 71(1-2), 17-23.
[http://dx.doi.org/10.1016/0248-4900(91)90047-Q ] [PMID: 17598276]
[18]
Dobson, C.M. Protein folding and misfolding. Nature, 2003, 426(6968), 884-890.
[http://dx.doi.org/10.1038/nature02261 ] [PMID: 14685248]
[19]
Anfinsen, C.B. The formation and stabilization of protein structure. Biochem. J., 1972, 128(4), 737-749.
[PMID: 4565129]
[20]
Alexander, P.A.; He, Y.; Chen, Y.; Orban, J.; Bryan, P.N. The design and characterization of two proteins with 88% sequence identity but different structure and function. Proc. Natl. Acad. Sci. USA, 2007, 104(29), 11963-11968.
[http://dx.doi.org/10.1073/pnas.0700922104 ] [PMID: 17609385]
[21]
Fink, A.L. Protein aggregation: folding aggregates, inclusion bodies and amyloid. Fold. Des., 1998, 3(1), R9-R23.
[http://dx.doi.org/10.1016/S1359-0278(98)00002-9 ] [PMID: 9502314]
[22]
Rose, G.D.; Fleming, P.J.; Banavar, J.R.; Maritan, A. A backbone-based theory of protein folding. Proc. Natl. Acad. Sci. USA, 2006, 103(45), 16623-16633.
[http://dx.doi.org/10.1073/pnas.0606843103 ] [PMID: 17075053]
[23]
Pande, V.S.; Rokhsar, D.S. Is the molten globule a third phase of proteins? Proc. Natl. Acad. Sci. USA, 1998, 95(4), 1490-1494.
[http://dx.doi.org/10.1073/pnas.95.4.1490 ] [PMID: 9465042]
[24]
Ptitsyn, O.B. Molten globule and protein folding. Adv. Protein Chem., 1995, 47, 83-229. [Academic Press.]
[http://dx.doi.org/10.1016/S0065-3233(08)60546-X ] [PMID: 8561052]
[25]
Smith, L.J.; Fiebig, K.M.; Schwalbe, H.; Dobson, C.M. The concept of a random coil. Residual structure in peptides and denatured proteins. Fold. Des., 1996, 1(5), R95-R106.
[http://dx.doi.org/10.1016/S1359-0278(96)00046-6 ] [PMID: 9080177]
[26]
Bai, Y.; Milne, J.S.; Mayne, L.; Englander, S.W. Primary structure effects on peptide group hydrogen exchange. Proteins, 1993, 17(1), 75-86.
[http://dx.doi.org/10.1002/prot.340170110 ] [PMID: 8234246]
[27]
Pappu, R.V.; Srinivasan, R.; Rose, G.D. The Flory isolated-pair hypothesis is not valid for polypeptide chains: implications for protein folding. Proc. Natl. Acad. Sci. USA, 2000, 97(23), 12565-12570.
[http://dx.doi.org/10.1073/pnas.97.23.12565 ] [PMID: 11070081]
[28]
Dar, A.C.; Shokat, K.M. The evolution of protein kinase inhibitors from antagonists to agonists of cellular signaling. Annu. Rev. Biochem., 2011, 80, 769-795.
[http://dx.doi.org/10.1146/annurev-biochem-090308-173656 ] [PMID: 21548788]
[29]
Sosnick, T.R.; Trewhella, J. Denatured states of ribonuclease A have compact dimensions and residual secondary structure. Biochemistry, 1992, 31(35), 8329-8335.
[http://dx.doi.org/10.1021/bi00150a029 ] [PMID: 1525171]
[30]
Pan, W.P.; Teng, Y.H.; Shen, J. Photoacoustic study of iron-deficiency anaemia. J. Biomed. Eng., 1991, 13(5), 415-416.
[http://dx.doi.org/10.1016/0141-5425(91)90023-Z ] [PMID: 1795509]
[31]
Senisterra, G.; Chau, I.; Vedadi, M. Thermal denaturation assays in chemical biology. Assay Drug Dev. Technol., 2012, 10(2), 128-136.
[http://dx.doi.org/10.1089/adt.2011.0390 ] [PMID: 22066913]
[32]
Bennion, B.J.; Daggett, V. The molecular basis for the chemical denaturation of proteins by urea. Proc. Natl. Acad. Sci. USA, 2003, 100(9), 5142-5147.
[http://dx.doi.org/10.1073/pnas.0930122100 ] [PMID: 12702764]
[33]
Kuwajima, K. The molten globule state as a clue for understanding the folding and cooperativity of globular-protein structure. Proteins, 1989, 6(2), 87-103.
[http://dx.doi.org/10.1002/prot.340060202 ] [PMID: 2695928]
[34]
Nakamura, T.; Lipton, S.A. Molecular mechanisms of nitrosative stress-mediated protein misfolding in neurodegenerative diseases. Cell. Mol. Life Sci., 2007, 64(13), 1609-1620.
[http://dx.doi.org/10.1007/s00018-007-6525-0 ] [PMID: 17453143]
[35]
Wu, C.; Wang, Z.; Lei, H.; Zhang, W.; Duan, Y. Dual binding modes of Congo red to amyloid protofibril surface observed in molecular dynamics simulations. J. Am. Chem. Soc., 2007, 129(5), 1225-1232.
[http://dx.doi.org/10.1021/ja0662772 ] [PMID: 17263405]
[36]
Gsponer, J.; Hopearuoho, H.; Whittaker, S.B-M.; Spence, G.R.; Moore, G.R.; Paci, E.; Radford, S.E.; Vendruscolo, M. Determination of an ensemble of structures representing the intermediate state of the bacterial immunity protein Im7. Proc. Natl. Acad. Sci. USA, 2006, 103(1), 99-104.
[http://dx.doi.org/10.1073/pnas.0508667102 ] [PMID: 16371468]
[37]
Freddolino, P.L.; Park, S.; Roux, B.; Schulten, K. Force field bias in protein folding simulations. Biophys. J., 2009, 96(9), 3772-3780.
[http://dx.doi.org/10.1016/j.bpj.2009.02.033 ] [PMID: 19413983]
[38]
Creighton, T.E. Protein folding. Biochem. J., 1990, 270(1), 1-16.
[http://dx.doi.org/10.1042/bj2700001 ] [PMID: 2204340]
[39]
Creighton, T.E. Protein folding coupled to disulphide bond formation. Biol. Chem., 1997, 378(8), 731-744.
[PMID: 9377467]
[40]
Bhattacharya, M.; Mukhopadhyay, S. Structural and dynamical insights into the molten-globule form of ovalbumin. J. Phys. Chem. B, 2012, 116(1), 520-531.
[http://dx.doi.org/10.1021/jp208416d ] [PMID: 22097968]
[41]
Bowie, J.U.; Reidhaar-Olson, J.F.; Lim, W.A.; Sauer, R.T. Deciphering the message in protein sequences: tolerance to amino acid substitutions. Science, 1990, 247(4948), 1306-1310.
[http://dx.doi.org/10.1126/science.2315699 ] [PMID: 2315699]
[42]
Smith, M.R.; DeGudicibus, S.J.; Stacey, D.W. Requirement for c-ras proteins during viral oncogene transformation. Nature, 1986, 320(6062), 540-543.
[http://dx.doi.org/10.1038/320540a0 ] [PMID: 2938016]
[43]
Chothia, C.; Lesk, A.M. The relation between the divergence of sequence and structure in proteins. EMBO J., 1986, 5(4), 823-826.
[http://dx.doi.org/10.1002/j.1460-2075.1986.tb04288.x ] [PMID: 3709526]
[44]
Gregersen, N.; Bross, P.; Vang, S.; Christensen, J.H. Protein misfolding and human disease. Annu. Rev. Genomics Hum. Genet., 2006, 7, 103-124.
[http://dx.doi.org/10.1146/annurev.genom.7.080505.115737 ] [PMID: 16722804]
[45]
Thomas, P.J.; Qu, B.H.; Pedersen, P.L. Defective protein folding as a basis of human disease. Trends Biochem. Sci., 1995, 20(11), 456-459.
[http://dx.doi.org/10.1016/S0968-0004(00)89100-8 ] [PMID: 8578588]
[46]
Schmid, F.X. Catalysis and assistance of protein folding. Curr. Opin. Struct. Biol., 1991, 1, 36-41.
[http://dx.doi.org/10.1016/0959-440X(91)90008-H]
[47]
Stefani, M. Protein misfolding and aggregation: new examples in medicine and biology of the dark side of the protein world. Biochim. Biophys. Acta, 2004, 1739(1), 5-25.
[http://dx.doi.org/10.1016/j.bbadis.2004.08.004 ] [PMID: 15607113]
[48]
Herczenik, E.; Gebbink, M.F.B.G. Molecular and cellular aspects of protein misfolding and disease. FASEB J., 2008, 22(7), 2115-2133.
[http://dx.doi.org/10.1096/fj.07-099671 ] [PMID: 18303094]
[49]
Rochet, J.C.; Lansbury, P.T. Jr Amyloid fibrillogenesis: themes and variations. Curr. Opin. Struct. Biol., 2000, 10(1), 60-68.
[http://dx.doi.org/10.1016/S0959-440X(99)00049-4 ] [PMID: 10679462]
[50]
Philo, J.S.; Arakawa, T. Mechanisms of protein aggregation. Curr. Pharm. Biotechnol., 2009, 10(4), 348-351.
[http://dx.doi.org/10.2174/138920109788488932 ] [PMID: 19519409]
[51]
Hassan, S.A. Microscopic mechanism of nanocrystal formation from solution by cluster aggregation and coalescence. J. Chem. Phys., 2011, 134(11)114508
[http://dx.doi.org/10.1063/1.3560637 ] [PMID: 21428633]
[52]
Welch, W.J. Role of quality control pathways in human diseases involving protein misfolding. Semin. Cell Dev. Biol., 2004, 15(1), 31-38.
[http://dx.doi.org/10.1016/j.semcdb.2003.12.011 ] [PMID: 15036204]
[53]
Mogk, A.; Tomoyasu, T.; Goloubinoff, P.; Rüdiger, S.; Röder, D.; Langen, H.; Bukau, B. Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB. EMBO J., 1999, 18(24), 6934-6949.
[http://dx.doi.org/10.1093/emboj/18.24.6934 ] [PMID: 10601016]
[54]
Krebs, M.R.H.; Domike, K.R.; Donald, A.M. Protein aggregation: more than just fibrils. Biochem. Soc. Trans., 2009, 37(Pt 4), 682-686.
[http://dx.doi.org/10.1042/BST0370682 ] [PMID: 19614575]
[55]
Cromwell, M.E.M.; Hilario, E.; Jacobson, F. Protein aggregation and bioprocessing. AAPS J., 2006, 8(3), E572-E579.
[http://dx.doi.org/10.1208/aapsj080366 ] [PMID: 17025275]
[56]
Kereszturi, E.; Szmola, R.; Kukor, Z.; Simon, P.; Weiss, F.U.; Lerch, M.M.; Sahin-Tóth, M. Hereditary pancreatitis caused by mutation-induced misfolding of human cationic trypsinogen: a novel disease mechanism. Hum. Mutat., 2009, 30(4), 575-582.
[http://dx.doi.org/10.1002/humu.20853 ] [PMID: 19191323]
[57]
Yao, D.; Gu, Z.; Nakamura, T.; Shi, Z-Q.; Ma, Y.; Gaston, B.; Palmer, L.A.; Rockenstein, E.M.; Zhang, Z.; Masliah, E.; Uehara, T.; Lipton, S.A. Nitrosative stress linked to sporadic Parkinson’s disease: S-nitrosylation of parkin regulates its E3 ubiquitin ligase activity. Proc. Natl. Acad. Sci. USA, 2004, 101(29), 10810-10814.
[http://dx.doi.org/10.1073/pnas.0404161101 ] [PMID: 15252205]
[58]
Rambaran, R.N.; Serpell, L.C. Amyloid fibrils: abnormal protein assembly. Prion, 2008, 2(3), 112-117.
[http://dx.doi.org/10.4161/pri.2.3.7488 ] [PMID: 19158505]
[59]
Smith, J.F.; Knowles, T.P.J.; Dobson, C.M.; Macphee, C.E.; Welland, M.E. Characterization of the nanoscale properties of individual amyloid fibrils. Proc. Natl. Acad. Sci. USA, 2006, 103(43), 15806-15811.
[http://dx.doi.org/10.1073/pnas.0604035103 ] [PMID: 17038504]
[60]
Tycko, R. Insights into the amyloid folding problem from solid-state NMR. Biochemistry, 2003, 42(11), 3151-3159.
[http://dx.doi.org/10.1021/bi027378p ] [PMID: 12641446]
[61]
Fändrich, M.; Dobson, C.M. The behaviour of polyamino acids reveals an inverse side chain effect in amyloid structure formation. EMBO J., 2002, 21(21), 5682-5690.
[http://dx.doi.org/10.1093/emboj/cdf573 ] [PMID: 12411486]
[62]
Jiménez, J.L.; Guijarro, J.I.; Orlova, E.; Zurdo, J.; Dobson, C.M.; Sunde, M.; Saibil, H.R. Cryo-electron microscopy structure of an SH3 amyloid fibril and model of the molecular packing. EMBO J., 1999, 18(4), 815-821.
[http://dx.doi.org/10.1093/emboj/18.4.815 ] [PMID: 10022824]
[63]
Mossuto, M.F.; Dhulesia, A.; Devlin, G.; Frare, E.; Kumita, J.R.; de Laureto, P.P.; Dumoulin, M.; Fontana, A.; Dobson, C.M.; Salvatella, X. The non-core regions of human lysozyme amyloid fibrils influence cytotoxicity. J. Mol. Biol., 2010, 402(5), 783-796.
[http://dx.doi.org/10.1016/j.jmb.2010.07.005 ] [PMID: 20624399]
[64]
Chiti, F.; Dobson, C.M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem., 2006, 75, 333-366.
[http://dx.doi.org/10.1146/annurev.biochem.75.101304.123901 ] [PMID: 16756495]
[65]
Kaur, S.J.; McKeown, S.R.; Rashid, S. Mutant SOD1 mediated pathogenesis of Amyotrophic Lateral Sclerosis. Gene, 2016, 577(2), 109-118.
[http://dx.doi.org/10.1016/j.gene.2015.11.049 ] [PMID: 26657039]
[66]
Shimizu, M.; Manabe, T.; Matsumoto, T.; Monobe, Y.; Hirokawa, M.; Moriya, T.; Iida, M. Beta 2 microglobulin haemodialysis related amyloidosis: distinctive gross features of gastrointestinal involvement. J. Clin. Pathol., 1997, 50(10), 873-875.
[http://dx.doi.org/10.1136/jcp.50.10.873 ] [PMID: 9462276]
[67]
Jayaraman, S.; Gantz, D.L.; Haupt, C.; Gursky, O. Serum amyloid A forms stable oligomers that disrupt vesicles at lysosomal pH and contribute to the pathogenesis of reactive amyloidosis. Proc. Natl. Acad. Sci. USA, 2017, 114(32), E6507-E6515.
[http://dx.doi.org/10.1073/pnas.1707120114 ] [PMID: 28743750]
[68]
Rafeeq, M.M.; Murad, H.A.S. Cystic fibrosis: current therapeutic targets and future approaches. J. Transl. Med., 2017, 15(1), 84.
[http://dx.doi.org/10.1186/s12967-017-1193-9 ] [PMID: 28449677]
[69]
Paikari, A.; Sheehan, V.A. Fetal haemoglobin induction in sickle cell disease. Br. J. Haematol., 2018, 180(2), 189-200.
[http://dx.doi.org/10.1111/bjh.15021 ] [PMID: 29143315]
[70]
Watts, J.C.; Bourkas, M.E.C.; Arshad, H. The function of the cellular prion protein in health and disease. Acta Neuropathol., 2018, 135(2), 159-178.
[http://dx.doi.org/10.1007/s00401-017-1790-y ] [PMID: 29151170]
[71]
Kaneko, S.; Yamagata, K. Hemodialysis-related amyloidosis: Is it still relevant? Semin. Dial., 2018, 31(6), 612-618.
[http://dx.doi.org/10.1111/sdi.12720 ] [PMID: 29896815]
[72]
Ramkumar, S.; Fan, X.; Wang, B.; Yang, S.; Monnier, V.M. Reactive cysteine residues in the oxidative dimerization and Cu2+ induced aggregation of human γD-crystallin: Implications for age-related cataract. Biochim. Biophys. Acta Mol. Basis Dis., 2018, 1864(11), 3595-3604.
[http://dx.doi.org/10.1016/j.bbadis.2018.08.021 ] [PMID: 30251679]
[73]
Bharadwaj, P.; Wijesekara, N.; Liyanapathirana, M.; Newsholme, P.; Ittner, L.; Fraser, P.; Verdile, G. The Link between Type 2 Diabetes and Neurodegeneration: Roles for Amyloid-β, Amylin, and Tau Proteins. J. Alzheimers Dis., 2017, 59(2), 421-432.
[http://dx.doi.org/10.3233/JAD-161192 ] [PMID: 28269785]
[74]
Erman, A.; Veranič, P. The Use of Polymer Chitosan in Intravesical Treatment of Urinary Bladder Cancer and Infections. Polymers (Basel), 2018, 10(3), 265.
[http://dx.doi.org/10.3390/polym10030265 ] [PMID: 30966300]
[75]
Byard, R.W.; Maxwell-Stewart, H. Scurvy-Characteristic Features and Forensic Issues. Am. J. Forensic Med. Pathol., 2019, 40(1), 43-46.
[http://dx.doi.org/10.1097/PAF.0000000000000442 ] [PMID: 30422823]
[76]
Klein-Szanto, A.J.P.; Bassi, D.E. Keep recycling going: New approaches to reduce LDL-C. Biochem. Pharmacol., 2019, 164, 336-341.
[http://dx.doi.org/10.1016/j.bcp.2019.04.003 ] [PMID: 30953636]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy