Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Non-canonical Functions of Telomerase Reverse Transcriptase: Emerging Roles and Biological Relevance

Author(s): Connor A.H. Thompson and Judy M.Y. Wong*

Volume 20, Issue 6, 2020

Page: [498 - 507] Pages: 10

DOI: 10.2174/1568026620666200131125110

Price: $65

Abstract

Increasing evidence from research on telomerase suggests that in addition to its catalytic telomere repeat synthesis activity, telomerase may have other biologically important functions. The canonical roles of telomerase are at the telomere ends where they elongate telomeres and maintain genomic stability and cellular lifespan. The catalytic protein component Telomerase Reverse Transcriptase (TERT) is preferentially expressed at high levels in cancer cells despite the existence of an alternative mechanism for telomere maintenance (alternative lengthening of telomeres or ALT). TERT is also expressed at higher levels than necessary for maintaining functional telomere length, suggesting other possible adaptive functions. Emerging non-canonical roles of TERT include regulation of non-telomeric DNA damage responses, promotion of cell growth and proliferation, acceleration of cell cycle kinetics, and control of mitochondrial integrity following oxidative stress. Non-canonical activities of TERT primarily show cellular protective effects, and nuclear TERT has been shown to protect against cell death following double-stranded DNA damage, independent of its role in telomere length maintenance. TERT has been suggested to act as a chromatin modulator and participate in the transcriptional regulation of gene expression. TERT has also been reported to regulate transcript levels through an RNA-dependent RNA Polymerase (RdRP) activity and produce siRNAs in a Dicer-dependent manner. At the mitochondria, TERT is suggested to protect against oxidative stress-induced mtDNA damage and promote mitochondrial integrity. These extra-telomeric functions of TERT may be advantageous in the context of increased proliferation and metabolic stress often found in rapidly-dividing cancer cells. Understanding the spectrum of non-canonical functions of telomerase may have important implications for the rational design of anti-cancer chemotherapeutic drugs.

Keywords: Telomerase reverse, Transcriptase (TERT), Telomere, Mitochondrion, Nontelomeric roles, DNA.

« Previous
Graphical Abstract
[1]
Shay, J.W.; Wright, W.E. Role of telomeres and telomerase in cancer. Semin. Cancer Biol., 2011, 21(6), 349-353.
[http://dx.doi.org/10.1016/j.semcancer.2011.10.001] [PMID: 22015685]
[2]
de Lange, T. A loopy view of telomere evolution. Front. Genet., 2015, 6, 321.
[http://dx.doi.org/10.3389/fgene.2015.00321] [PMID: 26539211]
[3]
Griffith, J.D.; Comeau, L.; Rosenfield, S.; Stansel, R.M.; Bianchi, A.; Moss, H.; de Lange, T. Mammalian telomeres end in a large duplex loop. Cell, 1999, 97(4), 503-514.
[http://dx.doi.org/10.1016/S0092-8674(00)80760-6] [PMID: 10338214]
[4]
Wu, P.; Takai, H.; de Lange, T. Telomeric 3′ overhangs derive from resection by Exo1 and Apollo and fill-in by POT1b-associated CST. Cell, 2012, 150(1), 39-52.
[http://dx.doi.org/10.1016/j.cell.2012.05.026] [PMID: 22748632]
[5]
Campisi, J.; Andersen, J.K.; Kapahi, P.; Melov, S. Cellular senescence: a link between cancer and age-related degenerative disease? Semin. Cancer Biol., 2011, 21(6), 354-359.
[http://dx.doi.org/10.1016/j.semcancer.2011.09.001] [PMID: 21925603]
[6]
Rodier, F.; Campisi, J. Four faces of cellular senescence. J. Cell Biol., 2011, 192(4), 547-556.
[http://dx.doi.org/10.1083/jcb.201009094] [PMID: 21321098]
[7]
Okazaki, R.; Okazaki, T.; Sakabe, K.; Sugimoto, K. Mechanism of DNA replication possible discontinuity of DNA chain growth. Jpn. J. Med. Sci. Biol., 1967, 20(3), 255-260.
[PMID: 4861623]
[8]
Zhao, Y.; Shay, J.W.; Wright, W.E. Telomere terminal G/C strand synthesis: measuring telomerase action and C-rich fill-in. Methods Mol. Biol., 2011, 735, 63-75.
[http://dx.doi.org/10.1007/978-1-61779-092-8_7] [PMID: 21461812]
[9]
Makarov, V.L.; Hirose, Y.; Langmore, J.P. Long G tails at both ends of human chromosomes suggest a C strand degradation mechanism for telomere shortening. Cell, 1997, 88(5), 657-666.
[http://dx.doi.org/10.1016/S0092-8674(00)81908-X] [PMID: 9054505]
[10]
Aubert, G.; Lansdorp, P.M. Telomeres and aging. Physiol. Rev., 2008, 88(2), 557-579.
[http://dx.doi.org/10.1152/physrev.00026.2007] [PMID: 18391173]
[11]
Hayflick, L. The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res., 1965, 37, 614-636.
[http://dx.doi.org/10.1016/0014-4827(65)90211-9] [PMID: 14315085]
[12]
Wright, W.E.; Shay, J.W. Cellular senescence as a tumor-protection mechanism: the essential role of counting. Curr. Opin. Genet. Dev., 2001, 11(1), 98-103.
[http://dx.doi.org/10.1016/S0959-437X(00)00163-5] [PMID: 11163158]
[13]
Shay, J.W. Role of telomeres and telomerase in aging and cancer. Cancer Discov., 2016, 6(6), 584-593.
[http://dx.doi.org/10.1158/2159-8290.CD-16-0062] [PMID: 27029895]
[14]
Ramirez, R.D.; Morales, C.P.; Herbert, B.S.; Rohde, J.M.; Passons, C.; Shay, J.W.; Wright, W.E. Putative telomere-independent mechanisms of replicative aging reflect inadequate growth conditions. Genes Dev., 2001, 15(4), 398-403.
[http://dx.doi.org/10.1101/gad.859201] [PMID: 11230148]
[15]
Suram, A.; Herbig, U. The replicometer is broken: telomeres activate cellular senescence in response to genotoxic stresses. Aging Cell, 2014, 13(5), 780-786.
[http://dx.doi.org/10.1111/acel.12246] [PMID: 25040628]
[16]
Suram, A.; Kaplunov, J.; Patel, P.L.; Ruan, H.; Cerutti, A.; Boccardi, V.; Fumagalli, M.; Di Micco, R.; Mirani, N.; Gurung, R.L.; Hande, M.P.; d’Adda di Fagagna, F.; Herbig, U. Oncogene-induced telomere dysfunction enforces cellular senescence in human cancer precursor lesions. EMBO J., 2012, 31(13), 2839-2851.
[http://dx.doi.org/10.1038/emboj.2012.132] [PMID: 22569128]
[17]
Hewitt, G.; Jurk, D.; Marques, F.D.M.; Correia-Melo, C.; Hardy, T.; Gackowska, A.; Anderson, R.; Taschuk, M.; Mann, J.; Passos, J.F. Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence. Nat. Commun., 2012, 3, 708.
[http://dx.doi.org/10.1038/ncomms1708] [PMID: 22426229]
[18]
Anderson, R.; Lagnado, A.; Maggiorani, D.; Walaszczyk, A.; Dookun, E.; Chapman, J.; Birch, J.; Salmonowicz, H.; Ogrodnik, M.; Jurk, D.; Proctor, C.; Correia-Melo, C.; Victorelli, S.; Fielder, E.; Berlinguer-Palmini, R.; Owens, A.; Greaves, L.C.; Kolsky, K.L.; Parini, A.; Douin-Echinard, V.; LeBrasseur, N.K.; Arthur, H.M.; Tual-Chalot, S.; Schafer, M.J.; Roos, C.M.; Miller, J.D.; Robertson, N.; Mann, J.; Adams, P.D.; Tchkonia, T.; Kirkland, J.L.; Mialet-Perez, J.; Richardson, G.D.; Passos, J.F. Length-independent telomere damage drives post-mitotic cardiomyocyte senescence. EMBO J., 2019, 38(5), e100492
[http://dx.doi.org/10.15252/embj.2018100492] [PMID: 30737259]
[19]
Bodnar, A.G.; Ouellette, M.; Frolkis, M.; Holt, S.E.; Chiu, C.P.; Morin, G.B.; Harley, C.B.; Shay, J.W.; Lichtsteiner, S.; Wright, W.E. Extension of life-span by introduction of telomerase into normal human cells. Science, 1998, 279(5349), 349-352.
[http://dx.doi.org/10.1126/science.279.5349.349] [PMID: 9454332]
[20]
Weinrich, S.L.; Pruzan, R.; Ma, L.; Ouellette, M.; Tesmer, V.M.; Holt, S.E.; Bodnar, A.G.; Lichtsteiner, S.; Kim, N.W.; Trager, J.B.; Taylor, R.D.; Carlos, R.; Andrews, W.H.; Wright, W.E.; Shay, J.W.; Harley, C.B.; Morin, G.B. Reconstitution of human telomerase with the template RNA component hTR and the catalytic protein subunit hTRT. Nat. Genet., 1997, 17(4), 498-502.
[http://dx.doi.org/10.1038/ng1297-498] [PMID: 9398860]
[21]
Lingner, J.; Hughes, T.R.; Shevchenko, A.; Mann, M.; Lundblad, V.; Cech, T.R. Reverse transcriptase motifs in the catalytic subunit of telomerase. Science, 1997, 276(5312), 561-567.
[http://dx.doi.org/10.1126/science.276.5312.561] [PMID: 9110970]
[22]
Nakamura, T.M.; Morin, G.B.; Chapman, K.B.; Weinrich, S.L.; Andrews, W.H.; Lingner, J.; Harley, C.B.; Cech, T.R. Telomerase catalytic subunit homologs from fission yeast and human. Science, 1997, 277(5328), 955-959.
[http://dx.doi.org/10.1126/science.277.5328.955] [PMID: 9252327]
[23]
Hukezalie, K.R.; Wong, J.M. Structure-function relationship and biogenesis regulation of the human telomerase holoenzyme. FEBS J., 2013, 280(14), 3194-3204.
[http://dx.doi.org/10.1111/febs.12272]
[24]
Martínez, P.; Blasco, M.A. Telomeric and extra-telomeric roles for telomerase and the telomere-binding proteins. Nat. Rev. Cancer, 2011, 11(3), 161-176.
[http://dx.doi.org/10.1038/nrc3025] [PMID: 21346783]
[25]
Giraud-Panis, M-J.; Pisano, S.; Benarroch-Popivker, D.; Pei, B.; Le Du, M.H.; Gilson, E. One identity or more for telomeres? Front. Oncol., 2013, 3, 48.
[http://dx.doi.org/10.3389/fonc.2013.00048] [PMID: 23509004]
[26]
Shay, J.W.; Pereira-Smith, O.M.; Wright, W.E. A role for both RB and p53 in the regulation of human cellular senescence. Exp. Cell Res., 1991, 196(1), 33-39.
[http://dx.doi.org/10.1016/0014-4827(91)90453-2] [PMID: 1652450]
[27]
Wong, J.M.Y.; Collins, K. Telomere maintenance and disease. Lancet, 2003, 362(9388), 983-988.
[http://dx.doi.org/10.1016/S0140-6736(03)14369-3] [PMID: 14511933]
[28]
Savage, S.A.; Gadalla, S.M.; Chanock, S.J. The long and short of telomeres and cancer association studies. J. Natl. Cancer Inst., 2013, 105(7), 448-449.
[http://dx.doi.org/10.1093/jnci/djt041] [PMID: 23468461]
[29]
Kim, N.W.; Piatyszek, M.A.; Prowse, K.R.; Harley, C.B.; West, M.D.; Ho, P.L.; Coviello, G.M.; Wright, W.E.; Weinrich, S.L.; Shay, J.W. Specific association of human telomerase activity with immortal cells and cancer. Science, 1994, 266(5193), 2011-2015.
[http://dx.doi.org/10.1126/science.7605428] [PMID: 7605428]
[30]
Shay, J.W.; Reddel, R.R.; Wright, W.E. Cancer. Cancer and telomeres--an ALTernative to telomerase. Science, 2012, 336(6087), 1388-1390.
[http://dx.doi.org/10.1126/science.1222394] [PMID: 22700908]
[31]
Hiyama, E.; Hiyama, K.; Yokoyama, T.; Matsuura, Y.; Piatyszek, M.A.; Shay, J.W. Correlating telomerase activity levels with human neuroblastoma outcomes. Nat. Med., 1995, 1(3), 249-255.
[http://dx.doi.org/10.1038/nm0395-249] [PMID: 7585042]
[32]
Tabori, U.; Vukovic, B.; Zielenska, M.; Hawkins, C.; Braude, I.; Rutka, J.; Bouffet, E.; Squire, J.; Malkin, D. The role of telomere maintenance in the spontaneous growth arrest of pediatric low-grade gliomas. Neoplasia, 2006, 8(2), 136-142.
[http://dx.doi.org/10.1593/neo.05715] [PMID: 16611406]
[33]
Masutomi, K.; Yu, E.Y.; Khurts, S.; Ben-Porath, I.; Currier, J.L.; Metz, G.B.; Brooks, M.W.; Kaneko, S.; Murakami, S.; DeCaprio, J.A.; Weinberg, R.A.; Stewart, S.A.; Hahn, W.C. Telomerase maintains telomere structure in normal human cells. Cell, 2003, 114(2), 241-253.
[http://dx.doi.org/10.1016/S0092-8674(03)00550-6] [PMID: 12887925]
[34]
Smith, L.L.; Coller, H.A.; Roberts, J.M. Telomerase modulates expression of growth-controlling genes and enhances cell proliferation. Nat. Cell Biol., 2003, 5(5), 474-479.
[http://dx.doi.org/10.1038/ncb985] [PMID: 12717449]
[35]
Fleisig, H.B.; Wong, J.M.Y. Telomerase promotes efficient cell cycle kinetics and confers growth advantage to telomerase-negative transformed human cells. Oncogene, 2012, 31(8), 954-965.
[http://dx.doi.org/10.1038/onc.2011.292] [PMID: 21743490]
[36]
Kovalenko, O.A.; Caron, M.J.; Ulema, P.; Medrano, C.; Thomas, A.P.; Kimura, M.; Bonini, M.G.; Herbig, U.; Santos, J.H. A mutant telomerase defective in nuclear-cytoplasmic shuttling fails to immortalize cells and is associated with mitochondrial dysfunction. Aging Cell, 2010, 9(2), 203-219.
[http://dx.doi.org/10.1111/j.1474-9726.2010.00551.x] [PMID: 20089117]
[37]
Ouellette, M.M.; Liao, M.; Herbert, B.S.; Johnson, M. Subsenescent telomere lengths in fibroblasts immortalized by limiting amounts of telomerase. J. Biol. Chem., 2000, 275(14), 10072-6.
[38]
Fleisig, H.B.; Hukezalie, K.R.; Thompson, C.A.H.; Au-Yeung, T.T.T.; Ludlow, A.T.; Zhao, C.R.; Wong, J.M. Telomerase reverse transcriptase expression protects transformed human cells against DNA-damaging agents, and increases tolerance to chromosomal instability. Oncogene, 2016, 35(2), 218-227.
[http://dx.doi.org/10.1038/onc.2015.75] [PMID: 25893297]
[39]
Maida, Y.; Yasukawa, M.; Furuuchi, M.; Lassmann, T.; Possemato, R.; Okamoto, N.; Kasim, V.; Hayashizaki, Y.; Hahn, W.C.; Masutomi, K. An RNA-dependent RNA polymerase formed by TERT and the RMRP RNA. Nature, 2009, 461(7261), 230-235.
[http://dx.doi.org/10.1038/nature08283] [PMID: 19701182]
[40]
Maida, Y.; Yasukawa, M.; Masutomi, K. De novo RNA synthesis by RNA-dependent RNA polymerase activity of telomerase reverse transcriptase. Mol. Cell. Biol., 2016, 36(8), 1248-1259.
[http://dx.doi.org/10.1128/MCB.01021-15] [PMID: 26830230]
[41]
Sahin, E.; Colla, S.; Liesa, M.; Moslehi, J.; Müller, F.L.; Guo, M.; Cooper, M.; Kotton, D.; Fabian, A.J.; Walkey, C.; Maser, R.S.; Tonon, G.; Foerster, F.; Xiong, R.; Wang, Y.A.; Shukla, S.A.; Jaskelioff, M.; Martin, E.S.; Heffernan, T.P.; Protopopov, A.; Ivanova, E.; Mahoney, J.E.; Kost-Alimova, M.; Perry, S.R.; Bronson, R.; Liao, R.; Mulligan, R.; Shirihai, O.S.; Chin, L.; DePinho, R.A. Telomere dysfunction induces metabolic and mitochondrial compromise. Nature, 2011, 470(7334), 359-365.
[http://dx.doi.org/10.1038/nature09787] [PMID: 21307849]
[42]
Sahin, E.; DePinho, R.A. Axis of ageing: telomeres, p53 and mitochondria. Nat. Rev. Mol. Cell Biol., 2012, 13(6), 397-404.
[http://dx.doi.org/10.1038/nrm3352] [PMID: 22588366]
[43]
Calado, R.T.; Dumitriu, B. Telomere dynamics in mice and humans. Semin. Hematol., 2013, 50(2), 165-174.
[http://dx.doi.org/10.1053/j.seminhematol.2013.03.030] [PMID: 23956466]
[44]
Gorbunova, V.; Seluanov, A.; Pereira-Smith, O.M. Expression of human telomerase (hTERT) does not prevent stress-induced senescence in normal human fibroblasts but protects the cells from stress-induced apoptosis and necrosis. J. Biol. Chem., 2002, 277(41), 38540-38549.
[http://dx.doi.org/10.1074/jbc.M202671200] [PMID: 12140282]
[45]
Sharma, G.G.; Gupta, A.; Wang, H.; Scherthan, H.; Dhar, S.; Gandhi, V.; Iliakis, G.; Shay, J.W.; Young, C.S.; Pandita, T.K. hTERT associates with human telomeres and enhances genomic stability and DNA repair. Oncogene, 2003, 22(1), 131-146.
[http://dx.doi.org/10.1038/sj.onc.1206063] [PMID: 12527915]
[46]
Masutomi, K.; Possemato, R.; Wong, J.M.Y.; Currier, J.L.; Tothova, Z.; Manola, J.B.; Ganesan, S.; Lansdorp, P.M.; Collins, K.; Hahn, W.C. The telomerase reverse transcriptase regulates chromatin state and DNA damage responses. Proc. Natl. Acad. Sci. USA, 2005, 102(23), 8222-8227.
[http://dx.doi.org/10.1073/pnas.0503095102] [PMID: 15928077]
[47]
Cao, Y.; Li, H.; Deb, S.; Liu, J-P. TERT regulates cell survival independent of telomerase enzymatic activity. Oncogene, 2002, 21(20), 3130-3138.
[http://dx.doi.org/10.1038/sj.onc.1205419] [PMID: 12082628]
[48]
Sharma, G.G.; Hwang, K.K.; Pandita, R.K.; Gupta, A.; Dhar, S.; Parenteau, J.; Agarwal, M.; Worman, H.J.; Wellinger, R.J.; Pandita, T.K. Human heterochromatin protein 1 isoforms HP1(Hsalpha) and HP1(Hsbeta) interfere with hTERT-telomere interactions and correlate with changes in cell growth and response to ionizing radiation. Mol. Cell. Biol., 2003, 23(22), 8363-8376.
[http://dx.doi.org/10.1128/MCB.23.22.8363-8376.2003] [PMID: 14585993]
[49]
Mandal, M.; Kumar, R. Bcl-2 modulates telomerase activity. J. Biol. Chem., 1997, 272(22), 14183-14187.
[http://dx.doi.org/10.1074/jbc.272.22.14183] [PMID: 9162048]
[50]
Douarre, C.; Gomez, D.; Morjani, H.; Zahm, J-M.; O’donohue, M-F.; Eddabra, L.; Mailliet, P.; Riou, J.F.; Trentesaux, C. Overexpression of Bcl-2 is associated with apoptotic resistance to the G-quadruplex ligand 12459 but is not sufficient to confer resistance to long-term senescence. Nucleic Acids Res., 2005, 33(7), 2192-2203.
[http://dx.doi.org/10.1093/nar/gki514] [PMID: 15831792]
[51]
Del Bufalo, D.; Rizzo, A.; Trisciuoglio, D.; Cardinali, G.; Torrisi, M.R.; Zangemeister-Wittke, U.; Zupi, G.; Biroccio, A. Involvement of hTERT in apoptosis induced by interference with Bcl-2 expression and function. Cell Death Differ., 2005, 12(11), 1429-1438.
[http://dx.doi.org/10.1038/sj.cdd.4401670] [PMID: 15920535]
[52]
Jin, Y.; You, L.; Kim, H.J.; Lee, H-W. Telomerase Reverse Transcriptase Contains a BH3-Like Motif and Interacts with BCL-2 Family Members. Mol. Cells, 2018, 41(7), 684-694.
[PMID: 29937479]
[53]
Li, H.; Cao, Y.; Berndt, M.C.; Funder, J.W.; Liu, J-P. Molecular interactions between telomerase and the tumor suppressor protein p53 in vitro. Oncogene, 1999, 18(48), 6785-6794.
[http://dx.doi.org/10.1038/sj.onc.1203061] [PMID: 10597287]
[54]
Chen, R-J.; Wu, P-H.; Ho, C-T.; Way, T-D.; Pan, M-H.; Chen, H-M.; Ho, Y.S.; Wang, Y.J. P53-dependent downregulation of hTERT protein expression and telomerase activity induces senescence in lung cancer cells as a result of pterostilbene treatment. Cell Death Dis., 2017, 8(8), e2985-e2985.
[http://dx.doi.org/10.1038/cddis.2017.333] [PMID: 28796247]
[55]
Jin, X.; Beck, S.; Sohn, Y-W.; Kim, J-K.; Kim, S-H.; Yin, J.; Pian, X.; Kim, S.C.; Choi, Y.J.; Kim, H. Human telomerase catalytic subunit (hTERT) suppresses p53-mediated anti-apoptotic response via induction of basic fibroblast growth factor. Exp. Mol. Med., 2010, 42(8), 574-582.
[http://dx.doi.org/10.3858/emm.2010.42.8.058] [PMID: 20628269]
[56]
Wong, M.S.; Wright, W.E.; Shay, J.W. Alternative splicing regulation of telomerase: a new paradigm? Trends Genet., 2014, 30(10), 430-438.
[http://dx.doi.org/10.1016/j.tig.2014.07.006] [PMID: 25172021]
[57]
Hrdlicková, R.; Nehyba, J.; Bose, H.R., Jr Alternatively spliced telomerase reverse transcriptase variants lacking telomerase activity stimulate cell proliferation. Mol. Cell. Biol., 2012, 32(21), 4283-4296.
[http://dx.doi.org/10.1128/MCB.00550-12] [PMID: 22907755]
[58]
Ulaner, G.A.; Hu, J.F.; Vu, T.H.; Giudice, L.C.; Hoffman, A.R. Telomerase activity in human development is regulated by human telomerase reverse transcriptase (hTERT) transcription and by alternate splicing of hTERT transcripts. Cancer Res., 1998, 58(18), 4168-4172.
[PMID: 9751630]
[59]
Yi, X.; White, D.M.; Aisner, D.L.; Baur, J.A.; Wright, W.E.; Shay, J.W. An alternate splicing variant of the human telomerase catalytic subunit inhibits telomerase activity. Neoplasia, 2000, 2(5), 433-440.
[http://dx.doi.org/10.1038/sj.neo.7900113] [PMID: 11191110]
[60]
Park, J-I.; Venteicher, A.S.; Hong, J.Y.; Choi, J.; Jun, S.; Shkreli, M.; Chang, W.; Meng, Z.; Cheung, P.; Ji, H.; McLaughlin, M.; Veenstra, T.D.; Nusse, R.; McCrea, P.D.; Artandi, S.E. Telomerase modulates Wnt signalling by association with target gene chromatin. Nature, 2009, 460(7251), 66-72.
[http://dx.doi.org/10.1038/nature08137] [PMID: 19571879]
[61]
Sarin, K.Y.; Cheung, P.; Gilison, D.; Lee, E.; Tennen, R.I.; Wang, E.; Artandi, M.K.; Oro, A.E.; Artandi, S.E. Conditional telomerase induction causes proliferation of hair follicle stem cells. Nature, 2005, 436(7053), 1048-1052.
[http://dx.doi.org/10.1038/nature03836] [PMID: 16107853]
[62]
Yang, T.B.; Chen, Q.; Deng, J.T.; Jagannathan, G.; Tobias, J.W.; Schultz, D.C.; Wang, S.; Lengner, C.J.; Rustgi, A.K.; Lynch, J.P.; Johnson, F.B. Mutual reinforcement between telomere capping and canonical Wnt signalling in the intestinal stem cell niche. Nat. Commun., 2017, 8, 14766-14766.
[http://dx.doi.org/10.1038/ncomms14766] [PMID: 28303901]
[63]
Okamoto, N.; Yasukawa, M.; Nguyen, C.; Kasim, V.; Maida, Y.; Possemato, R.; Shibata, T.; Ligon, K.L.; Fukami, K.; Hahn, W.C.; Masutomi, K. Maintenance of tumor initiating cells of defined genetic composition by nucleostemin. Proc. Natl. Acad. Sci. USA, 2011, 108(51), 20388-20393.
[http://dx.doi.org/10.1073/pnas.1015171108] [PMID: 21730156]
[64]
Lafferty-Whyte, K.; Cairney, C.J.; Will, M.B.; Serakinci, N.; Daidone, M-G.; Zaffaroni, N.; Bilsland, A.; Keith, W.N. A gene expression signature classifying telomerase and ALT immortalization reveals an hTERT regulatory network and suggests a mesenchymal stem cell origin for ALT. Oncogene, 2009, 28(43), 3765-3774.
[http://dx.doi.org/10.1038/onc.2009.238] [PMID: 19684619]
[65]
Zhang, Y.; Toh, L.; Lau, P.; Wang, X. Human telomerase reverse transcriptase (hTERT) is a novel target of the Wnt/β-catenin pathway in human cancer. J. Biol. Chem., 2012, 287(39), 32494-32511.
[http://dx.doi.org/10.1074/jbc.M112.368282] [PMID: 22854964]
[66]
Listerman, I.; Gazzaniga, F.S.; Blackburn, E.H. An investigation of the effects of the core protein telomerase reverse transcriptase on Wnt signaling in breast cancer cells. Mol. Cell. Biol., 2014, 34(2), 280-289.
[http://dx.doi.org/10.1128/MCB.00844-13] [PMID: 24216762]
[67]
Strong, M.A.; Vidal-Cardenas, S.L.; Karim, B.; Yu, H.; Guo, N.; Greider, C.W. Phenotypes in mTERT+/ and mTERT/ mice are due to short telomeres, not telomere-independent functions of telomerase reverse transcriptase. Mol. Cell. Biol., 2011, 31(12), 2369-2379.
[http://dx.doi.org/10.1128/MCB.05312-11] [PMID: 21464209]
[68]
Ghosh, A.; Saginc, G.; Leow, S.C.; Khattar, E.; Shin, E.M.; Yan, T.D.; Wong, M.; Zhang, Z.; Li, G.; Sung, W.K.; Zhou, J.; Chng, W.J.; Li, S.; Liu, E.; Tergaonkar, V. Telomerase directly regulates NF-κB-dependent transcription. Nat. Cell Biol., 2012, 14(12), 1270-1281.
[http://dx.doi.org/10.1038/ncb2621] [PMID: 23159929]
[69]
Li, Y.; Zhou, Q-L.; Sun, W.; Chandrasekharan, P.; Cheng, H.S.; Ying, Z.; Lakshmanan, M.; Raju, A.; Tenen, D.G.; Cheng, S.Y.; Chuang, K.H.; Li, J.; Prabhakar, S.; Li, M.; Tergaonkar, V. Non-canonical NF-κB signalling and ETS1/2 cooperatively drive C250T mutant TERT promoter activation. Nat. Cell Biol., 2015, 17(10), 1327-1338.
[http://dx.doi.org/10.1038/ncb3240] [PMID: 26389665]
[70]
Liu, N.; Ding, D.; Hao, W.; Yang, F.; Wu, X.; Wang, M.; Xu, X.; Ju, Z.; Liu, J.P.; Song, Z.; Shay, J.W.; Guo, Y.; Cong, Y.S. hTERT promotes tumor angiogenesis by activating VEGF via interactions with the Sp1 transcription factor. Nucleic Acids Res., 2016, 44(18), 8693-8703.
[http://dx.doi.org/10.1093/nar/gkw549] [PMID: 27325744]
[71]
Li, Y.; Tergaonkar, V. Noncanonical functions of telomerase: implications in telomerase-targeted cancer therapies. Cancer Res., 2014, 74(6), 1639-1644.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-3568] [PMID: 24599132]
[72]
Romanova, L.; Kellner, S.; Katoku-Kikyo, N.; Kikyo, N. Novel role of nucleostemin in the maintenance of nucleolar architecture and integrity of small nucleolar ribonucleoproteins and the telomerase complex. J. Biol. Chem., 2009, 284(39), 26685-26694.
[http://dx.doi.org/10.1074/jbc.M109.013342] [PMID: 19648109]
[73]
Maida, Y.; Masutomi, K. Telomerase reverse transcriptase moonlights: Therapeutic targets beyond telomerase. Cancer Sci., 2015, 106(11), 1486-1492.
[http://dx.doi.org/10.1111/cas.12806] [PMID: 26331588]
[74]
Liu, H.; Liu, Q.; Ge, Y.; Zhao, Q.; Zheng, X.; Zhao, Y. hTERT promotes cell adhesion and migration independent of telomerase activity. Sci. Rep., 2016, 6, 22886.
[http://dx.doi.org/10.1038/srep22886] [PMID: 26971878]
[75]
Burgess, J.K.; Ketheson, A.; Faiz, A.; Limbert Rempel, K.A.; Oliver, B.G.; Ward, J.P.T.; Halayko, A.J. Phenotype and functional features of human telomerase reverse transcriptase immortalized human airway smooth muscle cells from asthmatic and non-asthmatic donors. Sci. Rep., 2018, 8(1), 805.
[http://dx.doi.org/10.1038/s41598-017-18429-0] [PMID: 29339735]
[76]
Konieczna, N.; Romaniuk-Drapała, A.; Lisiak, N.; Totoń, E.; Paszel-Jaworska, A.; Kaczmarek, M.; Rubiś, B. Telomerase inhibitor TMPYP4 alters adhesion and migration of breast-cancer cells MCF7 and MDA-MB-231. Int. J. Mol. Sci., 2019, 20(11), 2670.
[http://dx.doi.org/10.3390/ijms20112670] [PMID: 31151281]
[77]
Nassir, N.; Hyde, G.J.; Baskar, R. A telomerase with novel non-canonical roles: TERT controls cellular aggregation and tissue size in Dictyostelium. PLoS Genet., 2019, 15(6), e1008188
[http://dx.doi.org/10.1371/journal.pgen.1008188] [PMID: 31237867]
[78]
Stern, J.L.; Zyner, K.G.; Pickett, H.A.; Cohen, S.B.; Bryan, T.M. Telomerase recruitment requires both TCAB1 and Cajal bodies independently. Mol. Cell. Biol., 2012, 32(13), 2384-2395.
[http://dx.doi.org/10.1128/MCB.00379-12] [PMID: 22547674]
[79]
Venteicher, A.S.; Abreu, E.B.; Meng, Z.; McCann, K.E.; Terns, R.M.; Veenstra, T.D.; Terns, M.P.; Artandi, S.E. A human telomerase holoenzyme protein required for Cajal body localization and telomere synthesis. Science, 2009, 323(5914), 644-648.
[http://dx.doi.org/10.1126/science.1165357] [PMID: 19179534]
[80]
Jakob, S.; Schroeder, P.; Lukosz, M.; Büchner, N.; Spyridopoulos, I.; Altschmied, J.; Haendeler, J. Nuclear protein tyrosine phosphatase Shp-2 is one important negative regulator of nuclear export of telomerase reverse transcriptase. J. Biol. Chem., 2008, 283(48), 33155-33161.
[http://dx.doi.org/10.1074/jbc.M805138200] [PMID: 18829466]
[81]
Chung, J.; Khadka, P.; Chung, I.K. Nuclear import of hTERT requires a bipartite nuclear localization signal and Akt-mediated phosphorylation. J. Cell Sci., 2012, 125(Pt 11), 2684-2697.
[http://dx.doi.org/10.1242/jcs.099267] [PMID: 22366458]
[82]
Seimiya, H.; Sawada, H.; Muramatsu, Y.; Shimizu, M.; Ohko, K.; Yamane, K.; Tsuruo, T. Involvement of 14-3-3 proteins in nuclear localization of telomerase. EMBO J., 2000, 19(11), 2652-2661.
[http://dx.doi.org/10.1093/emboj/19.11.2652] [PMID: 10835362]
[83]
Saretzki, G. Telomerase, mitochondria and oxidative stress. Exp. Gerontol., 2009, 44(8), 485-492.
[http://dx.doi.org/10.1016/j.exger.2009.05.004] [PMID: 19457450]
[84]
Zhang, Z.; Yu, L.; Dai, G.; Xia, K.; Liu, G.; Song, Q.; Tao, C.; Gao, T.; Guo, W. Telomerase reverse transcriptase promotes chemoresistance by suppressing cisplatin-dependent apoptosis in osteosarcoma cells. Sci. Rep., 2017, 7(1), 7070.
[http://dx.doi.org/10.1038/s41598-017-07204-w] [PMID: 28765565]
[85]
Santos, J.H.; Meyer, J.N.; Van Houten, B. Mitochondrial localization of telomerase as a determinant for hydrogen peroxide-induced mitochondrial DNA damage and apoptosis. Hum. Mol. Genet., 2006, 15(11), 1757-1768.
[http://dx.doi.org/10.1093/hmg/ddl098] [PMID: 16613901]
[86]
Haendeler, J.; Dröse, S.; Büchner, N.; Jakob, S. Mitochondrial telomerase reverse transcriptase binds to and protects mitochondrial DNA and function from damage. Arter. Thromb. Vasc. Biol., 2009, 29(6), 929-935.
[87]
Balasubramaniam, M.; Reis, R.J.S.; Ayyadevara, S.; Wang, X.; Ganne, A.; Khaidakov, M. Involvement of tRNAs in replication of human mitochondrial DNA and modifying effects of telomerase. Mech. Ageing Dev., 2017, 166, 55-63.
[http://dx.doi.org/10.1016/j.mad.2017.07.004] [PMID: 28765009]
[88]
Hu, J.; Hwang, S.S.; Liesa, M.; Gan, B.; Sahin, E.; Jaskelioff, M.; Ding, Z.; Ying, H.; Boutin, A.T.; Zhang, H.; Johnson, S.; Ivanova, E.; Kost-Alimova, M.; Protopopov, A.; Wang, Y.A.; Shirihai, O.S.; Chin, L.; DePinho, R.A. Antitelomerase therapy provokes ALT and mitochondrial adaptive mechanisms in cancer. Cell, 2012, 148(4), 651-663.
[http://dx.doi.org/10.1016/j.cell.2011.12.028] [PMID: 22341440]
[89]
D’Mello Matthew, J.J.; Ross Stephanie, A. Briel Matthias, Anand Sonia S., Gerstein Hertzel, Paré Guillaume. association between shortened leukocyte telomere length and cardiometabolic outcomes. Circ Cardiovasc Genet, 2015, 8(1), 82-90.
[http://dx.doi.org/10.1161/CIRCGENETICS.113.000485] [PMID: 25406241]
[90]
Epel, E.S.; Merkin, S.S.; Cawthon, R.; Blackburn, E.H.; Adler, N.E.; Pletcher, M.J.; Seeman, T.E. The rate of leukocyte telomere shortening predicts mortality from cardiovascular disease in elderly men. Aging (Albany NY), 2008, 1(1), 81-88.
[http://dx.doi.org/10.18632/aging.100007] [PMID: 20195384]
[91]
Gasinska, A.; Jaszczynski, J.; Rychlik, U.; Łuczynska, E.; Pogodzinski, M.; Palaczynski, M. Prognostic Significance of Serum PSA Level and Telomerase, VEGF and GLUT-1 Protein Expression for the Biochemical Recurrence in Prostate Cancer Patients after Radical Prostatectomy; Pathol. Oncol. Res. POR, 2019. [Epub ahead of print]
[http://dx.doi.org/10.1007/s12253-019-00659-4]
[92]
Ait-Aissa, K.; Heisner, J.S.; Norwood Toro, L.E.; Bruemmer, D.; Doyon, G.; Harmann, L.; Geurts, A.; Camara, A.K.S.; Beyer, A.M. Telomerase deficiency predisposes to heart failure and ischemia-reperfusion injury. Front. Cardiovasc. Med., 2019, 6, 31.
[http://dx.doi.org/10.3389/fcvm.2019.00031] [PMID: 31001540]
[93]
Le, T.Y.L.; Pickett, H.A.; Yang, A.; Ho, J.W.K.; Thavapalachandran, S.; Igoor, S.; Yang, S.F.; Farraha, M.; Voges, H.K.; Hudson, J.E.; Dos Remedios, C.G.; Bryan, T.M.; Kizana, E.; Chong, J.J.H. Enhanced cardiac repair by telomerase reverse transcriptase over-expression in human cardiac mesenchymal stromal cells. Sci. Rep., 2019, 9(1), 10579.
[http://dx.doi.org/10.1038/s41598-019-47022-w] [PMID: 31332256]
[94]
Liu, M-Y.; Nemes, A.; Zhou, Q-G. The emerging roles for telomerase in the central nervous system. Front. Mol. Neurosci., 2018, 11, 160-160.
[http://dx.doi.org/10.3389/fnmol.2018.00160] [PMID: 29867352]
[95]
Miwa, S.; Czapiewski, R.; Wan, T.; Bell, A.; Hill, K.N.; von Zglinicki, T.; Saretzki, G. Decreased mTOR signalling reduces mitochondrial ROS in brain via accumulation of the telomerase protein TERT within mitochondria. Aging (Albany NY), 2016, 8(10), 2551-2567.
[http://dx.doi.org/10.18632/aging.101089] [PMID: 27777385]
[96]
Miwa, S.; Saretzki, G. Telomerase and mTOR in the brain: the mitochondria connection. Neural Regen. Res., 2017, 12(3), 358-361.
[http://dx.doi.org/10.4103/1673-5374.202922] [PMID: 28469639]
[97]
Ishaq, A.; Hanson, P.S.; Morris, C.M.; Saretzki, G. Telomerase activity is downregulated early during human brain development. Genes (Basel), 2016, 7(6), 27.
[http://dx.doi.org/10.3390/genes7060027] [PMID: 27322326]
[98]
Spilsbury, A.; Miwa, S.; Attems, J.; Saretzki, G. The role of telomerase protein TERT in Alzheimer’s disease and in tau-related pathology in vitro. J. Neurosci., 2015, 35(4), 1659-1674.
[http://dx.doi.org/10.1523/JNEUROSCI.2925-14.2015] [PMID: 25632141]
[99]
Im, E.; Yoon, J.B.; Lee, H-W.; Chung, K.C. Human telomerase reverse transcriptase (hTERT) positively regulates 26s proteasome activity. J. Cell. Physiol., 2017, 232(8), 2083-2093.
[http://dx.doi.org/10.1002/jcp.25607] [PMID: 27648923]
[100]
Fu, W.; Killen, M.; Culmsee, C.; Dhar, S.; Pandita, T.K.; Mattson, M.P. The catalytic subunit of telomerase is expressed in developing brain neurons and serves a cell survival-promoting function. J. Mol. Neurosci., 2000, 14(1-2), 3-15.
[http://dx.doi.org/10.1385/JMN:14:1-2:003] [PMID: 10854032]
[101]
Zhou, Q-G.; Liu, M-Y.; Lee, H-W.; Ishikawa, F.; Devkota, S.; Shen, X-R.; Jin, X.; Wu, H.Y.; Liu, Z.; Liu, X.; Jin, X.; Zhou, H.H.; Ro, E.J.; Zhang, J.; Zhang, Y.; Lin, Y.H.; Suh, H.; Zhu, D.Y. Hippocampal TERT regulates spatial memory formation through modulation of neural development. Stem Cell Reports, 2017, 9(2), 543-556.
[http://dx.doi.org/10.1016/j.stemcr.2017.06.014] [PMID: 28757168]
[102]
Kang, H.J.; Choi, Y.S.; Hong, S-B.; Kim, K-W.; Woo, R-S.; Won, S.J.; Kim, E.J.; Jeon, H.K.; Jo, S.Y.; Kim, T.K.; Bachoo, R.; Reynolds, I.J.; Gwag, B.J.; Lee, H.W. Ectopic expression of the catalytic subunit of telomerase protects against brain injury resulting from ischemia and NMDA-induced neurotoxicity. J. Neurosci., 2004, 24(6), 1280-1287.
[http://dx.doi.org/10.1523/JNEUROSCI.4082-03.2004] [PMID: 14960598]
[103]
Lee, J.; Sung, Y.H.; Cheong, C.; Choi, Y.S.; Jeon, H.K.; Sun, W.; Hahn, W.C.; Ishikawa, F.; Lee, H.W. TERT promotes cellular and organismal survival independently of telomerase activity. Oncogene, 2008, 27(26), 3754-3760.
[http://dx.doi.org/10.1038/sj.onc.1211037] [PMID: 18223679]
[104]
Herbert, B-S.; Gellert, G.C.; Hochreiter, A.; Pongracz, K.; Wright, W.E.; Zielinska, D.; Chin, A.C.; Harley, C.B.; Shay, J.W.; Gryaznov, S.M. Lipid modification of GRN163, an N3′-->P5′ thio-phosphoramidate oligonucleotide, enhances the potency of telomerase inhibition. Oncogene, 2005, 24(33), 5262-5268.
[http://dx.doi.org/10.1038/sj.onc.1208760] [PMID: 15940257]
[105]
Dikmen, Z.G.; Gellert, G.C.; Jackson, S.; Gryaznov, S.; Tressler, R.; Dogan, P.; Wright, W.E.; Shay, J.W. In vivo inhibition of lung cancer by GRN163L: a novel human telomerase inhibitor. Cancer Res., 2005, 65(17), 7866-7873.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1215] [PMID: 16140956]
[106]
Hu, Y.; Bobb, D.; He, J.; Hill, D.A.; Dome, J.S. The HSP90 inhibitor alvespimycin enhances the potency of telomerase inhibition by imetelstat in human osteosarcoma. Cancer Biol. Ther., 2015, 16(6), 949-957.
[http://dx.doi.org/10.1080/15384047.2015.1040964] [PMID: 25920748]
[107]
Lu, R.; Pal, J.; Buon, L.; Nanjappa, P.; Shi, J.; Fulciniti, M.; Tai, Y.T.; Guo, L.; Yu, M.; Gryaznov, S.; Munshi, N.C.; Shammas, M.A. Targeting homologous recombination and telomerase in Barrett’s adenocarcinoma: impact on telomere maintenance, genomic instability and tumor growth. Oncogene, 2014, 33(12), 1495-1505.
[http://dx.doi.org/10.1038/onc.2013.103] [PMID: 23604115]
[108]
Jafri, M.A.; Ansari, S.A.; Alqahtani, M.H.; Shay, J.W. Roles of telomeres and telomerase in cancer, and advances in telomerase-targeted therapies. Genome Med., 2016, 8(1), 69.
[http://dx.doi.org/10.1186/s13073-016-0324-x] [PMID: 27323951]
[109]
Jackson, S.R.; Zhu, C.H.; Paulson, V.; Watkins, L. Antiadhesive effects of GRN163L--an oligonucleotide N3′->P5′ thio-phosphoramidate targeting telomerase. Cancer Res., 2007, 67(3), 1121-1129.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-2306]
[110]
Mender, I.; Senturk, S.; Ozgunes, N.; Akcali, K.C.; Kletsas, D.; Gryaznov, S.; Can, A.; Shay, J.W.; Dikmen, Z.G. Imetelstat (a telomerase antagonist) exerts off‑target effects on the cytoskeleton. Int. J. Oncol., 2013, 42(5), 1709-1715.
[http://dx.doi.org/10.3892/ijo.2013.1865] [PMID: 23545855]
[111]
Yamaguchi, S.; Maida, Y.; Yasukawa, M.; Kato, T.; Yoshida, M.; Masutomi, K. Eribulin mesylate targets human telomerase reverse transcriptase in ovarian cancer cells. PLoS One, 2014, 9(11), e112438-e112438.
[http://dx.doi.org/10.1371/journal.pone.0112438] [PMID: 25375122]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy