Generic placeholder image

Current Enzyme Inhibition

Editor-in-Chief

ISSN (Print): 1573-4080
ISSN (Online): 1875-6662

Research Article

Inhibition by Substrates of a Coniferyl Alcohol Dehydrogenase Purified from Sugarcane Stalks

Author(s): Borja Alarcón, Roberto de Armas, Carlos Vicente and María E. Legaz*

Volume 15, Issue 3, 2019

Page: [206 - 214] Pages: 9

DOI: 10.2174/1573408016666200130155114

open access plus

Abstract

Aims and Objectives: This study aimed to characterize a coniferyl alcohol dehydrogenase from sugarcane stalks. Also, the purification of CAD from sugarcane stalks was also carried out to study kinetic properties and substrate specificity.

Background: Sugarcane plants contain an alcohol dehydrogenase able to reduce both coniferyl and sinapyl aldehydes to their correspondent alcohols, although there are reasonable grounds for suspecting that these are two distinct enzymes.

Methods: The enzyme, coniferyl alcohol dehydrogenase was 125-fold purified from sugarcane stalks. Its activity was estimated by HPLC by calculating the amount of product formed.

Results: The enzyme showed an optimum pH value of 7.9, at an optimum temperature of 20-22°C and a molecular mass of 48 kDa. The Km value for coniferyl alcohol was 3.03 µM and the enzyme was shown to be inhibited by an excess of the substrate from 17 µM. This dehydrogenase showed a similar affinity to sinapyl alcohol (Km 1.78 µM).

Conclusion: This paper provides circumstantial evidence about the existence of two different alcohol dehydrogenases, specific to each of the substrates.

Keywords: Coniferyl alcohol dehydrogenase, kinetics, purification, sinapyl alcohol dehydrogenase, substrates, sugarcane.

Graphical Abstract
[1]
Newman, M.A.; Sundelin, T.; Nielsen, J.T.; Erbs, G. MAMP (microbe-associated molecular pattern) triggered immunity in plants. Front. Plant Sci., 2013, 4, 139.
[http://dx.doi.org/10.3389/fpls.2013.00139] [PMID: 23720666]
[2]
Santiago, R.; de Armas, R.; Legaz, M.E.; Vicente, C. Separation from smut (Ustilago scitaminea) of different elicitors which modify the pattern of phenolic accumulation in sugarcane leaves. J. Plant Pathol., 2008, 90, 87-96.
[3]
Sánchez-Elordi, E.; Morales de los Ríos, L.; Vicente, C.; Legaz, M.E. Sugarcane arginase competes with the same fungal enzyme as a false quorum signal against smut teliospores. Phytochem. Lett., 2015, 14, 115-122.
[http://dx.doi.org/10.1016/j.phytol.2015.09.013]
[4]
Sánchez-Elordi, E.; Vicente-Manzanares, M.; Díaz, E.; Legaz, M.E.; Vicente, C. Plant-pathogen interactions: Sugarcane glycoproteins induce chemotaxis of smut teliospores by cyclic contraction and relaxation of the cytoskeleton. S. Afr. J. Bot., 2016, 105, 66-78.
[http://dx.doi.org/10.1016/j.sajb.2015.12.005]
[5]
Sánchez-Elordi, E.; Baluška, F.; Echevarría, C.; Vicente, C.; Legaz, M.E. Defence sugarcane glycoproteins disorganize microtubules and prevent nuclear polarization and germination of Sporisorium scitamineum teliospores. J. Plant Physiol., 2016, 200, 111-123.
[http://dx.doi.org/10.1016/j.jplph.2016.05.022] [PMID: 27372179]
[6]
Que, Y.X.; Lin, J.W.; Song, X.X.; Xu, L.P.; Chen, R.K. Differential gene expression in sugarcane in response to challenge by fungal pathogen Ustilago scitaminea revealed by cDNA-AFLP. J. Biomed. Biotechnol., 2011, 2011160934
[http://dx.doi.org/10.1155/2011/160934] [PMID: 21792273]
[7]
Bachem, C.W.B.; Oomen, R.J.F.J.; Visser, R.G.F. Transcript imaging with cDNA-AFLP: A step-by-step protocol. Plant Mol. Biol. Report., 1998, 16, 157-173.
[http://dx.doi.org/10.1023/A:1007468801806]
[8]
Lao, M.; Arencibia, A.D.; Carmona, E.R.; Acevedo, R.; Rodríguez, E.; León, O.; Santana, I. Differential expression analysis by cDNA-AFLP of Saccharum spp. after inoculation with the host pathogen Sporisorium scitamineum. Plant Cell Rep., 2008, 27(6), 1103-1111.
[http://dx.doi.org/10.1007/s00299-008-0524-y] [PMID: 18379790]
[9]
Singh, P.; Song, Q.Q.; Singh, R.K.; Li, H.B.; Solanki, M.K.; Malviya, M.K.; Verma, K.K.; Yang, L.T.; Li, Y.R. Proteomic analysis of the resistance mechanisms in sugarcane during Sporisorium scitamineum infection. Int. J. Mol. Sci., 2019, 20(3), 569.
[http://dx.doi.org/10.3390/ijms20030569] [PMID: 30699953]
[10]
Marques, J.P.R.; Hoy, J.W.; Appezzato-da-Glória, B.; Viveros, A.F.G.; Vieira, M.L.C.; Baisakh, N. Sugarcane cell wall-associated defense responses to infection by Sporisorium scitamineum. Front. Plant Sci., 2018, 9, 698.
[http://dx.doi.org/10.3389/fpls.2018.00698] [PMID: 29875793]
[11]
Santiago, R.; Quintana, J.; Rodríguez, S.; Legaz, M.E.; Vicente, C. An elicitor isolated from smut teliospores (Sporisorium scitamineum) enhances lignin deposition on the cell wall of both sclerenchyma and xylem in sugarcane leaves. Pak. J. Bot., 2010, 42, 2867-2881.
[12]
McNeil, M.D.; Bhuiyan, S.A.; Berkman, P.J.; Croft, B.J.; Aitken, K.S. Analysis of the resistance mechanisms in sugarcane during Sporisorium scitamineum infection using RNA-seq and microscopy. PLoS One, 2018, 13(5) e0197840
[http://dx.doi.org/10.1371/journal.pone.0197840] [PMID: 29795614]
[13]
Su, Y.C.; Xu, L.P.; Xue, B.T.; Wu, Q.B.; Guo, J.L.; Wu, L.G.; Que, Y.X. Molecular cloning and characterization of two pathogenesis-related β-1,3-glucanase genes ScGluA1 and ScGluD1 from sugarcane infected by Sporisorium scitamineum. Plant Cell Rep., 2013, 32(10), 1503-1519.
[http://dx.doi.org/10.1007/s00299-013-1463-9] [PMID: 23842883]
[14]
Sánchez-Elordi, E.; Morales de los Ríos, L.; Díaz, E.M.; Ávila, A.; Legaz, M.E.; Vicente, C. Defensive glycoproteins from sugarcane plants induce chemotaxis, cytoagglutination and death of smut teliospores. J. Plant Pathol., 2016, 98, 493-501.
[15]
Esh, A.M.H.; Guirgis, A.A.; El-Kholi, M.M.A.; El-Absawy, E.A.; Nasr, M.I.; Hassanien, E.H. The activity of pathogenesis related proteins in smut resistant and susceptible sugarcane (GT54-9) mutants induced by gamma radiation. Adv. Plants Agric. Res., 2014, 1, 146-156.
[16]
Santiago, R.; Millanes, A.M.; Legaz, M.E.; Vicente, C. Measurement of β-1,3 glucanase activity in permeabilized discs of leaves of healthy and scald-diseased plants. J. Life Sci., 2012, 6, 175-181.
[17]
Sánchez-Elordi, E.; Contreras, R.; de Armas, R.; Benito, M.C.; Alarcón, B.; de Oliveira, E.; Del Mazo, C.; Díaz-Peña, E.M.; Santiago, R.; Vicente, C.; Legaz, M.E. Differential expression of SofDIR16 and SofCAD genes in smut resistant and susceptible sugarcane cultivars in response to Sporisorium scitamineum. J. Plant Physiol., 2018, 226, 103-113.
[http://dx.doi.org/10.1016/j.jplph.2018.04.016] [PMID: 29753910]
[18]
Alarcón, B.; Santiago, R.; Vicente, C.; Legaz, M.E. Structural changes of lignified tissues from sugarcane leaves induced by a smut (Sporisorium scitamineum) elicitor. J. Life Sci., 2012, 6, 287-300.
[19]
Mitchell, H.J.; Hall, J.L.; Barber, M.S. Elicitor-induced cinnamyl alcohol dehydrogenase activity in lignifying wheat (Triticum aestivum 1.) leaves. Plant Physiol., 1994, 104(2), 551-556.
[http://dx.doi.org/10.1104/pp.104.2.551] [PMID: 12232105]
[20]
Li, L.; Cheng, X.F.; Leshkevich, J.; Umezawa, T.; Harding, S.A.; Chiang, V.L. The last step of syringyl monolignol biosynthesis in angiosperms is regulated by a novel gene encoding sinapyl alcohol dehydrogenase. Plant Cell, 2001, 13(7), 1567-1586.
[http://dx.doi.org/10.1105/TPC.010111] [PMID: 11449052]
[21]
Guo, D.M.; Ran, J.H.; Wang, X.Q. Evolution of the Cinnamyl/Sinapyl Alcohol Dehydrogenase (CAD/SAD) gene family: the emergence of real lignin is associated with the origin of Bona Fide CAD. J. Mol. Evol., 2010, 71(3), 202-218.
[http://dx.doi.org/10.1007/s00239-010-9378-3] [PMID: 20721545]
[22]
Ordosgoitti, A.; Gonzalez, V.; Aponte, A. El carbón de la caña de azúcar en Venezuela. Agron. Trop., 1983, 31, 293-289.
[23]
Santiago, R.; de Armas, R.; Fontaniella, B.; Vicente, C.; Legaz, M.E. Changes in soluble and cell-bound hydroxycinnamic and hydroxybenzoic acids in sugarcane cultivars inoculated with Sporisorium scitamineum sporidia. Eur. J. Plant Pathol., 2009, 124, 439-450.
[http://dx.doi.org/10.1007/s10658-009-9431-5]
[24]
Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227(5259), 680-685.
[http://dx.doi.org/10.1038/227680a0] [PMID: 5432063]
[25]
Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 1951, 193(1), 265-275.
[PMID: 14907713]
[26]
dos Santos, W.D. Ferrarese, Mde.L.; Ferrarese-Filho, O. High performance liquid chromatography method for the determination of cinnamyl alcohol dehydrogenase activity in soybean roots. Plant Physiol. Biochem., 2006, 44(7-9), 511-515.
[http://dx.doi.org/10.1016/j.plaphy.2006.08.004] [PMID: 17023167 ]
[27]
Bomati, E.K.; Noel, J.P. Structural and kinetic basis for substrate selectivity in Populus tremuloides sinapyl alcohol dehydrogenase. Plant Cell, 2005, 17(5), 1598-1611.
[http://dx.doi.org/10.1105/tpc.104.029983] [PMID: 15829607]
[28]
Wyrambik, D.; Grisebach, H. Purification and properties of isoenzymes of cinnamyl-alcohol dehydrogenase from soybean-cellsuspension cultures. Eur. J. Biochem, 1975, 59(1), 9-15.
[http://dx.doi.org/10.1111/j.1432-1033.1975.tb02418.x] [PMID: 1250]
[29]
de Armas, R.; Santiago, R.; Legaz, M.E.; Vicente, C. Levels of phenolic compounds and enzyme activity can be used to screen for resistance of sugarcane to smut (Ustilago scitaminea). Australas. Plant Pathol., 2007, 36, 32-38.
[http://dx.doi.org/10.1071/AP06077]
[30]
Sauter, M.; Kende, H. Levels of β-glucan and lignin in elongating internodes of deepwater rice. Plant Cell Physiol., 1992, 33, 1089-1097.

© 2024 Bentham Science Publishers | Privacy Policy