Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Research Article

Computing Photonic Bandgap from Dispersion Relation for TM Mode Propagation Inside Metamaterial-Based 1D PhC

Author(s): Arpan Deyasi*, Urmi Dey, Sangita Das, Soumita De and Angsuman Sarkar

Volume 12, Issue 3, 2020

Page: [201 - 208] Pages: 8

DOI: 10.2174/1876402912666200130153324

Abstract

Aim: Calculation of dispersion profile and photonic bandgap for negative refractive index based onedimensional photonic crystal structure.

Objective: Determine mathematically the variation of first and second photonic bandgaps under angular incidence variation for the metamaterial-based 1D PhC structure for both TE and TM mode of propagations.

Method: Two lowermost photonic bandgap widths of metamaterial-based one-dimensional photonic crystal are analytically computed from the dispersion relation under the propagation of transverse electromagnetic wave along the direction of confinement. Three practically realizable double negative index materials are considered for computation of bandgaps, where air-gaps are considered along with the artificially made materials as the composite grating structure. This is a combination of negative positive indices materials, where incident angles are tailored within practical limit to calculate the variation of bandgaps, which may be quasi or complete depending on the material composition and angle of incidence.

Results: Results are compared with that obtained for TE mode propagation, and are highly important for design of the all-optical filter with DNG materials.

Keywords: Double negative index material, photonic bandgap, dispersion relation, incident angle, TM mode, grating structure.

Graphical Abstract
[1]
Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett., 1987, 58(20), 2059-2062.
[http://dx.doi.org/10.1103/PhysRevLett.58.2059] [PMID: 10034639]
[2]
Loudon, R. The Propagation of electromagnetic energy through an absorbing dielectric. J. Phys. A, 1970, 3, 233-245.
[http://dx.doi.org/10.1088/0305-4470/3/3/008]
[3]
Qin, Y.; Jiang, P.; Yang, H.; Niu, Y.; Gui, F. Broadband and low confinement loss photonic crystal fibres supporting 48 orbital angular momentum modes. Proceeding of SPIE: Third International Conference on Photonics and Optical Engineering International Society for Optics and Photonics, 2019, Vol. 11052, 110520S.
[4]
Xing, S.; Kharitonov, S.; Hu, J.; Brès, C. Fiber fuse in GeAsSe photonic crystal fiber and its impact on undamaged segment, CLEO: Science and Innovations 2018. pp. JTh2A-93.
[http://dx.doi.org/10.1364/CLEO_AT.2018.JTh2A.93]
[5]
Papior, S.R.; Weirich, J.; Johansen, M.M.; Jakobsen, C.; Michieletto, M.; Triches, M.; Kristensen, T.; Olesen, A.S.; Petersen, C.; Andersen, T.V.; Maack, M.D.; Alkeskjold, T.T. Photonic crystal fibre technology for high-performance all-fibre monolithic ultrafast fibre amplifiers. Proceeding of SPIE: Fiber Lasers XV: Technology and Systems, 2018, vol. 10512, p. 1051212.
[6]
Li, M.; Peng, L.; Zhou, G.; Li, B.; Hou, Z.; Xia, C. Design of photonic crystal fiber filter with narrow width and single-polarization based on surface plasmon resonance. IEEE Photonics J., 2017, 9(3), 5700108.
[http://dx.doi.org/10.1109/JPHOT.2017.2703979]
[7]
Taylor, R.J.E.; Ivanov, P.; Li, G.; Childs, D.T.D.; Hogg, R.A. Optimisation of photonic crystal coupling through waveguide design. Opt. Quantum Electron., 2017, 49, 47.
[http://dx.doi.org/10.1007/s11082-016-0888-0]
[8]
Takiguchi, M.; Sasaki, S.; Tateno, K.; Edward, C.; Nozaki, K.; Sergent, S.; Kuramochi, E.; Zhang, G.; Shinya, A.; Notomi, M. A hybrid nanowire photo-detector integrated in a silicon photonic crystal. In: 2019 Conference on Lasers and Electro-Optics (CLEO) (pp., , 1-2). IEEE, ; , 2019; pp. 1-2.
[http://dx.doi.org/10.1364/CLEO_SI.2019.SM4J.3]
[9]
De, M.; Gangopadhyay, T.K.; Singh, V.K. Prospects of photonic crystal fiber as physical sensor: An overview. Sensors (Basel), 2019, 19(3), 464.
[http://dx.doi.org/10.3390/s19030464] [PMID: 30678109]
[10]
Lenzini, F.; Janousek, J.; Thearle, O.; Villa, M.; Haylock, B.; Kasture, S.; Cui, L.; Phan, H.P.; Dao, D.V.; Yonezawa, H.; Lam, P.K.; Huntington, E.H.; Lobino, M. Integrated photonic platform for quantum information with continuous variables. Sci. Adv., 2018, 4(12)eaat9331
[http://dx.doi.org/10.1126/sciadv.aat9331] [PMID: 30539143]
[11]
González-Urbina, L.; Baert, K.; Kolaric, B.; Pérez-Moreno, J.; Clays, K. Linear and nonlinear optical properties of colloidal photonic crystals. Chem. Rev., 2012, 112(4), 2268-2285.
[http://dx.doi.org/10.1021/cr200063f] [PMID: 22196040]
[12]
Hajshahvaladi, L.; Kaatuzian, H.; Danaie, M. Design and simulation of infrared a photonic crystal band pass filters for fiber optics communication. IEEE Iranian Conference on Electrical Engineering, 2017, pp. 527-531.
[http://dx.doi.org/10.1109/IranianCEE.2017.7985095]
[13]
Li, M.; Liang, H.; Luo, R.; He, Y.; Ling, J.; Lin, Q. Photon-level tuning of a high-Q Lithium niobate photonic crystal nanocavity. Conference on Lasers and Electro-Optics: OSA Technical Digest, , 2019; pp. 1-2.
[http://dx.doi.org/10.1364/CLEO_SI.2019.SF2H.2]
[14]
Gandhi, S.I.; Sridarshini, T. Design of photonic crystal based optical digital to analog converters. Laser Phys., 2019, 29(4)046206
[http://dx.doi.org/10.1088/1555-6611/ab05d1]
[15]
Zhang, Y.; Kan, Q.; Wang, G.P. One-way optical transmission in silicon grating-photonic crystal structures. Opt. Lett., 2014, 39(16), 4934-4937.
[http://dx.doi.org/10.1364/OL.39.004934] [PMID: 25121912]
[16]
Elwi, T.A. Electromagnetic band gap structures based on ultra wideband microstrip antenna. Microw. Opt. Technol. Lett., 2017, 59(4), 827-834.
[http://dx.doi.org/10.1002/mop.30397]
[17]
Cheng, H.R.; Song, Q.Y.; Guo, Y.C.; Chen, X.Q.; Shi, X.W. Design of a novel EBG structure and its application in fractal microstrip antenna. Prog. Electromagn. Res. C, 2009, 11, 81-90.
[http://dx.doi.org/10.2528/PIERC09091403]
[18]
Halir, R.; Ortega-Moñux, A.; Benedikovic, D.; Mashanovich, G.Z.; Wangüemert-Pérez, J.G.; Schmid, J.H.; Molina-Fernández, Í.; Cheben, P. Subwavelength-Grating metamaterial structures for silicon photonic devices. Proc. IEEE, 2018, 106(12), 2144-2157.
[http://dx.doi.org/10.1109/JPROC.2018.2851614]
[19]
Shankhwar, N.; Kalra, Y.; Li, Q.; Sinha, R.K. Zero-index metamaterial based all-dielectric nanoantenna. AIP Adv., 2019, 9(3)035115
[http://dx.doi.org/10.1063/1.5086234]
[20]
Shawon, M.J.; Mahdiraji, G.A.; Hasan, M.M.; Shakibaei, B.H.; Gang, S.Y.; Mahdy, M.R.C.; Adikan, F.R.M. Single negative metamaterial-based hollow-core bandgap fiber with multilayer cladding. IEEE Photonics J., 2015, 7(6)4600812
[http://dx.doi.org/10.1109/JPHOT.2015.2496399]
[21]
Hitoshi, H.; Atsushi, M. Dispersion relation of electromagnetic waves in one-dimensional plasma photonic crystals. J. Plasma Fusion Res., 2004, 80(2), 89-90.
[http://dx.doi.org/10.1585/jspf.80.89]
[22]
Barkat, O. Theoretical investigation of transmission and dispersion properties of one dimensional photonic crystal. J. Electr. Electron. Eng. (Oradea), 2015, 3(2), 12-18.
[http://dx.doi.org/10.11648/j.jeee.20150302.11]

© 2024 Bentham Science Publishers | Privacy Policy