Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Letter Article

Structural Plasticity of EAK-16 Peptide Inducing Vesicle Membrane Leakage

Author(s): Abdul Majid *, Farah Naz and Muhammad Hassan Khaskheli

Volume 27, Issue 8, 2020

Page: [801 - 807] Pages: 7

DOI: 10.2174/0929866527666200129141116

Price: $65

Abstract

Background: Ionic complementary peptide EAK-16 has been studies for anticancer drug delivery application. This is a 16 residues, short sequence peptide has ability to trosnform into micro/nanoparticle via self-assembly. However, it is still not clear that how this can bind with cell membrane to induce membrane leakage or delivering their cargo inside cell membrane.

Objective: The main objective of this work was to understand behaviour of secondary structure conformation of peptide in solution and at lipid membrane interfaces and membrane permeability of synthetic ionic complementary peptide EAK-16. The corresponding secondary structure conformation was evaluated.

Methods: We performed biophysical investigation to probe the interaction of synthesised ionic complementary peptide (EAK-16) with dimyristoylphospholcholine (DMPC) and dimyristoylphosphoserine (DMPS) membrane interfaces. The folding behaviours of EAK-16 were studied with Circular Dichroism (CD) spectroscopy. Membrane leakage with peptide was confirmed with calcein leakage assay.

Results: Our finding of this study showed that in aqueous phase EAK-16 was predominantly folded into β-sheets. The temperature could alter the β-sheets. However, in DMPC and DMPS membrane interfaces, EAK-16 adopted helical conformation. EAK-16 has preference in perturbing anionic compared Zwitterionic lipid vesicles. This study proposed that hydrophobic grooves of EAK-16 might be a key in the association with lipid bilayers. Secondly, a charge distribution of ionic residues would also support the orientation at lipid bilayers. This peptide membrane association would facilitate the membrane destabilisation.

Conclusion: This study demonstrated the supporting evidence that EAK-16 could interact with lipid membranes and conforming to helical structure, while the helical conformation induced the lipid membrane leakage. Overall, this study provides a physical rationale that ionic complementary peptide can be a useful tool for designing and development of novel antibiotics and anticancer agents along its previous drug delivery applications.

Keywords: Ionic complementary peptide, peptide membrane interaction, membrane permeability, peptide folding, structurefunction of peptide, zwitterionic lipid vesicles.

« Previous
Graphical Abstract
[1]
Dufourc, E.J.; Buchoux, S.; Toupé, J.; Sani, M.A.; Jean-François, F.; Khemtémourian, L.; Grélard, A.; Loudet-Courrèges, C.; Laguerre, M.; Elezgaray, J.; Desbat, B.; Odaert, B. Membrane interacting peptides: From killers to helpers. Curr. Protein Pept. Sci., 2012, 13(7), 620-631.
[http://dx.doi.org/10.2174/138920312804142138] [PMID: 23116443]
[2]
Vineeth Kumar, T.V.; Sanil, G. A review of the mechanism of action of amphibian antimicrobial peptides focusing on peptide-membrane interaction and membrane curvature. Curr. Protein Pept. Sci., 2017, 18(12), 1263-1272.
[http://dx.doi.org/10.2174/1389203718666170710114932] [PMID: 28699512]
[3]
Wang, G. Tool developments for structure-function studies of host defense peptides. Protein Pept. Lett., 2007, 14(1), 57-69.
[http://dx.doi.org/10.2174/092986607779117182] [PMID: 17266652]
[4]
Iwasaki, A.; Medzhitov, R. Control of adaptive immunity by the innate immune system. Nat. Immunol., 2015, 16(4), 343-353.
[http://dx.doi.org/10.1038/ni.3123] [PMID: 25789684]
[5]
Moynihan, K.D.; Opel, C.F.; Szeto, G.L.; Tzeng, A.; Zhu, E.F.; Engreitz, J.M.; Williams, R.T.; Rakhra, K.; Zhang, M.H.; Rothschilds, A.M.; Kumari, S.; Kelly, R.L.; Kwan, B.H.; Abraham, W.; Hu, K.; Mehta, N.K.; Kauke, M.J.; Suh, H.; Cochran, J.R.; Lauffenburger, D.A.; Wittrup, K.D.; Irvine, D.J. Eradication of large established tumors in mice by combination immunotherapy that engages innate and adaptive immune responses. Nat. Med., 2016, 22(12), 1402-1410.
[http://dx.doi.org/10.1038/nm.4200] [PMID: 27775706]
[6]
Hall, C.W.; Mah, T-F. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol. Rev., 2017, 41(3), 276-301.
[http://dx.doi.org/10.1093/femsre/fux010] [PMID: 28369412]
[7]
Falanga, A.; Lombardi, L.; Franci, G.; Vitiello, M.; Iovene, M.R.; Morelli, G.; Galdiero, M.; Galdiero, S. Marine antimicrobial peptides: Nature provides templates for the design of novel compounds against pathogenic bacteria. Int. J. Mol. Sci., 2016, 17(5), 785.
[http://dx.doi.org/10.3390/ijms17050785] [PMID: 27213366]
[8]
Andersson, D.I.; Hughes, D.; Kubicek-Sutherland, J.Z. Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Resist. Updat., 2016, 26, 43-57.
[http://dx.doi.org/10.1016/j.drup.2016.04.002] [PMID: 27180309]
[9]
Oliveira, M.D.; Franco, O.L.; Nascimento, J.M.; de Melo, C.P.; Andrade, C.A. Mechanistic aspects of peptide-membrane interactions determined by optical, dielectric and piezoelectric techniques: An overview. Curr. Protein Pept. Sci., 2013, 14(7), 543-555.
[http://dx.doi.org/10.2174/13892037113149990070] [PMID: 23968347]
[10]
Wang, J.; Liu, K.; Xing, R.; Yan, X. Peptide self-assembly: Thermodynamics and kinetics. Chem. Soc. Rev., 2016, 45(20), 5589-5604.
[http://dx.doi.org/10.1039/C6CS00176A] [PMID: 27487936]
[11]
Sun, L.; Zheng, C.; Webster, T.J. Self-assembled peptide nanomaterials for biomedical applications: Promises and pitfalls. Int. J. Nanomedicine, 2016, 12, 73-86.
[http://dx.doi.org/10.2147/IJN.S117501] [PMID: 28053525]
[12]
Edgar, J.Y.C.; Wang, H. Introduction for design of nanoparticle based drug delivery systems. Curr. Pharm. Des., 2017, 23(14), 2108-2112.
[http://dx.doi.org/10.2174/1381612822666161025154003] [PMID: 27784242]
[13]
Hong, Y.; Lau, L.S.; Legge, R.L.; Chen, P. Critical self-assembly concentration of an ionic-complementary peptide EAK16-I. J. Adhes., 2004, 80(10-11), 913-931.
[http://dx.doi.org/10.1080/00218460490508616]
[14]
Dathe, M.; Schümann, M.; Wieprecht, T.; Winkler, A.; Beyermann, M.; Krause, E.; Matsuzaki, K.; Murase, O.; Bienert, M. Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes. Biochemistry, 1996, 35(38), 12612-12622.
[http://dx.doi.org/10.1021/bi960835f] [PMID: 8823199]
[15]
Greenfield, N.J. Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc., 2006, 1(6), 2876-2890.
[http://dx.doi.org/10.1038/nprot.2006.202] [PMID: 17406547]
[16]
Neuhaus, F.C.; Baddiley, J. A continuum of anionic charge: Structures and functions of D-alanyl-teichoic acids in gram-positive bacteria. Microbiol. Mol. Biol. Rev., 2003, 67(4), 686-723.
[http://dx.doi.org/10.1128/MMBR.67.4.686-723.2003] [PMID: 14665680]
[17]
Lee, T-H.; Hall, K.N.; Aguilar, M.I.K.; Aguilar, M-I. Antimicrobial peptide structure and mechanism of action: A focus on the role of membrane structure. Curr. Top. Med. Chem., 2016, 16(1), 25-39.
[http://dx.doi.org/10.2174/1568026615666150703121700] [PMID: 26139112]
[18]
Reed, J.; Reed, T.A. A set of constructed type spectra for the practical estimation of peptide secondary structure from circular dichroism. Anal. Biochem., 1997, 254(1), 36-40.
[http://dx.doi.org/10.1006/abio.1997.2355] [PMID: 9398343]
[19]
Xu, D.; Zhang, Y. Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field. Proteins, 2012, 80(7), 1715-1735.
[http://dx.doi.org/10.1002/prot.24065] [PMID: 22411565]
[20]
Prenner, E.J.; Lewis, R.N.; McElhaney, R.N. The interaction of the antimicrobial peptide gramicidin S with lipid bilayer model and biological membranes. Biochim. Biophys. Acta, 1999, 1462(1-2), 201-221.
[http://dx.doi.org/10.1016/S0005-2736(99)00207-2] [PMID: 10590309]
[21]
Herrera, A.I.; Tomich, J.M.; Prakash, O. Membrane interacting peptides: A review. Curr. Protein Pept. Sci., 2016, 17(8), 827-841.
[http://dx.doi.org/10.2174/1389203717666160526123821] [PMID: 27226195]
[22]
Sani, M-A.; Separovic, F. How membrane-active peptides get into lipid membranes. Acc. Chem. Res., 2016, 49(6), 1130-1138.
[http://dx.doi.org/10.1021/acs.accounts.6b00074] [PMID: 27187572]
[23]
Mika, J.T.; Moiset, G.; Cirac, A.D.; Feliu, L.; Bardají, E.; Planas, M.; Sengupta, D.; Marrink, S.J.; Poolman, B. Structural basis for the enhanced activity of cyclic antimicrobial peptides: the case of BPC194. Biochim. Biophys. Acta, 2011, 1808(9), 2197-2205.
[http://dx.doi.org/10.1016/j.bbamem.2011.05.001] [PMID: 21586269]
[24]
Bond, P.J.; Holyoake, J.; Ivetac, A.; Khalid, S.; Sansom, M.S.P. Coarse-grained molecular dynamics simulations of membrane proteins and peptides. J. Struct. Biol., 2007, 157(3), 593-605.
[http://dx.doi.org/10.1016/j.jsb.2006.10.004] [PMID: 17116404]
[25]
Sato, H.; Feix, J.B. Peptide-membrane interactions and mechanisms of membrane destruction by amphipathic α-helical antimicrobial peptides. Biochim. Biophys. Acta, 2006, 1758(9), 1245-1256.
[http://dx.doi.org/10.1016/j.bbamem.2006.02.021] [PMID: 16697975]
[26]
Berditsch, M.; Jäger, T.; Strempel, N.; Schwartz, T.; Overhage, J.; Ulrich, A.S. Synergistic effect of membrane-active peptides polymyxin B and gramicidin S on multidrug-resistant strains and biofilms of Pseudomonas aeruginosa. Antimicrob. Agents Chemother., 2015, 59(9), 5288-5296.
[http://dx.doi.org/10.1128/AAC.00682-15] [PMID: 26077259]
[27]
Lins, L.; Charloteaux, B.; Thomas, A.; Brasseur, R. Computational study of lipid-destabilizing protein fragments: Towards a comprehensive view of tilted peptides. Proteins, 2001, 44(4), 435-447.
[http://dx.doi.org/10.1002/prot.1109] [PMID: 11484221]
[28]
Mishig-Ochir, T.; Gombosuren, D.; Jigjid, A.; Tuguldur, B.; Chuluunbaatar, G.; Urnukhsaikhan, E.; Pathak, C.; Lee, B.J. Cellular membrane composition requirement by antimicrobial and anticancer peptide GA-K4. Protein Pept. Lett., 2017, 24(3), 197-205.
[http://dx.doi.org/10.2174/0929866523666161216123509] [PMID: 27993125]
[29]
Deslouches, B.; Di, Y.P. Antimicrobial peptides with selective antitumor mechanisms: Prospect for anticancer applications. Oncotarget, 2017, 8(28), 46635-46651.
[http://dx.doi.org/10.18632/oncotarget.16743] [PMID: 28422728]
[30]
Strömstedt, A.A.; Ringstad, L.; Schmidtchen, A.; Malmsten, M. Malmsten, interaction between amphiphilic peptides and phospholipid membranes. Curr. Opin. Colloid Interface Sci., 2010, 15(6), 467-478.
[http://dx.doi.org/10.1016/j.cocis.2010.05.006]
[31]
Alvares, D.S.; Fanani, M.L.; Ruggiero Neto, J.; Wilke, N. The interfacial properties of the peptide Polybia-MP1 and its interaction with DPPC are modulated by lateral electrostatic attractions. Biochim. Biophys. Acta, 2016, 1858(2), 393-402.
[http://dx.doi.org/10.1016/j.bbamem.2015.12.010] [PMID: 26673092]
[32]
Cutrona, K.J.; Kaufman, B.A.; Figueroa, D.M.; Elmore, D.E. Role of arginine and lysine in the antimicrobial mechanism of histone-derived antimicrobial peptides. FEBS Lett., 2015, 589(24 Pt B), 3915-3920.
[http://dx.doi.org/10.1016/j.febslet.2015.11.002] [PMID: 26555191]
[33]
Lee, I.H.; Zhao, C.; Nguyen, T.; Menzel, L.; Waring, A.J.; Sherman, M.A.; Lehrer, R.I. Clavaspirin, an antibacterial and haemolytic peptide from Styela clava. J. Pept. Res., 2001, 58(6), 445-456.
[http://dx.doi.org/10.1034/j.1399-3011.2001.10975.x] [PMID: 12005415]
[34]
Nicolas, P.; Mor, A. Peptides as weapons against microorganisms in the chemical defense system of vertebrates. Annu. Rev. Microbiol., 1995, 49(1), 277-304.
[http://dx.doi.org/10.1146/annurev.mi.49.100195.001425] [PMID: 8561461]
[35]
Jang, W.S.; Kim, K.N.; Lee, Y.S.; Nam, M.H.; Lee, I.H. Halocidin: A new antimicrobial peptide from hemocytes of the solitary tunicate, Halocynthia aurantium. FEBS Lett., 2002, 521(1-3), 81-86.
[http://dx.doi.org/10.1016/S0014-5793(02)02827-2] [PMID: 12067731]
[36]
Guidotti, G.; Brambilla, L.; Rossi, D. Cell-penetrating peptides: From basic research to clinics. Trends Pharmacol. Sci., 2017, 38(4), 406-424.
[http://dx.doi.org/10.1016/j.tips.2017.01.003] [PMID: 28209404]
[37]
Poger, D.; Pöyry, S.; Mark, A.E. Could Cardiolipin protect membranes against the action of certain antimicrobial peptides? Aurein 1.2, a case study. ACS Omega, 2018, 3(12), 16453-16464.
[http://dx.doi.org/10.1021/acsomega.8b02710] [PMID: 30613806]
[38]
Qian, S.; Rai, D. Interaction of aurein 1.2 and charged lipid bilayers. Biophys. J., 2017, 112(3), 378-379.
[http://dx.doi.org/10.1016/j.bpj.2016.11.2058]
[39]
Ulmschneider, J.P. Charged antimicrobial peptides can translocate across membranes without forming channel-like pores. Biophys. J., 2017, 113(1), 73-81.
[http://dx.doi.org/10.1016/j.bpj.2017.04.056] [PMID: 28700927]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy