Generic placeholder image

Current Proteomics

Editor-in-Chief

ISSN (Print): 1570-1646
ISSN (Online): 1875-6247

Research Article

Physiological and Biochemical Characteristics of Two Soybean Cultivars with Different Seed Vigor During Seed Physiological Maturity

Author(s): Jiaping Wei, Haihong Zhao , Xiaolin Liu, Sushuang Liu, Linzhi Li and Hao Ma*

Volume 18, Issue 1, 2021

Published on: 27 January, 2020

Page: [71 - 80] Pages: 10

DOI: 10.2174/1570164617666200127142051

Price: $65

Abstract

Background: The soybean seed’s physiological maturity (R7) period is an extraordinary period for the formation of seed vigor. However, how proteins and their related metabolic pathways in seed and leaf change during seed physiological maturity is still not fully understood.

Methods: In the present study, using a pair of pre-harvest seed deterioration-sensitive and -resistant soybean cultivars Ningzhen No. 1 and Xiangdou No. 3, the changes were investigated through analyzing leaf, cotyledon and embryo at the levels of protein, ultrastructure, and physiology and biochemistry.

Results: Soybean cultivars with stronger photosynthetic capacity in leaf, higher nutrients accumulation and protein biosynthesis in cotyledon, as well as stronger resistant-pathogen ability and cell stability in embryo during seed physiological maturity, would produce higher vitality seeds.

Conclusion: Such a study allows us to further understand the changes at protein, ultrastructure, and physiology and biochemistry levels in developing seeds during the physiological maturity and provide a theoretical basis for cultivating soybean cultivars with higher seed vigor.

Keywords: Soybean, physiological maturity, seed vigor, proteomics, ultrastructure, physiology and biochemistry.

Graphical Abstract
[1]
Finch-Savage, W.E.; Bassel, G.W. Seed vigour and crop establishment: extending performance beyond adaptation. J. Exp. Bot., 2016, 67(3), 567-591.
[http://dx.doi.org/10.1093/jxb/erv490] [PMID: 26585226]
[2]
Rajjou, L.; Duval, M.; Gallardo, K.; Catusse, J.; Bally, J.; Job, C.; Job, D. Seed germination and vigor. Annu. Rev. Plant Biol., 2012, 63, 507-533.
[http://dx.doi.org/10.1146/annurev-arplant-042811-105550 PMID: 22136565]
[3]
Chu, P.; Chen, H.; Zhou, Y.; Li, Y.; Ding, Y.; Jiang, L.; Tsang, E.W.T.; Wu, K.; Huang, S. Proteomic and functional analyses of Nelumbo nucifera annexins involved in seed thermotolerance and germination vigor. Planta, 2012, 235(6), 1271-1288.
[http://dx.doi.org/10.1007/s00425-011-1573-y PMID: 22167260]
[4]
Nagel, M.; Navakode, S.; Scheibal, V.; Baum, M.; Nachit, M.; Roeder, M.S.; Boerner, A. The genetic basis of durum wheat germination and seedling growth under osmotic stress. Biol. Plant., 2014, 58, 681-688.
[http://dx.doi.org/10.1007/s10535-014-0436-3]
[5]
Kong, L.; Huo, H.; Mao, P. Antioxidant response and related gene expression in aged oat seed. Front. Plant Sci., 2015, 6, 158.
[http://dx.doi.org/10.3389/fpls.2015.00158 PMID: 25852711]
[6]
Ahmed, Z.; Yang, H.; Fu, Y.B. The associative changes in Scutellum nuclear content and morphology with vitality loss of naturally aged and accelerated aging wheat (Triticum aestivum) seeds. Front. Plant Sci., 2016, 7, 1474.
[http://dx.doi.org/10.3389/fpls.2016.01474] [PMID: 27729925]
[7]
Hossain, Z.; Khatoon, A.; Komatsu, S. Soybean proteomics for unraveling abiotic stress response mechanism. J. Proteome Res., 2013, 12(11), 4670-4684.
[http://dx.doi.org/10.1021/pr400604b] [PMID: 24016329]
[8]
Xin, X.; Lin, X.H.; Zhou, Y.C.; Chen, X.L.; Liu, X.; Lu, X.X. Proteome analysis of maize seeds: The effect of artificial ageing. Physiol. Plant., 2011, 143(2), 126-138.
[http://dx.doi.org/10.1111/j.1399-3054.2011.01497.x PMID: 21707636]
[9]
Yacoubi, R.; Job, C.; Belghazi, M.; Chaibi, W.; Job, D. Toward characterizing seed vigor in alfalfa through proteomic analysis of germination and priming. J. Proteome Res., 2011, 10(9), 3891-3903.
[http://dx.doi.org/10.1021/pr101274f] [PMID: 21755932]
[10]
Catusse, J.; Meinhard, J.; Job, C.; Strub, J.M.; Fischer, U.; Pestsova, E.; Westhoff, P.; Van Dorsselaer, A.; Job, D. Proteomics reveals potential biomarkers of seed vigor in sugarbeet. Proteomics, 2011, 11(9), 1569-1580.
[http://dx.doi.org/10.1002/pmic.201000586] [PMID: 21432998]
[11]
Yao, Z.; Liu, L.; Gao, F.; Rampitsch, C.; Reinecke, D.M.; Ozga, J.A.; Ayele, B.T. Developmental and seed aging mediated regulation of antioxidative genes and differential expression of proteins during pre- and post-germinative phases in pea. J. Plant Physiol., 2012, 169(15), 1477-1488.
[http://dx.doi.org/10.1016/j.jplph.2012.06.001 PMID: 22742946]
[12]
Yin, X.; He, D.; Gupta, R.; Yang, P. Physiological and proteomic analyses on artificially aged Brassica napus seed. Front. Plant Sci., 2015, 6, 112.
[http://dx.doi.org/10.3389/fpls.2015.00112] [PMID: 25763006]
[13]
Wang, W.Q.; Liu, S.J.; Song, S.Q.; Møller, I.M. Proteomics of seed development, desiccation tolerance, germination and vigor. Plant Physiol. Biochem., 2015, 86, 1-15.
[http://dx.doi.org/10.1016/j.plaphy.2014.11.003 PMID: 25461695]
[14]
Zhang, Y.X.; Xu, H.H.; Liu, S.J.; Li, N.; Wang, W.Q.; Møller, I.M.; Song, S.Q. Proteomic analysis reveals different involvement of embryo and endosperm proteins during aging of Yliangyou 2 hybrid rice seeds. Front. Plant Sci., 2016, 7, 1394.
[http://dx.doi.org/10.3389/fpls.2016.01394] [PMID: 27708655]
[15]
Min, C.W.; Lee, S.H.; Cheon, Y.E.; Han, W.Y.; Ko, J.M.; Kang, H.W.; Kim, Y.C.; Agrawal, G.K.; Rakwal, R.; Gupta, R.; Kim, S.T. In-depth proteomic analysis of Glycine max seeds during controlled deterioration treatment reveals a shift in seed metabolism. J. Proteomics, 2017, 169, 125-135.
[http://dx.doi.org/10.1016/j.jprot.2017.06.022 PMID: 28669816]
[16]
Zhang, H.; Wang, W.Q.; Liu, S.J.; Møller, I.M.; Song, S.Q. Proteome analysis of Poplar seed vigor. PLoS One, 2015, 10(7)e0132509
[http://dx.doi.org/10.1371/journal.pone.0132509] [PMID: 26172265]
[17]
Petla, B.P.; Kamble, N.U.; Kumar, M.; Verma, P.; Ghosh, S.; Singh, A.; Rao, V.; Salvi, P.; Kaur, H.; Saxena, S.C.; Majee, M. Rice protein l-isoaspartyl methyltransferase isoforms differentially accumulate during seed maturation to restrict deleterious isoAsp and reactive oxygen species accumulation and are implicated in seed vigor and longevity. New Phytol., 2016, 211(2), 627-645.
[http://dx.doi.org/10.1111/nph.13923] [PMID: 26987457]
[18]
Salvi, P.; Saxena, S.C.; Petla, B.P.; Kamble, N.U.; Kaur, H.; Verma, P.; Rao, V.; Ghosh, S.; Majee, M. Differentially expressed galactinol synthase(s) in chickpea are implicated in seed vigor and longevity by limiting the age induced ROS accumulation. Sci. Rep., 2016, 6, 35088.
[http://dx.doi.org/10.1038/srep35088] [PMID: 27725707]
[19]
Litholdo, C.G., Jr; Parker, B.L.; Eamens, A.L.; Larsen, M.R.; Cordwell, S.J.; Waterhouse, P.M. Proteomic identification of putative microRNA394 target genes in Arabidopsis thaliana identifies major latex protein family members critical for normal development. Mol. Cell. Proteomics, 2016, 15(6), 2033-2047.
[http://dx.doi.org/10.1074/mcp.M115.053124] [PMID: 27067051]
[20]
Zhang, H.Y.; Lei, G.; Zhou, H.W.; He, C.; Liao, J.L.; Huang, Y.J. Quantitative iTRAQ-based proteomic analysis of rice grains to assess high night temperature stress. Proteomics, 2017, 17(5), 365.
[http://dx.doi.org/10.1002/pmic.201600365] [PMID: 28101936]
[21]
Yang, M.; Dong, J.; Zhao, W.; Gao, X. Characterization of proteins involved in early stage of wheat grain development by iTRAQ. J. Proteomics, 2016, 136, 157-166.
[http://dx.doi.org/10.1016/j.jprot.2016.01.002] [PMID: 26779988]
[22]
Wang, L.; Ma, H.; Song, L.; Shu, Y.; Gu, W. Comparative proteomics analysis reveals the mechanism of pre-harvest seed deterioration of soybean under high temperature and humidity stress. J. Proteomics, 2012, 75(7), 2109-2127.
[http://dx.doi.org/10.1016/j.jprot.2012.01.007] [PMID: 22270011]
[23]
Ma, H.; Wang, L.; Wang, S.; Wei, J.; Huang, L.; Gu, W. Comparative proteomics analysis of developing seed of a pre-harvest seed deterioration resistant Soybean cultivar under high temperature and humidity stress. Curr. Proteomics, 2015, 12, 168-184.
[http://dx.doi.org/10.2174/157016461203151120093653]
[24]
Song, L.R.; Wang, S.; Niu, J.; Ma, H.Y.; Shu, Y.J.; Yang, Y.; Gu, W.H.; Ma, H. Differentially proteomics analysis of pre-harvest seed deterioration and deterioration resistance in Spring Soybean. Chinese Agricult. Sci., 2015, 48, 23-32. [in Chinese
[25]
Evans, J.R.; von Caemmerer, S. Enhancing photosynthesis. Plant Physiol., 2011, 155(1), 19-19.
[http://dx.doi.org/10.1104/pp.110.900402] [PMID: 21205631]
[26]
Makino, A. Photosynthesis, grain yield, and nitrogen utilization in rice and wheat. Plant Physiol., 2011, 155(1), 125-129.
[http://dx.doi.org/10.1104/pp.110.165076] [PMID: 20959423]
[27]
Fu, H.; Cao, D.D.; Hu, W.M.; Guan, Y.J.; Fu, Y.Y.; Fang, Y.F.; Hu, J. Studies on optimum harvest time for hybrid rice seed. J. Sci. Food Agric., 2017, 97(4), 1124-1133.
[http://dx.doi.org/10.1002/jsfa.7838] [PMID: 27283044]
[28]
2013.
[29]
Ma, H.; Song, L.; Shu, Y.; Wang, S.; Niu, J.; Wang, Z.; Yu, T.; Gu, W.; Ma, H. Comparative proteomic analysis of seedling leaves of different salt tolerant soybean genotypes. J. Proteomics, 2012, 75(5), 1529-1546.
[http://dx.doi.org/10.1016/j.jprot.2011.11.026] [PMID: 22155470]
[30]
Zhou, T.; Li, C.; Zhao, W.; Wang, X.; Wang, F.; Sha, J. MaxReport: an enhanced proteomic result reporting tool for maxquant. PLoS One, 2016, 11(3)e0152067
[http://dx.doi.org/10.1371/journal.pone.0152067 PMID: 27003708]
[31]
Huang, Y.; Ma, H.Y.; Huang, W.; Wang, F.; Xu, Z.S.; Xiong, A.S. Comparative proteomic analysis provides novel insight into the interaction between resistant vs. susceptible tomato cultivars and TYLCV infection. BMC Plant Biol., 2016, 16(1), 162.
[http://dx.doi.org/10.1186/s12870-016-0819-z] [PMID: 27436092]
[32]
Kanehisa, M.; Sato, Y.; Kawashima, M.; Furumichi, M.; Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res., 2016, 44(D1), D457-D462.
[http://dx.doi.org/10.1093/nar/gkv1070] [PMID: 26476454]
[33]
Liu, S.; Liu, Y.; Jia, Y.; Wei, J.; Wang, S.; Liu, X.; Zhou, Y.; Zhu, Y.; Gu, W.; Ma, H. Gm1-MMP is involved in growth and development of leaf and seed, and enhances tolerance to high temperature and humidity stress in transgenic Arabidopsis. Plant Sci., 2017, 259, 48-61.
[http://dx.doi.org/10.1016/j.plantsci.2017.03.005] [PMID: 28483053]
[34]
Yang, J.Y.; Zheng, W.; Tian, Y.; Wu, Y.; Zhou, D.W. Effects of various mixed salt-alkaline stresses on growth, photosynthesis, and photosynthetic pigment concentrations of Medicago ruthenica seedlings. Photosynthetica, 2011, 49, 275-284.
[http://dx.doi.org/10.1007/s11099-011-0037-8]
[35]
Hirsche, J.; García Fernández, J.M.; Stabentheiner, E.; Großkinsky, D.K.; Roitsch, T. Differential effects of carbohydrates on Arabidopsis pollen germination. Plant Cell Physiol., 2017, 58(4), 691-701.
[http://dx.doi.org/10.1093/pcp/pcx020] [PMID: 28339807]
[36]
Vermeer, J.E.M.; Thole, J.M.; Goedhart, J.; Nielsen, E.; Munnik, T.; Gadella, T.W. Jr. Imaging phosphatidylinositol 4-phosphate dynamics in living plant cells. Plant J., 2009, 57(2), 356-372.
[http://dx.doi.org/10.1111/j.1365-313X.2008.03679.x] [PMID: 18785997]
[37]
Ischebeck, T.; Stenzel, I.; Hempel, F.; Jin, X.; Mosblech, A.; Heilmann, I. Phosphatidylinositol-4,5-bisphosphate influences Nt-Rac5-mediated cell expansion in pollen tubes of Nicotiana tabacum. Plant J., 2011, 65(3), 453-468.
[http://dx.doi.org/10.1111/j.1365-313X.2010.04435.x] [PMID: 21265898]
[38]
Heilmann, M.; Heilmann, I. Plant phosphoinositides-complex networks controlling growth and adaptation. Biochim. Biophys. Acta, 2015, 1851(6), 759-769.
[http://dx.doi.org/10.1016/j.bbalip.2014.09.018] [PMID: 25280638]
[39]
Chatelain, E.; Hundertmark, M.; Leprince, O.; Le Gall, S.; Satour, P.; Deligny-Penninck, S.; Rogniaux, H.; Buitink, J. Temporal profiling of the heat-stable proteome during late maturation of Medicago truncatula seeds identifies a restricted subset of late embryogenesis abundant proteins associated with longevity. Plant Cell Environ., 2012, 35(8), 1440-1455.
[http://dx.doi.org/10.1111/j.1365-3040.2012.02501.x PMID: 22380487]
[40]
Liang, Y.; Xiong, Z.; Zheng, J.; Xu, D.; Zhu, Z.; Xiang, J.; Gan, J.; Raboanatahiry, N.; Yin, Y.; Li, M. Genome-wide identification, structural analysis and new insights into Late Embryogenesis Abundant (LEA) gene family formation pattern in Brassica napus. Sci. Rep., 2016, 6, 24265.
[http://dx.doi.org/10.1038/srep24265] [PMID: 27072743]
[41]
Kovářová, J.; Barrett, M.P. The pentose phosphate pathway in parasitic Trypanosomatids. Trends Parasitol., 2016, 32(8), 622-634.
[http://dx.doi.org/10.1016/j.pt.2016.04.010] [PMID: 27174163]
[42]
Taj, G.; Agarwal, P.; Grant, M.; Kumar, A. MAPK machinery in plants: Recognition and response to different stresses through multiple signal transduction pathways. Plant Signal. Behav., 2010, 5(11), 1370-1378.
[http://dx.doi.org/10.4161/psb.5.11.13020] [PMID: 20980831]
[43]
Kumudini, B.S.; Jayamohan, N.S.; Patil, S.V.; Govardhana, M. Primary plant metabolism during plant-pathogen interactions and its role in defense; Plant Metabolites and Regulation Under Environmental Stress: Srinagar, 2018, pp. 215-229.
[http://dx.doi.org/10.1016/B978-0-12-812689-9.00011-X]
[44]
Alberts;, Bruce. Molecular Biology of the Cell; Garland Science: New York, 2008.
[45]
Yazaki, K.; Arimura, G.I.; Ohnishi, T. ‘Hidden’ terpenoids in plants: their biosynthesis, localization and ecological roles. Plant Cell Physiol., 2017, 58(10), 1615-1621.
[http://dx.doi.org/10.1093/pcp/pcx123] [PMID: 29016891]
[46]
Rosental, L.; Nonogaki, H.; Fait, A. Activation and regulation of primary metabolism during seed germination. Seed Sci. Res., 2014, 24, 1-15.
[http://dx.doi.org/10.1017/S0960258513000391]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy