Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Research Article

Green-synthesized Zinc Oxide Nanoparticles from Aqueous Root Extract of Dicoma anomala (Sond.) Mitigates Free Radicals and Diabetes-linked Enzymes

Author(s): F.O. Balogun and A.O.T. Ashafa*

Volume 10, Issue 6, 2020

Page: [918 - 929] Pages: 12

DOI: 10.2174/2210681210666200117150727

Price: $65

Abstract

Background: The emergence of eco-friendly methods for the synthesis of metallic nanostructures has continued to receive wider acceptance.

Objective: The study investigated the effect of biologically-synthesized ZnO nanoparticles on free radicals and carbohydrate-hydrolyzing enzymes.

Methods: The characterized nanoparticles, DaZnONPs (Dicoma anomala zinc oxide nanoparticles) were obtained using ultraviolet-visible spectroscopy, transmission electron microscopy, Fourier- transform infrared spectroscopy (FTIR), energy dispersive spectroscopy, and X-ray diffraction technique (XRD). The activity of the synthesized nanostructures against 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), metal chelating, alpha-amylase and alpha-glucosidase was determined using standard methods.

Results: DaZnONPs were observed to be stable, mostly cubical in shape and within the nanometre size range. Optimum absorption of DaZnONPs was observed at 386 nm. The FTIR analysis indicated the presence of functional groups arising from alkaloids, flavonoids, tannins, and saponins (detected in earlier reports) and indicate potential nucleation and stability of the ZnONPs. XRD result depicted similar patterns of DaZnONPs and standard ZnO spectra, revealing a hexagonal and crystalline nature of the particles in nanometre range as shown by the obtained peaks. DaZnONPs inhibited DPPH (0.54 μgmL-1) and alpha-amylase (104.34 μgmL-1) better than quercetin (349.98 μgmL-1) and acarbose (594. 54 μgmL-1). Meanwhile, the metal chelating effect of DaZnONPs (30.41 μgmL-1) was observed to be insignificantly (p>0.05) at par with quercetin (27.81 μgmL-1). The kinetics of alpha-amylase and alpha-glucosidase enzymes by DaZnOnPs was observed to be non-competitive inhibitions.

Conclusion: DaZnONPs (as against the bulk extract) could be explored as possible antioxidative and antihyperglycaemic agents mitigating the adverse effects of free radicals and hyperglycaemia.

Keywords: Antidiabetics, antioxidant, characterization, Dicoma anomala, FTIR, free radicals, green synthesis, inhibition kinetics, SEM-EDS, zinc oxide nanoparticles, XRD.

Graphical Abstract
[1]
Fakhari, S.; Jamzad, M.; Fard, H.K. Green synthesis of zinc oxide nanoparticles: A comparison. Green Chem. Lett. Rev., 2019, 12(1), 19-24.
[http://dx.doi.org/10.1080/17518253.2018.1547925]
[2]
Sorescu, A.; Alexandrina, N.; Rodica-Mariana, I.; Ioana-Raluca, S. Green synthesis of silver nanoparticles using plant extracts. Proceedings of the 4th International Virtual Conference on Advanced Scientific Result, June 6-10, 2016, 188-193.
[http://dx.doi.org/10.18638/scieconf.2016.4.1.386]
[3]
Usman, A.I.; Abdul Aziza, A.; Abu Noqt, O. Application of green synthesis of gold nanoparticles: A review. J. Teknol., 2017, 79(5), 1-5.
[4]
Siddiqi, K.S.; Husen, A. Green synthesis, characterization and uses of palladium/platinum nanoparticles. Nanoscale Res. Lett., 2016, 11(1), 482.
[http://dx.doi.org/10.1186/s11671-016-1695-z ] [PMID: 27807824]
[5]
Sutradhar, P.; Saha, M. Green synthesis of zinc oxide nanoparticles using tomato (Lycopersicon esculentum) extract and its photovol-taic application. J. Exp. Nanosci., 2016, 11(5), 314-327.
[http://dx.doi.org/10.1080/17458080.2015.1059504]
[6]
Thirumurugan, A.; Aswitha, P.; Kiruthika, C.; Nagarajan, S.; Christy, A.N. Green synthesis of platinum nanoparticles using Azadirachta indica – an eco-friendly approach. Mater. Lett., 2016, 170, 175-178.
[http://dx.doi.org/10.1016/j.matlet.2016.02.026]
[7]
Sundrarajan, M.; Gowri, S. Green synthesis of titanium dioxide nanoparticles by Nyctanthes arbor-tristis leaves extract. Chalcogenide Lett., 2011, 8, 447-451.
[8]
Rai, M.; Ingle, A. Role of nanotechnology in agriculture with special reference to management of insect pests. Appl. Microbiol. Biotechnol., 2012, 94(2), 287-293.
[http://dx.doi.org/10.1007/s00253-012-3969-4 ] [PMID: 22388570]
[9]
Ogunyemi, S.O.; Abdallah, Y.; Zhang, M.; Fouad, H.; Hong, X.; Ibrahim, E.; Masum, M.M.I.; Hossain, A.; Mo, J.; Li, B. Green synthesis of zinc oxide nanoparticles using different plant extracts and their antibacterial activity against Xanthomonas oryzae pv. oryzae. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 341-352.
[http://dx.doi.org/10.1080/21691401.2018.1557671 ] [PMID: 30691311]
[10]
Rehana, D.; Mahendiran, D.; Kumar, R.S.; Rahiman, A.K. In vitro antioxidant and antidiabetic activities of zinc oxide nanoparticles synthesized using different plant extracts. Bioprocess Biosyst. Eng., 2017, 40(6), 943-957.
[http://dx.doi.org/10.1007/s00449-017-1758-2 ] [PMID: 28361361]
[11]
Rajakumar, G.; Thiruvengadam, M.; Mydhili, G.; Gomathi, T.; Chung, I.M. Green approach for synthesis of zinc oxide nanoparticles from Andrographis paniculata leaf extract and evaluation of their antioxidant, anti-diabetic, and anti-inflammatory activities. Bioprocess Biosyst. Eng., 2018, 41(1), 21-30.
[http://dx.doi.org/10.1007/s00449-017-1840-9 ] [PMID: 28916855]
[12]
Balogun, F.O.; Tshabalala, N.T.; Ashafa, A.O.T. Antidiabetic medicinal plants used by the Basotho tribe of Eastern Free State: a review. J. Diabetes Res., 2016, 2016(3)4602820
[http://dx.doi.org/10.1155/2016/4602820 ] [PMID: 27437404]
[13]
von Koenen, E. Medicinal, poisonous and edible plants in Namibia., 2001.
[14]
Tshabalala, N.T.; Ashafa, A.O.T. Ethnobotanical survey of Sotho medicinal plants used in the management of diabetes in the Eastern Free State, South Africa. Honours Dissertation University of the Free State: Qwaqwa,. 2011.
[15]
Makhubu, F.N.; Ashafa, A.O.T. Phytochemical screening, cytotoxicity and antimicrobial activities of Dicoma anomala and Hermania depressa root and leaf extracts against human pathogenic microorganisms., 2013.
[16]
Balogun, F.O.; Ashafa, A.O.T. Cytotoxic, kinetics of inhibition of carbohydrate-hydrolysing enzymes and oxidative stress mitigation by flavonoids roots extract of Dicoma anomala (Sond.). Asian Pac. J. Trop. Med., 2018, 11(1), 24-31.
[http://dx.doi.org/10.4103/1995-7645.223530]
[17]
Maroyi, A. Dicoma anomala Sond. A review of its botany, ethnomedicine, phytochemistry and pharmacology. Asian J. Pharm. Clin. Res. (Alex.), 2018, 11, 70.
[http://dx.doi.org/10.22159/ajpcr.2018.v11i6.25538]
[18]
Balogun, F.O.; Ashafa, A.O.T. Antioxidant and hepatoprotective activities of aqueous root extracts of Dicoma anomala (Sond.) against carbon tetrachloride induced liver damage in rats. J. Tradit. Chin. Med., 2016, 36, 505-513.
[http://dx.doi.org/10.1016/S0254-6272(16)30068-1]
[19]
Balogun, F.O.; Ashafa, A.O.T. Aqueous root extracts of Dicoma anomala (Sond.) ameliorates against isoproterenol-induced myocardial infarction in Wistar rats. Trop. J. Pharm. Res., 2016, 15, 1651-1657.
[http://dx.doi.org/10.4314/tjpr.v15i8.8]
[20]
Balogun, F.O.; Ashafa, A.O.T. Acute and subchronic oral toxicity evaluation of aqueous root extract of Dicoma anomala Sond. in Wistar rats. Evid.-based Compl. Altern. Med. 2016Article ID 3509323. , 11.
[http://dx.doi.org/10.1155/2016/3509323]
[21]
Balogun, F.O.; Ashafa, A.O.T. Aqueous roots extract of Dicoma anomala (Sond.) extenuates postprandial hyperglycaemia in vitro and its modulation against on the activities of carbohydrate-metabolizing enzymes in streptozotocin-induced diabetic Wistar Rats. S. Afr. J. Bot., 2017, 112, 102-111.
[http://dx.doi.org/10.1016/j.sajb.2017.05.014]
[22]
Bala, N.; Saha, S.; Chakraborty, M.; Maiti, M.; Das, S.; Basu, R.; Nandy, P. Green synthesis of zinc oxide nanoparticles using Hibiscus subdariffa leaf extract: effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity., 2014.
[23]
Braca, A.; De Tommasi, N.; Di Bari, L.; Pizza, C.; Politi, M.; Morelli, I. Antioxidant principles from Bauhinia tarapotensis. J. Nat. Prod., 2001, 64(7), 892-895.
[http://dx.doi.org/10.1021/np0100845 ] [PMID: 11473417]
[24]
Balogun, F.O.; Ashafa, A.O.T. Antioxidants, hepatoprotective and ameliorative potentials of aqueous leaf extract of Gazania krebsiana (Less.) against carbon tetrachloride –induced liver injury in rats. Trans. R. Soc. S. Afr., 2016, 71(2), 145-156.
[http://dx.doi.org/10.1080/0035919X.2016.1176967]
[25]
Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med., 1999, 26(9-10), 1231-1237.
[http://dx.doi.org/10.1016/S0891-5849(98)00315-3 ] [PMID: 10381194]
[26]
Dinis, T.C.P.; Maderia, V.M.; Almeida, L.M. Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch. Biochem. Biophys., 1994, 315(1), 161-169.
[http://dx.doi.org/10.1006/abbi.1994.1485 ] [PMID: 7979394]
[27]
McCue, P.P.; Shetty, K. Inhibitory effects of rosmarinic acid extracts on porcine pancreatic amylase in vitro. Asia Pac. J. Clin. Nutr., 2004, 13(1), 101-106.
[PMID: 15003922]
[28]
Ali, H.; Houghton, P.J.; Soumyanath, A. alpha-Amylase inhibitory activity of some Malaysian plants used to treat diabetes; with particular reference to Phyllanthus amarus. J. Ethnopharmacol., 2006, 107(3), 449-455.
[http://dx.doi.org/10.1016/j.jep.2006.04.004 ] [PMID: 16678367]
[29]
Lineweaver, H.; Burk, D. The determination of enzyme dissociation constants. J. Am. Chem. Soc., 1934, 56(3), 658-666.
[http://dx.doi.org/10.1021/ja01318a036]
[30]
Kim, Y.M.; Jeong, Y.K.; Wang, M.H.; Lee, W.Y.; Rhee, H.I. Inhibitory effect of pine extract on alpha-glucosidase activity and postprandial hyperglycemia. Nutrition, 2005, 21(6), 756-761.
[http://dx.doi.org/10.1016/j.nut.2004.10.014 ] [PMID: 15925302]
[31]
Sun, B.; Hu, N.; Han, L.; Pi, Y.; Gao, Y.; Chen, K. Anticancer activity of green synthesised gold nanoparticles from Marsdenia tenacissima inhibits A549 cell proliferation through the apoptotic pathway. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 4012-4019.
[http://dx.doi.org/10.1080/21691401.2019.1575844 ] [PMID: 31591910]
[32]
Mohammadian, M.; Es’haghi, Z.; Hooshmand, S. Green and chemical synthesis of zinc oxide nanoparticles and size evaluation by UV-vis spectroscopy. J. Nanomed. Res., 2018, 1, 7.
[33]
Sangeetha, G.; Rajeshwari, S.; Venckatesh, R. Green synthesis of zinc oxide nanoparticles by Aloe barbadensis Miller leaf extract: Structure and optical properties. Mater. Res. Bull., 2011, 46, 2560-2566.
[http://dx.doi.org/10.1016/j.materresbull.2011.07.046]
[34]
Kumar, S.S.; Venkateswarlu, P.; Rao, R.V.R.; Rao, G.N. Synthesis, characterization and optical properties of zinc oxide nanoparticles. Int. Nano Lett., 2013, 3, 30-36.
[http://dx.doi.org/10.1186/2228-5326-3-30]
[35]
Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev., 2010, 4(8), 118-126.
[http://dx.doi.org/10.4103/0973-7847.70902 ] [PMID: 22228951]
[36]
Sanchez-Moreno, C.; Larrauri, J.A.; Saura-Calixto, F. Free radical scavenging capacity and inhibition of wines, grape juices and related polyphenolic constituents. Food Res. Int., 1999, 32, 407-412.
[http://dx.doi.org/10.1016/S0963-9969(99)00097-6]
[37]
Sagar, G.; Ashok, B. Green synthesis of silver nanoparticles using Aspergillus niger and its efficacy against human pathogens. Eur. J. Exp. Biol., 2012, 2(5), 1654-1658.
[38]
Lewinski, N.; Colvin, V.; Drezek, R. Cytotoxicity of nanoparticles. Small, 2008, 4(1), 26-49.
[http://dx.doi.org/10.1002/smll.200700595 ] [PMID: 18165959]
[39]
Kazeem, M.I.; Ogunbiyi, J.V.; Ashafa, A.O.T. In vitro studies on the inhibition of α-amylase and α-glucosidase by leaf extracts of Picralima nitida (Stapf). Trop. J. Pharm. Res., 2013, 12(5), 719-725.
[http://dx.doi.org/10.4314/tjpr.v12i5.9]
[40]
Mayur, B.; Sandesh, S.; Shruti, S.; Sung-Yum, S. Antioxidant and α- glucosidase inhibitory properties of Carpesium abrotanoides L. J. Med. Plants Res., 2010, 4, 1547-1553.
[41]
Ezealisiji, KM; Siwe-Noundou, X; Maduelosi, B; Nwachukwu, N; Krause, RWM Green synthesis of zinc oxide nanoparticles using Solanum torvum (L.) leaf extract and evaluation of the toxicological profile of the ZnO nanoparticles-hydrogel composite in Wistar albino rats. Int Nano let., 2019, 9, 99-107..

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy