Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Focusing on DNA Repair and Damage Tolerance Mechanisms in Mycobacterium tuberculosis: An Emerging Therapeutic Theme

Author(s): Pooja Mittal, Rajesh Sinha, Amit Kumar, Pooja Singh, Moses Rinchui Ngasainao, Archana Singh* and Indrakant K. Singh*

Volume 20, Issue 5, 2020

Page: [390 - 408] Pages: 19

DOI: 10.2174/1568026620666200110114322

Price: $65

Abstract

Tuberculosis (TB) is one such disease that has become a nuisance in the world scenario and one of the most deadly diseases of the current times. The etiological agent of tuberculosis, Mycobacterium tuberculosis (M. tb) kills millions of people each year. Not only 1.7 million people worldwide are estimated to harbor M. tb in the latent form but also 5 to 15 percent of which are expected to acquire an infection during a lifetime. Though curable, a long duration of drug regimen and expense leads to low patient adherence. The emergence of multi-, extensive- and total- drug-resistant strains of M. tb further complicates the situation. Owing to high TB burden, scientists worldwide are trying to design novel therapeutics to combat this disease. Therefore, to identify new drug targets, there is a growing interest in targeting DNA repair pathways to fight this infection. Thus, this review aims to explore DNA repair and damage tolerance as an efficient target for drug development by understanding M. tb DNA repair and tolerance machinery and its regulation, its role in pathogenesis and survival, mutagenesis, and consequently, in the development of drug resistance.

Keywords: DNA repair, Tuberculosis, Drug resistance, Damage tolerance, Drug targets, Pathogenesis, Mutation rate.

« Previous
Graphical Abstract
[1]
World Health Organisation. Global tuberculosis report, 2018.
[2]
World Health Organisation. Global tuberculosis report, 2017.
[3]
Dheda, K.; Gumbo, T.; Maartens, G.; Dooley, K.E.; McNerney, R.; Murray, M.; Furin, J.; Nardell, E.A.; London, L.; Lessem, E.; Theron, G.; van Helden, P.; Niemann, S.; Merker, M.; Dowdy, D.; Van Rie, A.; Siu, G.K.; Pasipanodya, J.G.; Rodrigues, C.; Clark, T.G.; Sirgel, F.A.; Esmail, A.; Lin, H.H.; Atre, S.R.; Schaaf, H.S.; Chang, K.C.; Lange, C.; Nahid, P.; Udwadia, Z.F.; Horsburgh, C.R., Jr; Churchyard, G.J.; Menzies, D.; Hesseling, A.C.; Nuermberger, E.; McIlleron, H.; Fennelly, K.P.; Goemaere, E.; Jaramillo, E.; Low, M.; Jara, C.M.; Padayatchi, N.; Warren, R.M. The epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant, extensively drug-resistant, and incurable tuberculosis. Lancet Respir. Med., 2017, 5(4), 291-360.
[http://dx.doi.org/10.1016/S2213-2600(17)30079-6] [PMID: 28344011]
[4]
World Health Organisation. Global tuberculosis control WHO report, 2010.
[5]
World Health Organisation. Global tuberculosis control WHO report, 2011.
[6]
World Health Organisation. Global tuberculosis report, 2012.
[7]
World Health Organisation. Global tuberculosis report, 2013.
[8]
World Health Organisation. Global tuberculosis report, 2014.
[9]
World Health Organisation. Global tuberculosis report, 2015.
[10]
World Health Organisation. Global tuberculosis report, 2016.
[11]
Boot, M.; Commandeur, S.; Subudhi, A.K.; Bahira, M.; Smith, T.C., II; Abdallah, A.M.; van Gemert, M.; Lelièvre, J.; Ballell, L.; Aldridge, B.B.; Pain, A.; Speer, A.; Bitter, W. Accelerating early antituberculosis drug discovery by creating mycobacterial indicator strains that predict mode of action. Antimicrob. Agents Chemother., 2018, 62(7), e00083-e18.
[http://dx.doi.org/10.1128/AAC.00083-18] [PMID: 29661879]
[12]
Chandolia, A.; Rathor, N.; Sharma, M.; Saini, N.K.; Sinha, R.; Malhotra, P.; Brahmachari, V.; Bose, M. Functional analysis of mce4A gene of Mycobacterium tuberculosis H37Rv using antisense approach. Microbiol. Res., 2014, 169(9-10), 780-787.
[http://dx.doi.org/10.1016/j.micres.2013.12.008] [PMID: 24556072]
[13]
Sinha, R.; Singh, P.; Saini, N.K.; Kumar, A.; Pathak, R.; Chandolia, A.; Garima, K.; Tyagi, G.; Chopra, M.; Prasad, A.K.; Raj, H.G.; Bose, M. Methyl-accepting chemotaxis like Rv3499c (Mce4A) protein in Mycobacterium tuberculosis H37Rv mediates cholesterol-dependent survival. Tuberculosis (Edinb.), 2018, 109(109), 52-60.
[http://dx.doi.org/10.1016/j.tube.2018.01.004] [PMID: 29559121]
[14]
Singh, P.; Sinha, R.; Tyagi, G.; Sharma, N.K.; Saini, N.K.; Chandolia, A.; Prasad, A.K.; Varma-Basil, M.; Bose, M. PDIM and SL1 accumulation in Mycobacterium tuberculosis is associated with mce4A expression. Gene, 2018, 642, 178-187.
[http://dx.doi.org/10.1016/j.gene.2017.09.062] [PMID: 28988960]
[15]
Saini, N.K.; Sinha, R.; Singh, P.; Sharma, M.; Pathak, R.; Rathor, N.; Varma-Basil, M.; Bose, M. Mce4A protein of Mycobacterium tuberculosis induces pro inflammatory cytokine response leading to macrophage apoptosis in a TNF-α dependent manner. Microb. Pathog., 2016, 100, 43-50.
[http://dx.doi.org/10.1016/j.micpath.2016.08.038] [PMID: 27592091]
[16]
Sinha, R.; Singh, P.; Nath, O.; Mangangcha, I.R.; Kumar, A.; Singh, I.K. Structural and functional insights into putative TAG accumulating hydrolase protein (Rv1179c) of mycobacterium tuberculosis H37Rv. Gene Rep., 2018, 13, 66-71.
[http://dx.doi.org/10.1016/j.genrep.2018.08.006]
[17]
Rathor, N.; Chandolia, A.; Saini, N.K.; Sinha, R.; Pathak, R.; Garima, K.; Singh, S.; Varma-Basil, M.; Bose, M. An insight into the regulation of mce4 operon of Mycobacterium tuberculosis. Tuberculosis (Edinb.), 2013, 93(4), 389-397.
[http://dx.doi.org/10.1016/j.tube.2013.03.007] [PMID: 23622789]
[18]
Daniel, J.; Kapoor, N.; Sirakova, T.; Sinha, R.; Kolattukudy, P. The perilipin-like PPE15 protein in Mycobacterium tuberculosis is required for triacylglycerol accumulation under dormancy-inducing conditions. Mol. Microbiol., 2016, 101(5), 784-794.
[http://dx.doi.org/10.1111/mmi.13422] [PMID: 27325376]
[19]
Garima, K.; Pathak, R.; Tandon, R.; Rathor, N.; Sinha, R.; Bose, M.; Varma-Basil, M. Differential expression of efflux pump genes of Mycobacterium tuberculosis in response to varied subinhibitory concentrations of antituberculosis agents. Tuberculosis (Edinb.), 2015, 95(2), 155-161.
[http://dx.doi.org/10.1016/j.tube.2015.01.005] [PMID: 25680943]
[20]
Pasricha, R.; Saini, N.K.; Rathor, N.; Pathak, R.; Sinha, R.; Varma-Basil, M.; Mishra, K.; Brahmachari, V.; Bose, M. The Mycobacterium tuberculosis recombinant LprN protein of mce4 operon induces Th-1 type response deleterious to protection in mice. Pathog. Dis., 2014, 72(3), 188-196.
[http://dx.doi.org/10.1111/2049-632X.12200] [PMID: 24989028]
[21]
Kurthkoti, K.; Varshney, U. Distinct mechanisms of DNA repair in mycobacteria and their implications in attenuation of the pathogen growth. Mech. Ageing Dev., 2012, 133(4), 138-146.
[http://dx.doi.org/10.1016/j.mad.2011.09.003] [PMID: 21982925]
[22]
Lahiri, S.; Rizzi, M.; Rossi, F.; Miggiano, R. Mycobacterium tuberculosis UvrB forms dimers in solution and interacts with UvrA in the absence of ligands. Proteins, 2018, 86(1), 98-109.
[http://dx.doi.org/10.1002/prot.25412] [PMID: 29082541]
[23]
Houghton, J.; Townsend, C.; Williams, A.R.; Rodgers, A.; Rand, L.; Walker, K.B.; Böttger, E.C.; Springer, B.; Davis, E.O. Important role for Mycobacterium tuberculosis UvrD1 in pathogenesis and persistence apart from its function in nucleotide excision repair. J. Bacteriol., 2012, 194(11), 2916-2923.
[http://dx.doi.org/10.1128/JB.06654-11] [PMID: 22467787]
[24]
Williams, A.; Güthlein, C.; Beresford, N.; Böttger, E.C.; Springer, B.; Davis, E.O. UvrD2 is essential in Mycobacterium tuberculosis, but its helicase activity is not required. J. Bacteriol., 2011, 193(17), 4487-4494.
[http://dx.doi.org/10.1128/JB.00302-11] [PMID: 21725019]
[25]
Balasingham, S.V.; Zegeye, E.D.; Homberset, H.; Rossi, M.L.; Laerdahl, J.K.; Bohr, V.A.; Tønjum, T. Enzymatic activities and DNA substrate specificity of Mycobacterium tuberculosis DNA helicase XPB. PLoS One, 2012, 7(5)e36960
[http://dx.doi.org/10.1371/journal.pone.0036960] [PMID: 22615856]
[26]
Warner, D.F.; Tønjum, T.; Mizrahi, V. DNA metabolism in mycobacterial pathogenesis. Curr. Top. Microbiol. Immunol., 2014, 374, 27-51.
[http://dx.doi.org/10.1007/82_2013_328]
[27]
Mizrahi, V.; Andersen, S.J. DNA repair in Mycobacterium tuberculosis. What have we learnt from the genome sequence? Mol. Microbiol., 1998, 29(6), 1331-1339.
[http://dx.doi.org/10.1046/j.1365-2958.1998.01038.x] [PMID: 9781872]
[28]
Dos Vultos, T.; Mestre, O.; Tonjum, T.; Gicquel, B. DNA repair in Mycobacterium tuberculosis revisited. FEMS Microbiol. Rev., 2009, 33(3), 471-487.
[http://dx.doi.org/10.1111/j.1574-6976.2009.00170.x] [PMID: 19385996]
[29]
Płociński, P.; Brissett, N.C.; Bianchi, J.; Brzostek, A.; Korycka-Machała, M.; Dziembowski, A.; Dziadek, J.; Doherty, A.J. DNA Ligase C and Prim-PolC participate in base excision repair in mycobacteria. Nat. Commun., 2017, 8(1), 1251.
[http://dx.doi.org/10.1038/s41467-017-01365-y] [PMID: 29089537]
[30]
DeJesus, M.A.; Gerrick, E.R.; Xu, W.; Park, S.W.; Long, J.E.; Boutte, C.C.; Rubin, E.J.; Schnappinger, D.; Ehrt, S.; Fortune, S.M.; Sassetti, C.M.; Ioerger, T.R. Comprehensive essentiality analysis of the mycobacterium tuberculosis genome via saturating transposon mutagenesis. MBio, 2017, 8(1), 1-17.
[http://dx.doi.org/10.1128/mBio.02133-16] [PMID: 28096490]
[31]
Griffin, J.E.; Gawronski, J.D.; Dejesus, M.A.; Ioerger, T.R.; Akerley, B.J.; Sassetti, C.M. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. PLoS Pathog., 2011, 7(9)e1002251
[http://dx.doi.org/10.1371/journal.ppat.1002251] [PMID: 21980284]
[32]
Xu, G.; Ni, Z.; Shi, Y.; Sun, X.; Wang, H.; Wei, C.; Wang, G.; Li, F. Screening essential genes of Mycobacterium tuberculosis with the pathway enrichment method. Mol. Biol. Rep., 2014, 41(11), 7639-7644.
[http://dx.doi.org/10.1007/s11033-014-3654-z] [PMID: 25098602]
[33]
David, S.S.; O’Shea, V.L.; Kundu, S. Base-excision repair of oxidative DNA damage. Nature, 2007, 447(7147), 941-950.
[http://dx.doi.org/10.1038/nature05978] [PMID: 17581577]
[34]
Sidorenko, V.S.; Rot, M.A.; Filipenko, M.L.; Nevinsky, G.A.; Zharkov, D.O. Novel DNA glycosylases from Mycobacterium tuberculosis. Biochemistry (Mosc.), 2008, 73(4), 442-450.
[http://dx.doi.org/10.1134/S0006297908040093] [PMID: 18457574]
[35]
Vértessy, B.G.; Tóth, J. Keeping uracil out of DNA: physiological role, structure and catalytic mechanism of dUTPases. Acc. Chem. Res., 2009, 42(1), 97-106.
[http://dx.doi.org/10.1021/ar800114w] [PMID: 18837522]
[36]
Singh, A. Guardians of the mycobacterial genome: A review on DNA repair systems in Mycobacterium tuberculosis. Microbiology, 2017, 163(12), 1740-1758.
[http://dx.doi.org/10.1099/mic.0.000578] [PMID: 29171825]
[37]
Minias, A.E.; Brzostek, A.M.; Korycka-Machala, M.; Dziadek, B.; Minias, P.; Rajagopalan, M.; Madiraju, M.; Dziadek, J. RNase HI is essential for survival of Mycobacterium smegmatis. PLoS One, 2015, 10(5)e0126260
[http://dx.doi.org/10.1371/journal.pone.0126260] [PMID: 25965344]
[38]
Heaton, B.E.; Barkan, D.; Bongiorno, P.; Karakousis, P.C.; Glickman, M.S. Deficiency of double-strand DNA break repair does not impair Mycobacterium tuberculosis virulence in multiple animal models of infection. Infect. Immun., 2014, 82(8), 3177-3185.
[http://dx.doi.org/10.1128/IAI.01540-14] [PMID: 24842925]
[39]
Thakur, R.S.; Basavaraju, S.; Somyajit, K.; Jain, A.; Subramanya, S.; Muniyappa, K.; Nagaraju, G. Evidence for the role of Mycobacterium tuberculosis RecG helicase in DNA repair and recombination. FEBS J., 2013, 280(8), 1841-1860.
[http://dx.doi.org/10.1111/febs.12208] [PMID: 23438087]
[40]
Amundsen, S.K.; Spicer, T.; Karabulut, A.C.; Londoño, L.M.; Eberhart, C.; Fernandez Vega, V.; Bannister, T.D.; Hodder, P.; Smith, G.R. Small-molecule inhibitors of bacterial AddAB and RecBCD helicase-nuclease DNA repair enzymes. ACS Chem. Biol., 2012, 7(5), 879-891.
[http://dx.doi.org/10.1021/cb300018x] [PMID: 22443934]
[41]
Singh, A.; Bhagavat, R.; Vijayan, M.; Chandra, N. A comparative analysis of the DNA recombination repair pathway in mycobacterial genomes. Tuberculosis (Edinb.), 2016, 99(May), 109-119.
[http://dx.doi.org/10.1016/j.tube.2016.04.011] [PMID: 27450012]
[42]
Stephanou, N.C.; Gao, F.; Bongiorno, P.; Ehrt, S.; Schnappinger, D.; Shuman, S.; Glickman, M.S. Mycobacterial nonhomologous end joining mediates mutagenic repair of chromosomal double-strand DNA breaks. J. Bacteriol., 2007, 189(14), 5237-5246.
[http://dx.doi.org/10.1128/JB.00332-07] [PMID: 17496093]
[43]
Sinha, K.M.; Stephanou, N.C.; Gao, F.; Glickman, M.S.; Shuman, S. Mycobacterial UvrD1 is a Ku-dependent DNA helicase that plays a role in multiple DNA repair events, including double-strand break repair. J. Biol. Chem., 2007, 282(20), 15114-15125.
[http://dx.doi.org/10.1074/jbc.M701167200] [PMID: 17376770]
[44]
Uphoff, S.; Sherratt, D.J. Single-molecule analysis of bacterial dna repair and mutagenesis. Annu. Rev. Biophys., 2017, 46(1), 411-432.
[http://dx.doi.org/10.1146/annurev-biophys-070816-034106] [PMID: 28375733]
[45]
Miggiano, R.; Casazza, V.; Garavaglia, S.; Ciaramella, M.; Perugino, G.; Rizzi, M.; Rossi, F. Biochemical and structural studies of the Mycobacterium tuberculosis O6-methylguanine methyltransferase and mutated variants. J. Bacteriol., 2013, 195(12), 2728-2736.
[http://dx.doi.org/10.1128/JB.02298-12] [PMID: 23564173]
[46]
McGrath, M.; Gey van Pittius, N.C.; van Helden, P.D.; Warren, R.M.; Warner, D.F. Mutation rate and the emergence of drug resistance in Mycobacterium tuberculosis. J. Antimicrob. Chemother., 2014, 69(2), 292-302.
[http://dx.doi.org/10.1093/jac/dkt364] [PMID: 24072169]
[47]
Cole, S.T.; Brosch, R.; Parkhill, J.; Garnier, T.; Churcher, C.; Harris, D.; Gordon, S.V.; Eiglmeier, K.; Gas, S.; Barry, C.E., III; Tekaia, F.; Badcock, K.; Basham, D.; Brown, D.; Chillingworth, T.; Connor, R.; Davies, R.; Devlin, K.; Feltwell, T.; Gentles, S.; Hamlin, N.; Holroyd, S.; Hornsby, T.; Jagels, K.; Krogh, A.; McLean, J.; Moule, S.; Murphy, L.; Oliver, K.; Osborne, J.; Quail, M.A.; Rajandream, M.A.; Rogers, J.; Rutter, S.; Seeger, K.; Skelton, J.; Squares, R.; Squares, S.; Sulston, J.E.; Taylor, K.; Whitehead, S.; Barrell, B.G. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature, 1998, 393(6685), 537-544.
[http://dx.doi.org/10.1038/31159] [PMID: 9634230]
[48]
Castañeda-García, A.; Prieto, A.I.; Rodríguez-Beltrán, J.; Alonso, N.; Cantillon, D.; Costas, C.; Pérez-Lago, L.; Zegeye, E.D.; Herranz, M.; Plociński, P.; Tonjum, T.; García de Viedma, D.; Paget, M.; Waddell, S.J.; Rojas, A.M.; Doherty, A.J.; Blázquez, J. A non-canonical mismatch repair pathway in prokaryotes. Nat. Commun., 2017, 8, 14246.
[http://dx.doi.org/10.1038/ncomms14246] [PMID: 28128207]
[49]
Ippoliti, P.J.; Delateur, N.A.; Jones, K.M.; Beuning, P.J. Multiple strategies for translesion synthesis in bacteria. Cells, 2012, 1(4), 799-831.
[http://dx.doi.org/10.3390/cells1040799] [PMID: 24710531]
[50]
Uphoff, S. Real-time dynamics of mutagenesis reveal the chronology of DNA repair and damage tolerance responses in single cells. Proc. Natl. Acad. Sci. USA, 2018, 115(28), E6516-E6525.
[http://dx.doi.org/10.1073/pnas.1801101115] [PMID: 29941584]
[51]
Ordonez, H.; Shuman, S. Mycobacterium smegmatis DinB2 misincorporates deoxyribonucleotides and ribonucleotides during templated synthesis and lesion bypass. Nucleic Acids Res., 2014, 42(20), 12722-12734.
[http://dx.doi.org/10.1093/nar/gku1027] [PMID: 25352547]
[52]
Warner, D.F.; Ndwandwe, D.E.; Abrahams, G.L.; Kana, B.D.; Machowski, E.E.; Venclovas, C.; Mizrahi, V. Essential roles for imuA′- and imuB-encoded accessory factors in DnaE2-dependent mutagenesis in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA, 2010, 107(29), 13093-13098.
[http://dx.doi.org/10.1073/pnas.1002614107] [PMID: 20615954]
[53]
Kana, B.D.; Abrahams, G.L.; Sung, N.; Warner, D.F.; Gordhan, B.G.; Machowski, E.E.; Tsenova, L.; Sacchettini, J.C.; Stoker, N.G.; Kaplan, G.; Mizrahi, V. Role of the DinB homologs Rv1537 and Rv3056 in Mycobacterium tuberculosis. J. Bacteriol., 2010, 192(8), 2220-2227.
[http://dx.doi.org/10.1128/JB.01135-09] [PMID: 20139184]
[54]
Žgur-Bertok, D. DNA damage repair and bacterial pathogens. PLoS Pathog., 2013, 9(11)e1003711
[http://dx.doi.org/10.1371/journal.ppat.1003711] [PMID: 24244154]
[55]
Wang, Y.; Huang, Y.; Xue, C.; He, Y.; He, Z.G.; Clp, R. ClpR protein-like regulator specifically recognizes RecA protein-independent promoter motif and broadly regulates expression of DNA damage-inducible genes in mycobacteria. J. Biol. Chem., 2011, 286(36), 31159-31167.
[http://dx.doi.org/10.1074/jbc.M111.241802] [PMID: 21771781]
[56]
Trastoy, R.; Manso, T.; Fernández-García, L.; Blasco, L.; Ambroa, A.; Pérez Del Molino, M.L.; Bou, G.; García-Contreras, R.; Wood, T.K.; Tomás, M. Mechanisms of bacterial tolerance and persistence in the gastrointestinal and respiratory environments. Clin. Microbiol. Rev., 2018, 31(4), e00023-e18.
[http://dx.doi.org/10.1128/CMR.00023-18] [PMID: 30068737]
[57]
Alam, M.K.; Alhhazmi, A.; DeCoteau, J.F.; Luo, Y.; Geyer, C.R.; Rec, A. RecA inhibitors potentiate antibiotic activity and block evolution of antibiotic resistance. Cell Chem. Biol., 2016, 23(3), 381-391.
[http://dx.doi.org/10.1016/j.chembiol.2016.02.010] [PMID: 26991103]
[58]
Olivencia, B.F.; Müller, A.U.; Roschitzki, B.; Burger, S.; Weber-Ban, E.; Imkamp, F. Mycobacterium smegmatis PafBC is involved in regulation of DNA damage Response. Sci. Rep., 2017, 7(1), 1-13.
[http://dx.doi.org/10.1038/s41598-017-14410-z] [PMID: 28127051]
[59]
Müller, A.U.; Imkamp, F.; Weber-Ban, E. The mycobacterial LexA/RecA-independent DNA damage response is controlled by PafBC and the pup-proteasome system. Cell Rep., 2018, 23(12), 3551-3564.
[http://dx.doi.org/10.1016/j.celrep.2018.05.073] [PMID: 29924998]
[60]
Gupta, R.; Ryzhikov, M.; Koroleva, O.; Unciuleac, M.; Shuman, S.; Korolev, S.; Glickman, M.S. A dual role for mycobacterial RecO in RecA-dependent homologous recombination and RecA-independent single-strand annealing. Nucleic Acids Res., 2013, 41(4), 2284-2295.
[http://dx.doi.org/10.1093/nar/gks1298] [PMID: 23295671]
[61]
Sasindran, S.J.; Torrelles, J.B. Mycobacterium tuberculosis infection and inflammation: what is beneficial for the host and for the bacterium? Front. Microbiol., 2011, 2(JAN), 2.
[http://dx.doi.org/10.3389/fmicb.2011.00002] [PMID: 21687401]
[62]
Gorna, A.E.; Bowater, R.P.; Dziadek, J. DNA repair systems and the pathogenesis of Mycobacterium tuberculosis: varying activities at different stages of infection. Clin. Sci. (Lond.), 2010, 119(5), 187-202.
[http://dx.doi.org/10.1042/CS20100041] [PMID: 20522025]
[63]
Namouchi, A.; Gómez-Muñoz, M.; Frye, S.A.; Moen, L.V.; Rognes, T.; Tønjum, T.; Balasingham, S.V. The Mycobacterium tuberculosis transcriptional landscape under genotoxic stress. BMC Genomics, 2016, 17(1), 791.
[http://dx.doi.org/10.1186/s12864-016-3132-1] [PMID: 27724857]
[64]
Caño-Muñiz, S.; Anthony, R.; Niemann, S.; Alffenaar, J.C. New approaches and therapeutic options for Mycobacterium tuberculosis in a dormant state. Clin. Microbiol. Rev., 2017, 31(1), 1-13.
[http://dx.doi.org/10.1128/CMR.00060-17] [PMID: 29187395]
[65]
Gopinath, V.; Raghunandanan, S.; Gomez, R.L.; Jose, L.; Surendran, A.; Ramachandran, R.; Pushparajan, A.R.; Mundayoor, S.; Jaleel, A.; Kumar, R.A. Profiling the proteome of mycobacterium tuberculosis during dormancy and reactivation. Mol. Cell. Proteomics, 2015, 14(8), 2160-2176.
[http://dx.doi.org/10.1074/mcp.M115.051151] [PMID: 26025969]
[66]
Du, P.; Sohaskey, C.D.; Shi, L. Transcriptional and physiological changes during mycobacterium tuberculosis reactivation from non-replicating persistence. Front. Microbiol., 2016, 7(AUG), 1346.
[http://dx.doi.org/10.3389/fmicb.2016.01346] [PMID: 27630619]
[67]
Warner, D.F.; Koch, A.; Mizrahi, V. Diversity and disease pathogenesis in Mycobacterium tuberculosis. Trends Microbiol., 2015, 23(1), 14-21.
[http://dx.doi.org/10.1016/j.tim.2014.10.005] [PMID: 25468790]
[68]
Sriraman, K.; Nilgiriwala, K.; Saranath, D.; Chatterjee, A.; Mistry, N. Deregulation of genes associated with alternate drug resistance mechanisms in mycobacterium tuberculosis. Curr. Microbiol., 2018, 75(4), 394-400.
[http://dx.doi.org/10.1007/s00284-017-1393-9] [PMID: 29143876]
[69]
van der Veen, S.; Tang, C.M. The BER necessities: the repair of DNA damage in human-adapted bacterial pathogens. Nat. Rev. Microbiol., 2015, 13(2), 83-94.
[http://dx.doi.org/10.1038/nrmicro3391] [PMID: 25578955]
[70]
Guillemet, E.; Leréec, A.; Tran, S.L.; Royer, C.; Barbosa, I.; Sansonetti, P.; Lereclus, D.; Ramarao, N. The bacterial DNA repair protein Mfd confers resistance to the host nitrogen immune response. Sci. Rep., 2016, 6, 29349.
[http://dx.doi.org/10.1038/srep29349] [PMID: 27435260]
[71]
Gygli, S.M.; Borrell, S.; Trauner, A.; Gagneux, S. Antimicrobial resistance in Mycobacterium tuberculosis: mechanistic and evolutionary perspectives. FEMS Microbiol. Rev., 2017, 41(3), 354-373.
[http://dx.doi.org/10.1093/femsre/fux011] [PMID: 28369307]
[72]
Rock, J.M.; Lang, U.F.; Chase, M.R.; Ford, C.B.; Gerrick, E.R.; Gawande, R.; Coscolla, M.; Gagneux, S.; Fortune, S.M.; Lamers, M.H. DNA replication fidelity in Mycobacterium tuberculosis is mediated by an ancestral prokaryotic proofreader. Nat. Genet., 2015, 47(6), 677-681.
[http://dx.doi.org/10.1038/ng.3269] [PMID: 25894501]
[73]
Nguyen, Q.H.; Contamin, L.; Nguyen, T.V.A.; Bañuls, A.L. Insights into the processes that drive the evolution of drug resistance in Mycobacterium tuberculosis. Evol. Appl., 2018, 11(9), 1498-1511.
[http://dx.doi.org/10.1111/eva.12654] [PMID: 30344622]
[74]
Colijn, C.; Cohen, T.; Ganesh, A.; Murray, M. Spontaneous emergence of multiple drug resistance in tuberculosis before and during therapy. PLoS One, 2011, 6(3)e18327
[http://dx.doi.org/10.1371/journal.pone.0018327] [PMID: 21479171]
[75]
Ford, C.B.; Lin, P.L.; Chase, M.R.; Shah, R.R.; Iartchouk, O.; Galagan, J.; Mohaideen, N.; Ioerger, T.R.; Sacchettini, J.C.; Lipsitch, M.; Flynn, J.L.; Fortune, S.M. Use of whole genome sequencing to estimate the mutation rate of Mycobacterium tuberculosis during latent infection. Nat. Genet., 2011, 43(5), 482-486.
[http://dx.doi.org/10.1038/ng.811] [PMID: 21516081]
[76]
Colangeli, R.; Arcus, V.L.; Cursons, R.T.; Ruthe, A.; Karalus, N.; Coley, K.; Manning, S.D.; Kim, S.; Marchiano, E.; Alland, D. Whole genome sequencing of Mycobacterium tuberculosis reveals slow growth and low mutation rates during latent infections in humans. PLoS One, 2014, 9(3)e91024
[http://dx.doi.org/10.1371/journal.pone.0091024] [PMID: 24618815]
[77]
Chatterjee, N.; Walker, G.C. Mechanisms of DNA damage, repair, and mutagenesis. Environ. Mol. Mutagen., 2017, 58(5), 235-263.
[http://dx.doi.org/10.1002/em.22087] [PMID: 28485537]
[78]
Galagan, J.E. Genomic insights into tuberculosis. Nat. Rev. Genet., 2014, 15(5), 307-320.
[http://dx.doi.org/10.1038/nrg3664] [PMID: 24662221]
[79]
Speina, E.; Cieśla, J.M.; Gra̧ziewicz, M.A.; Laval, J.; Kazimierczuk, Z.; Tudek, B. Inhibition of DNA repair glycosylases by base analogs and tryptophan pyrolysate, Trp-P-1. Acta Biochim. Pol., 2005, 52(1), 167-178.
[http://dx.doi.org/10.18388/abp.2005_3503] [PMID: 15827615]
[80]
Lata, K.; Afsar, M.; Ramachandran, R. Biochemical characterization and novel inhibitor identification of Mycobacterium tuberculosis Endonuclease VIII 2 (Rv3297). Biochem. Biophys. Rep., 2017, 12, 20-28.
[http://dx.doi.org/10.1016/j.bbrep.2017.07.010] [PMID: 28955788]
[81]
Mazloum, N.; Stegman, M.A.; Croteau, D.L.; Van Houten, B.; Kwon, N.S.; Ling, Y.; Dickinson, C.; Venugopal, A.; Towheed, M.A.; Nathan, C. Identification of a chemical that inhibits the mycobacterial UvrABC complex in nucleotide excision repair. Biochemistry, 2011, 50(8), 1329-1335.
[http://dx.doi.org/10.1021/bi101674c] [PMID: 21235228]
[82]
Nautiyal, A.; Patil, K.N.; Muniyappa, K. Suramin is a potent and selective inhibitor of Mycobacterium tuberculosis RecA protein and the SOS response: RecA as a potential target for antibacterial drug discovery. J. Antimicrob. Chemother., 2014, 69(7), 1834-1843.
[http://dx.doi.org/10.1093/jac/dku080] [PMID: 24722837]
[83]
Bernheim, A.; Calvo-Villamañán, A.; Basier, C.; Cui, L.; Rocha, E.P.C.; Touchon, M.; Bikard, D. Inhibition of NHEJ repair by type II-A CRISPR-Cas systems in bacteria. Nat. Commun., 2017, 8(1), 2094.
[http://dx.doi.org/10.1038/s41467-017-02350-1] [PMID: 29234047]
[84]
Gross, B.J.; Kraybill, B.C.; Walker, S. Discovery of O-GlcNAc transferase inhibitors. J. Am. Chem. Soc., 2005, 127(42), 14588-14589.
[http://dx.doi.org/10.1021/ja0555217] [PMID: 16231908]
[85]
Jadaun, A.; Sudhakar D, R.; Subbarao, N.; Dixit, A. In silico screening for novel inhibitors of DNA polymerase III alpha subunit of Mycobacterium tuberculosis (MtbDnaE2, H37Rv). PLoS One, 2015, 10(3)e0119760
[http://dx.doi.org/10.1371/journal.pone.0119760] [PMID: 25811866]
[86]
Chan, S.; Segelke, B.; Lekin, T.; Krupka, H.; Cho, U.S.; Kim, M.Y.; So, M.; Kim, C.Y.; Naranjo, C.M.; Rogers, Y.C.; Park, M.S.; Waldo, G.S.; Pashkov, I.; Cascio, D.; Perry, J.L.; Sawaya, M.R. Crystal structure of the Mycobacterium tuberculosis dUTPase: insights into the catalytic mechanism. J. Mol. Biol., 2004, 341(2), 503-517.
[http://dx.doi.org/10.1016/j.jmb.2004.06.028] [PMID: 15276840]
[87]
Zhang, W.; Xu, Y.; Yan, M.; Li, S.; Wang, H.; Yang, H.; Zhou, W.; Rao, Z. Crystal structure of the apurinic/apyrimidinic endonuclease IV from Mycobacterium tuberculosis. Biochem. Biophys. Res. Commun., 2018, 498(1), 111-118.
[http://dx.doi.org/10.1016/j.bbrc.2018.02.181] [PMID: 29496453]
[88]
Pitcher, R.S.; Brissett, N.C.; Picher, A.J.; Andrade, P.; Juarez, R.; Thompson, D.; Fox, G.C.; Blanco, L.; Doherty, A.J. Structure and function of a mycobacterial NHEJ DNA repair polymerase. J. Mol. Biol., 2007, 366(2), 391-405.
[http://dx.doi.org/10.1016/j.jmb.2006.10.046] [PMID: 17174332]
[89]
Miggiano, R.; Perugino, G.; Ciaramella, M.; Serpe, M.; Rejman, D.; Páv, O.; Pohl, R.; Garavaglia, S.; Lahiri, S.; Rizzi, M.; Rossi, F. Crystal structure of Mycobacterium tuberculosis O6-methylguanine-DNA methyltransferase protein clusters assembled on to damaged DNA. Biochem. J., 2016, 473(2), 123-133.
[http://dx.doi.org/10.1042/BJ20150833] [PMID: 26512127]
[90]
Datta, S.; Prabu, M.M.; Vaze, M.B.; Ganesh, N.; Chandra, N.R.; Muniyappa, K.; Vijayan, M. Crystal structures of Mycobacterium tuberculosis RecA and its complex with ADP-AlF(4): implications for decreased ATPase activity and molecular aggregation. Nucleic Acids Res., 2000, 28(24), 4964-4973.
[http://dx.doi.org/10.1093/nar/28.24.4964] [PMID: 11121488]
[91]
Prabu, J.R.; Thamotharan, S.; Khanduja, J.S.; Alipio, E.Z.; Kim, C.Y.; Waldo, G.S.; Terwilliger, T.C.; Segelke, B.; Lekin, T.; Toppani, D.; Hung, L.W.; Yu, M.; Bursey, E.; Muniyappa, K.; Chandra, N.R.; Vijayan, M. Structure of Mycobacterium tuberculosis RuvA, a protein involved in recombination. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 2006, 62(Pt 8), 731-734.
[http://dx.doi.org/10.1107/S1744309106024791] [PMID: 16880543]
[92]
Arif, S.M.; Geethanandan, K.; Mishra, P.; Surolia, A.; Varshney, U.; Vijayan, M. Structural plasticity in Mycobacterium tuberculosis uracil-DNA glycosylase (MtUng) and its functional implications. Acta Crystallogr. D Biol. Crystallogr., 2015, 71(Pt 7), 1514-1527.
[http://dx.doi.org/10.1107/S1399004715009311] [PMID: 26143923]
[93]
Kaushal, P.S.; Talawar, R.K.; Varshney, U.; Vijayan, M. Structure of uracil-DNA glycosylase from Mycobacterium tuberculosis: insights into interactions with ligands. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 2010, 66(Pt 8), 887-892.
[http://dx.doi.org/10.1107/S1744309110023043] [PMID: 20693660]
[94]
Rossi, F.; Khanduja, J.S.; Bortoluzzi, A.; Houghton, J.; Sander, P.; Güthlein, C.; Davis, E.O.; Springer, B.; Böttger, E.C.; Relini, A.; Penco, A.; Muniyappa, K.; Rizzi, M. The biological and structural characterization of Mycobacterium tuberculosis UvrA provides novel insights into its mechanism of action. Nucleic Acids Res., 2011, 39(16), 7316-7328.
[http://dx.doi.org/10.1093/nar/gkr271] [PMID: 21622956]
[95]
Srivastava, S.K.; Tripathi, R.P.; Ramachandran, R. NAD+-dependent DNA Ligase (Rv3014c) from Mycobacterium tuberculosis. Crystal structure of the adenylation domain and identification of novel inhibitors. J. Biol. Chem., 2005, 280(34), 30273-30281.
[http://dx.doi.org/10.1074/jbc.M503780200] [PMID: 15901723]
[96]
Ramaswamy, S.V.; Reich, R.; Dou, S-J.; Jasperse, L.; Pan, X.; Wanger, A.; Quitugua, T.; Graviss, E.A. Single nucleotide polymorphisms in genes associated with isoniazid resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2003, 47(4), 1241-1250.
[http://dx.doi.org/10.1128/AAC.47.4.1241-1250.2003] [PMID: 12654653]
[97]
Hazbón, M.H.; Brimacombe, M.; Bobadilla del Valle, M.; Cavatore, M.; Guerrero, M.I.; Varma-Basil, M.; Billman-Jacobe, H.; Lavender, C.; Fyfe, J.; García-García, L.; León, C.I.; Bose, M.; Chaves, F.; Murray, M.; Eisenach, K.D.; Sifuentes-Osornio, J.; Cave, M.D.; Ponce de León, A.; Alland, D. Population genetics study of isoniazid resistance mutations and evolution of multidrug-resistant Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2006, 50(8), 2640-2649.
[http://dx.doi.org/10.1128/AAC.00112-06] [PMID: 16870753]
[98]
Dookie, N.; Rambaran, S.; Padayatchi, N.; Mahomed, S.; Naidoo, K. Evolution of drug resistance in Mycobacterium tuberculosis: a review on the molecular determinants of resistance and implications for personalized care. J. Antimicrob. Chemother., 2018, 73(5), 1138-1151.
[http://dx.doi.org/10.1093/jac/dkx506] [PMID: 29360989]
[99]
Mabhula, A.; Singh, V. Drug-resistance in Mycobacterium tuberculosis: where we stand. MedChemComm, 2019, 10(8), 1342-1360.
[http://dx.doi.org/10.1039/C9MD00057G] [PMID: 31534654]
[100]
Miotto, P.; Tessema, B.; Tagliani, E.; Chindelevitch, L.; Starks, A.M.; Emerson, C.; Hanna, D.; Kim, P.S.; Liwski, R.; Zignol, M.; Gilpin, C.; Niemann, S.; Denkinger, C.M.; Fleming, J.; Warren, R.M.; Crook, D.; Posey, J.; Gagneux, S.; Hoffner, S.; Rodrigues, C.; Comas, I.; Engelthaler, D.M.; Murray, M.; Alland, D.; Rigouts, L.; Lange, C.; Dheda, K.; Hasan, R.; Ranganathan, U.D.K.; McNerney, R.; Ezewudo, M.; Cirillo, D.M.; Schito, M.; Köser, C.U.; Rodwell, T.C. A standardised method for interpreting the association between mutations and phenotypic drug resistance in Mycobacterium tuberculosis. Eur. Respir. J., 2017, 50(6)1701354
[http://dx.doi.org/10.1183/13993003.01354-2017] [PMID: 29284687]
[101]
Vilchèze, C.; Jacobs, W.R., Jr Resistance to isoniazid and ethionamide in mycobacterium tuberculosis: genes, mutations, and causalities.Microbiol. Spectr.,, 2014. 2(4), MGM2-MGM0014-2013.
[http://dx.doi.org/10.1128/microbiolspec.MGM2-0014-2013 ] [PMID: 26104204]
[102]
Jankute, M.; Cox, J.A.G.; Harrison, J.; Besra, G.S. Assembly of the mycobacterial cell wall. Annu. Rev. Microbiol., 2015, 69(1), 405-423.
[http://dx.doi.org/10.1146/annurev-micro-091014-104121] [PMID: 26488279]
[103]
Balganesh, M.; Dinesh, N.; Sharma, S.; Kuruppath, S.; Nair, A.V.; Sharma, U. Efflux pumps of Mycobacterium tuberculosis play a significant role in antituberculosis activity of potential drug candidates. Antimicrob. Agents Chemother., 2012, 56(5), 2643-2651.
[http://dx.doi.org/10.1128/AAC.06003-11] [PMID: 22314527]
[104]
Quan, D.; Nagalingam, G.; Payne, R.; Triccas, J.A. New tuberculosis drug leads from naturally occurring compounds. Int. J. Infect. Dis., 2017, 56, 212-220.
[http://dx.doi.org/10.1016/j.ijid.2016.12.024] [PMID: 28062229]
[105]
Boshoff, H.I.M.; Myers, T.G.; Copp, B.R.; McNeil, M.R.; Wilson, M.A.; Barry, C.E., III The transcriptional responses of Mycobacterium tuberculosis to inhibitors of metabolism: novel insights into drug mechanisms of action. J. Biol. Chem., 2004, 279(38), 40174-40184.
[http://dx.doi.org/10.1074/jbc.M406796200] [PMID: 15247240]
[106]
Ferraris, D.M.; Miggiano, R.; Rossi, F.; Rizzi, M. Mycobacterium tuberculosis molecular determinants of infection, survival strategies, and vulnerable targets. Pathogens, 2018, 7(1), 17.
[http://dx.doi.org/10.3390/pathogens7010017] [PMID: 29389854]
[107]
Reiche, M.A.; Warner, D.F.; Mizrahi, V. Targeting DNA replication and repair for the development of novel therapeutics against tuberculosis. Front. Mol. Biosci., 2017, 4(November), 75.
[http://dx.doi.org/10.3389/fmolb.2017.00075] [PMID: 29184888]
[108]
Pavlopoulou, A.; Rec, A. RecA: a universal drug target in pathogenic bacteria. Front. Biosci., 2018, 23(1), 36-42.
[http://dx.doi.org/10.2741/4580] [PMID: 28930536]
[109]
Puri, R.V.; Singh, N.; Gupta, R.K.; Tyagi, A.K.; Endonuclease, I.V.; Endonuclease, I.V. Is the major apurinic/apyrimidinic endonuclease in Mycobacterium tuberculosis and is important for protection against oxidative damage. PLoS One, 2013, 8(8)e71535
[http://dx.doi.org/10.1371/journal.pone.0071535] [PMID: 23936515]
[110]
Arora, A.; Chandra, N.R.; Das, A.; Gopal, B.; Mande, S.C.; Prakash, B.; Ramachandran, R.; Sankaranarayanan, R.; Sekar, K.; Suguna, K.; Tyagi, A.K.; Vijayan, M. Structural biology of Mycobacterium tuberculosis proteins: the Indian efforts. Tuberculosis (Edinb.), 2011, 91(5), 456-468.
[http://dx.doi.org/10.1016/j.tube.2011.03.004] [PMID: 21514889]
[111]
Mahlapuu, M.; Håkansson, J.; Ringstad, L.; Björn, C. Antimicrobial peptides: an emerging category of therapeutic agents. Front. Cell. Infect. Microbiol., 2016, 6, 194.
[http://dx.doi.org/10.3389/fcimb.2016.00194] [PMID: 28083516]
[112]
Kling, A.; Lukat, P.; Almeida, D. V; Bauer, A.; Fontaine, E.; Sordello, S.; Zaburannyi, N.; Herrmann, J.; Wenzel, S. C.; König, C. Targeting DnaN for tuberculosis therapy using novel griselimycins.Science, 2015, 348(6239), 1106 LP-1112.
[http://dx.doi.org/10.1126/science.aaa4690]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy