Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Multicomponent Reaction of Aldehydes, Amines and Oxalacetate Analogues Leading to Biologically Attractive Pyrrole Derivatives

Author(s): Stella Manta, Nikolaos Kollatos, Christos Mitsos, Georgia-Anna Chatzieffraimidi, Ioannis Papanastasiou, John K. Gallos and Dimitri Komiotis*

Volume 20, Issue 10, 2020

Page: [818 - 830] Pages: 13

DOI: 10.2174/1389557520666200103123114

Price: $65

Abstract

Pyrrole is a very important pharmacophoric moiety. It has been widely incorporated into the skeleton of antitumor, anti-inflammatory, antibacterial, antioxidant and antifungal active substances. Access to this key heterocycle by diverse routes is particularly attractive in terms of chemistry, and also from the environmental point of view. The present minireview summarizes the reported methods for the preparation of highly substituted pyrrole derivatives based on the one-pot multicomponent reaction of aldehydes, primary amines, and oxalacetate analogues as well as their biology.

Keywords: Multicomponent reaction, pyrroles, pyrrolidines, oxalacetate analogues, biological evaluation, antibacterial.

Graphical Abstract
[1]
Arora, P.; Arora, V.; Lamba, H.S.; Wadhwa, D. Importance of heterocyclic chemistry: A review. IJPSR, 2012, 3, 2947-2954.
[2]
Balaban, A.T.; Oniciu, D.C.; Katritzky, A.R. Aromaticity as a cornerstone of heterocyclic chemistry. Chem. Rev., 2004, 104, 2777-2812.
[http://dx.doi.org/10.1021/cr0306790]
[3]
Kaur, R.; Rani, V.; Abbot, V.; Kapoor, Y.; Konar, D.; Kumar, K. Recent synthetic and medicinal perspectives of pyrroles: An overview. J. Pharm. Chem. Chem. Sci., 2017, 1, 17-32.
[4]
Denny, W.A.; Rewcastle, G.W.; Baguley, B.C. Potential antitumor agents structure-activity relationships for 2-Phenylbenzimidazole-4-Carboxamides, a new class of minimal DNA-Intercalating agents which may not act via topoisomerase II. J. Med. Chem., 1990, 33, 814-819.
[http://dx.doi.org/10.1021/jm00164a054]
[5]
Toja, E.; Selva, D.; Schiatti, P. 3-Alkyl-2-Aryl-3H-Naphth[1,2-D] imidazoles, A novel class of nonacidic antiinflammatory agents. J. Med. Chem., 1984, 27, 610-616.
[http://dx.doi.org/10.1021/jm00371a010]
[6]
Demopoulos, V.J.; Rekka, E. Isomeric benzoylpyrroleacetic acids: Some structural aspects for aldose reductase inhibitory and anti-inflammatory activities. J. Pharm. Sci., 1995, 84, 79-82.
[http://dx.doi.org/10.1002/jps.2600840119]
[7]
Burli, R.W.; McMinn, D.; Kaizerman, J.A.; Hu, W.; Ge, Y.; Pack, Q.; Jiang, V.; Gross, M.; Garcia, M.; Tanaka, R.; Moser, H.E. DNA binding ligands targeting drug-resistant Gram-positive bacteria. Part 1: Internal benzimidazole derivatives. Bioorg. Med. Chem. Lett., 2004, 14, 1253-1257.
[http://dx.doi.org/10.1016/j.bmcl.2003.12.042]
[8]
Lehuede, J.; Fauconneau, B.; Barrier, L.; Qurakow, M.; Piriou, A.; Vierfond, J.M. Synthesis and antioxidant activity of new tetraarylpyrroles. Eur. J. Med. Chem., 1999, 34, 991-996.
[http://dx.doi.org/10.1016/S0223-5234(99)00111-7]
[9]
Del Poeta, M.; Schell, W.A.; Dykstra, C.C.; Jones, S.; Tidwell, R.R.; Czarny, A.; Bajic, M.; Bajic, M.; Kumar, A.; Boykin, D.; Perfect, J.R. Structure-in vitro activity relationships of pentamidine analogues and dication-substituted bis-benzimidazoles as new antifungal agents. Antimicrob. Agents Chemother., 1998, 42, 2495-2502.
[http://dx.doi.org/10.1128/AAC.42.10.2495]
[10]
Bellina, F.; Rossi, R. Synthesis and biological activity of pyrrole, pyrroline and pyrrolidine derivatives with two aryl groups on adjacent positions. Tetrahedron, 2006, 62, 7213-7256.
[http://dx.doi.org/10.1016/j.tet.2006.05.024]
[11]
Dong, Y.; Pai, N.N.; Ablaza, S.L.; Yu, S.X.; Bolvig, S.; Forsyth, D.A.; Le Quesne, P.W. Quararibea Metabolites. 4.1 Total Synthesis and Conformational Studies of (±)-Funebrine and (±)-Funebral. Funebral. J. Org. Chem., 1999, 64, 2657-2666.
[http://dx.doi.org/10.1021/jo981501u]
[12]
Arrowsmith, J.; Jennings, S.A.; Clark, A.S.; Stevens, M.F.G. Antitumor imidazotetrazines. 41. Conjugation of the antitumor agents mitozolomide and temozolomide to peptides and lexitropsins bearing DNA major and minor groove-binding structural motifs. J. Med. Chem., 2002, 45, 5458-5470.
[http://dx.doi.org/10.1021/jm020936d]
[13]
Robertson, J.; Hatley, R.J.D.; Watkin, D.J. Preparation of the tricyclic ketopyrrole core of roseophilin by radical macrocyclisation and Paal–Knorr condensation. J. Chem. Soc., Perkin Trans. 1, 2000, 3389-3396.
[http://dx.doi.org/10.1039/b005351l]
[14]
Sundberg, R.J. In Comprehensive Heterocyclic Chemistry; II; Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V.; Eds.. Pergamon Press: Oxford, 1996. 2, p. 119.
[15]
Bullington, J.L.; Wolff, R.R.; Jackson, P.F. Regioselective preparation of 2-substituted 3,4-diaryl pyrroles: A concise total synthesis of ningalin B. J. Org. Chem., 2002, 67, 9439-9442.
[http://dx.doi.org/10.1021/jo026445i]
[16]
Fan, H.; Peng, J.; Hamann, M.T.; Hu, J.F. Lamellarins and related pyrrole-derived alkaloids from marine organisms. Chem. Rev., 2008, 108, 264-287.
[http://dx.doi.org/10.1021/cr078199m]
[17]
Mal, D.; Shome, B.; Dinda, B.K. Pyrrole and Its Derivatives;, Heterocycles in natural product synthesis. 2011, 187-220.
[18]
Fukuda, T.; Ishibashi, F.; Iwao, M. Synthesis and biological activity of lamellarin alkaloids: An overview. Heterocycles, 2011, 83, 491-529.
[http://dx.doi.org/10.3987/REV-10-686]
[19]
Fatahala, S.; Hasabelnaby, S.; Goudah, A.; Mahmoud, G.; Abd-El Hameed, R.H. Pyrrole and fused pyrrole compounds with bioactivity against inflammatory mediators. Molecules, 2017, 22, 1-18.
[http://dx.doi.org/10.3390/molecules22030461]
[20]
Estévez, V.; Villacampa, M.; Menéndez, J.C. Recent advances in the synthesis of pyrroles by multicomponent reactions. Chem. Soc. Rev., 2014, 43, 4633-4657.
[http://dx.doi.org/10.1039/C3CS60015G]
[21]
Thompson, R.B. Foundations for blockbuster drugs in federally sponsored research. FASEB J., 2001, 15, 1671-1863.
[http://dx.doi.org/10.1096/fj.01-0024lsf]
[22]
Domling, A. Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem. Rev., 2006, 106, 17-89.
[http://dx.doi.org/10.1021/cr0505728]
[23]
Guillena, G.; Ramón, D.J.; Yus, M. Organocatalytic enantioselective multicomponent reactions (Oemcrs). Tetrahedron Asymmetry, 2007, 18, 693-700.
[http://dx.doi.org/10.1016/j.tetasy.2007.03.002]
[24]
Toure, B.B.; Hall, D.G. Natural product synthesis using multicomponent reaction strategies. Chem. Rev., 2009, 109, 4439-4486.
[http://dx.doi.org/10.1021/cr800296p]
[25]
Rotstein, B.H.; Zaretsky, S.; Rai, V.; Yudin, A.K. Small heterocycles in multicomponent reactions. Chem. Rev., 2014, 114, 8323-8359.
[http://dx.doi.org/10.1021/cr400615v]
[26]
Haji, M. Multicomponent reactions: A simple and efficient route to heterocyclic phosphonates. Beilstein J. Org. Chem., 2016, 12, 1269-1301.
[http://dx.doi.org/10.3762/bjoc.12.121]
[27]
Zhu, J.; Bienayme, H., Eds.; For a monograph on MCRs, see: Multicomponent Reactions; Wiley-VCH, 2005.
[http://dx.doi.org/10.1002/3527605118]
[28]
For a symposium in print on MCRs, see: Tetrahedron Symposia-in- Print, ed. I. Marek 2005, vol. 67 p. 11299. Tejedor, D.; Garcia-Tellado, F. Chemo-Differentiating ABB' multicomponent reactions. privileged building blocks.. Chem. Soc. Rev , 2007, 36, 484-491.
[29]
Wasilke, J.C.; Obrey, S.J.; Baker, R.T.; Bazan, G.C. Concurrent tandem catalysis. Chem. Rev., 2005, 105, 1001-1020.
[http://dx.doi.org/10.1021/cr020018n]
[30]
Jiang, B.; Rajale, T.; Wever, W.; Tu, S.; Li, G. Multicomponent reactions for the synthesis of heterocycles. Chem. Asian J., 2010, 5, 2318-2335.
[http://dx.doi.org/10.1002/asia.201000310]
[31]
Morin, M.; St-Cyr, D.J.; Arndtsen, B.A. Horner-Wadsworth-emmons reagents as azomethine ylide analogues: Pyrrole synthesis via (3 + 2). Cycloaddition. Org. Lett., 2010, 12, 4916-4919.
[http://dx.doi.org/10.1021/ol102075y]
[32]
Estévez, V.; Villacampa, M.; Menéndez, J.C. Multicomponent reactions for the synthesis of pyrroles. Chem. Soc. Rev., 2010, 12, 4402-4421.
[http://dx.doi.org/10.1039/b917644f]
[33]
Lamande-Langle, S.; Abarbri, M.; Thibonnet, J.; Duchene, A.; Parrain, J. Domino allylic amination/Sonogashira/heterocyclisation reactions: Palladium-catalysed three-component synthesis of pyrroles. Chem. Commun. (Camb.), 2010, 46, 5157-5159.
[http://dx.doi.org/10.1039/c0cc00500b]
[34]
Fontaine, P.; Masson, G.; Zhu, J. Synthesis of pyrroles by consecutive multicomponent reaction/[4+1] Cycloaddition of α-iminonitriles with isocyanides. Org. Lett., 2009, 11, 1555-1158.
[http://dx.doi.org/10.1021/ol9001619]
[35]
Maiti, S.; Biswas, S.; Jana, U. Iron(III)-Catalyzed Four-Component coupling reaction of 1,3-Dicarbonyl compounds, amines, aldehydes, and nitroalkanes: A simple and direct synthesis of functionalized pyrroles. J. Org. Chem., 2010, 75, 1674-1683.
[http://dx.doi.org/10.1021/jo902661y]
[36]
Beuming, T.; Kniazeff, J.; Bergmann, M.L.; Shi, L.; Gracia, L.; Raniszewska, K.; Newman, A.H.; Javitch, J.A.; Weinstein, H.; Gether, U.; Loland, C. The binding sites for cocaine and dopamine in the dopamine transporter overlap. J. Nat. Neurosci., 2008, 11, 780-789.
[http://dx.doi.org/10.1038/nn.2146]
[37]
Lee, M.; Lee, T.; Kim, E-Y.; Ko, H.; Kim, D.; Kim, S. Formal total synthesis of Lepadiformine. Org. Lett., 2006, 8, 745-748.
[http://dx.doi.org/10.1021/ol053010j]
[38]
Overman, L.E.; Rabinowitz, M.H. Studies toward the total synthesis of (+)-ptilomycalin A. Use of a tethered Biginelli condensation for the preparation of an advanced tricyclic intermediate. J. Org. Chem., 1993, 58, 3235-3237.
[http://dx.doi.org/10.1021/jo00064a007]
[39]
Pearson, W.H.; Lee, I.Y.; Mi, Y.; Stoy, P. Total Synthesis of the Kopsia lapidilecta Alkaloid. Lapidilectine B. J. Org. Chem., 2004, 69, 9109-9122.
[http://dx.doi.org/10.1021/jo048917u]
[40]
Delaye, P.O.; Ahari, M.; Vasse, J.L.; Szymoniak, J. A straightforward access to pyrrolidine-based ligands for asymmetric synthesis. Tetrahedron Asymmetry, 2010, 21, 2505-2511.
[http://dx.doi.org/10.1016/j.tetasy.2010.09.015]
[41]
Shorvon, S. Pyrrolidone derivatives. Lancet, 2001, 358, 1885-1892.
[http://dx.doi.org/10.1016/S0140-6736(01)06890-8]
[42]
Gein, V.L.; Buldakova, E.A.; Korol, A.N.; Veikhman, G.A.; Dmitriev, M.V. Synthesis of 5-Aryl-4-aroyl-3-hydroxy-1-cyanomethyl-3-pyrrolin-2-ones. Russ. J. Gen. Chem., 2018, 88, 908-911.
[http://dx.doi.org/10.1134/S1070363218050110]
[43]
Gein, V.L.; Kasimova, N.N.; Potemkin, K.D. Simple three-component synthesis of 4-Acyl-1-(2-aminoethyl)-5-aryl-3-hydroxy-2,5-dihydropyrrol-2(1H)-ones. Russ. J. Gen. Chem., 2002, 72, 1150-1151.
[http://dx.doi.org/10.1023/A:1020783623210]
[44]
Andreichikov, Yu.S.; Gein, V.L.; Shumilovskikh, E.V. Five-membered 2,3-Dioxoheterocycles synthesis and [1,3]-Sigmatropic rearrangement of 1,5-Diaryl-3-Diphenylmethoxy-4-Ethoxycarbonyl-2,5-Dihydropyrrol-2-Ones. Chem. Heterocycl. Compd., 1990, 6, 627-630.
[http://dx.doi.org/10.1007/BF00756412]
[45]
Gein, V.L.; Shumilovskikh, E.V.; Andreichikov, Yu.S.; Saraeva, R.F.; Korobchenko, L.V.; Vladyko, G.V.; Boreko, E.I. Synthesis of 4-Substituted 1-Methyl-5-Aryl- and 1,5-Diaryltetrahydro-pyrrole-2,3-Diones and their antiviral action. Pharm. Chem. J., 1991, 25, 884-887.
[http://dx.doi.org/10.1007/BF00778979]
[46]
Gein, V.L.; Pitirimova, S.G.; Voronina, E.V.; Porseva, N.Yu.; Pantsurkin, V.I. Synthesis and antibacterial activity of 1-substituted 5-Aryl-4-Aroyl-3-Hydroxy-3-Pyrrolin-2-Ones. Pharm. Chem. J., 1997, 31, 603-605.
[http://dx.doi.org/10.1007/BF02464279]
[47]
Gein, V.L.; Gein, L.F.; Porseva, N.Yu.; Voronina, E.V.; Vakhrin, M.I.; Potemkin, K.D.; Kolla, V.E.; Drovosekova, L.P.; Milyutin, A.V.; Shchuklina, N.S.; Veikhman, G.A. Synthesis and pharmacological activity of 1-Substituted 5-Aryl-4-Acyl-3-Hydroxy-3-Pyrrolin-2-Ones. Pharm. Chem. J., 1998, 32, 477-486.
[http://dx.doi.org/10.1007/BF02539221]
[48]
Silina, T.A.; Pulina, N.A.; Gein, L.F.; Gein, V.L. Simple three-component synthesis of 4-acyl-5-phenyl-1-(2-heteryl)-3-hydroxy-3-pyrrolin-2-ones. Chem. Heter. Comp., 1998, 34, 739-739.
[http://dx.doi.org/10.1007/BF02252289]
[49]
Mashkovskii, M.D. Drugs [in Russian]; Kharkov, 1997, 2, p. 331, , 375-422.
[50]
Gein, V.L.; Kasimova, N.N.; Voronina, E.N.; Gein, L.F. Synthesis and antimicrobial activity of 5-Aryl-4-acyl-1-(N,N-dimethyl-aminoethyl)-3-hydroxy-3-pyrrolin-2-ones. Pharm. Chem. J., 2001, 35, 151-156.
[http://dx.doi.org/10.1023/A:1010457912881]
[51]
Metten, B.; Kostermans, M.; Van Baelen, G.; Smet, M.; Dehaen, W. Synthesis of 5-Aryl-2-Oxopyrrole derivatives as synthons for highly substituted pyrroles. Tetrahedron, 2006, 62, 6018-6028.
[http://dx.doi.org/10.1016/j.tet.2006.04.005]
[52]
Mohammat, M.F.; Shaameri, Z.; Hamzah, A.S. Synthesis of 2,3-Dioxo-5-(substituted)arylpyrroles and their 2-Oxo-5-aryl-3-hydrazone pyrrolidine derivatives. Molecules, 2009, 14, 250-256.
[http://dx.doi.org/10.3390/molecules14010250]
[53]
Mohammat, M.F.; Najim, N.; Mansor, N.S.; Sarman, S.; Shaameri, Z.; Zain, M.M.; Hamzan, A.S. Synthesis and bioactivity of some 2-oxo-5-aryl-3-hydrazone and 2-oxo-5-aryl-4-hydrazone pyrrolidine derivatives. ARKIVOC, 2011, 429-438.
[54]
Manta, S.; Gkaragkouni, D.N.; Kaffesaki, E.; Gkizis, P.; Hadjipavlou-Litina, D.; Pontiki, E.; Balzarini, J.; Dehaen, W.; Komiotis, D. A novel and easy two-step, microwave-assisted method for the synthesis of halophenyl pyrrolo[2,3-b]quinoxalines via their pyrrolo precursors evaluation of their bioactivity. Tetrahedron, 2014, 55, 1873-1876.
[http://dx.doi.org/10.1016/j.tetlet.2014.01.106]
[55]
Manta, S.; Tzioumaki, N.; Kollatos, N.; Andrea, P.; Panagiotopoulou, P.; Papanastasiou, I.; Mitsos, C.; Tsotinis, A.; Schols, D.; Komiotis, D. A novel and easy two-step, microwave-assisted method for the synthesis of halophenyl pyrrolo quinoxalines via their pyrrolo precursors evaluation of their bioactivity. Curr. Microw. Chem., 2018, 5, 1873-1876.
[56]
Gein, V.L.; Platonov, V.S.; Voronina, E.V. Synthesis and antimicrobial activity of 1,5-Diaryl-4-Heteroyl-3-Hydroxy-3-Pyrrolin-2-Ones. Pharm. Chem. J., 2004, 38, 316-318.
[http://dx.doi.org/10.1023/B:PHAC.0000048143.40360.9c]
[57]
Gein, V.L.; Bobyleva, A.A.; Levandovskaya, E.B.; Odegova, T.F.; Vakhrin, M.I. Synthesis and antimicrobial activity of 5-aryl-4-acyl(heteroyl)-3-hydroxy-1- (3-ethoxypropyl)-3-pyrrolin-2-ones. Pharm. Chem. J., 2012, 46, 23-25.
[http://dx.doi.org/10.1007/s11094-012-0728-x]
[58]
Gein, V.L.; Odegova, T.F.; Korol, A.N.; Varkentin, L.I.; Bobyleva, A.A.; Gein, L.F.; Vakhrin, M.I. Synthesis and antibacterial activity of 5-aryl-4-acyl-3-hydroxy-1-(2-hydroxyethyl)-3-pyrrolin-2-ones. Pharm. Chem. J., 2014, 47, 536-538.
[http://dx.doi.org/10.1007/s11094-014-0999-5]
[59]
Gein, V.L.; Mar’yasov, M.A.; Silina, T.A.; Makhmudov, R.R. Synthesis and analgesic activity of 5-Aryl-4-Heteroyl-3-Hydroxy-1-(2-Thiazolyl)-3-Pyrrolin-2-Ones and their derivatives. Pharm. Chem. J., 2014, 47, 539-543.
[http://dx.doi.org/10.1007/s11094-014-1000-3]
[60]
Gein, V.L.; Odegova, T.F.; Tkachenko, K.A.; Bobrovskaya, O.V.; Vakhrin, M.I. Synthesis and Antibacterial Activity of 1-(4-Aminosulfonylphenyl)-5-aryl-4-acyl-3-hydroxy-3-pyrrolin-2-ones. Pharm. Chem. J., 2013, 47, 371-373.
[http://dx.doi.org/10.1007/s11094-013-0961-y]
[61]
Gein, V.L.; Kontonogova, I.V.; Bobrovskaya, O.V.; Vakhrin, M.I. Three-Component reaction of methyl aroylpyruvate with aromatic aldehyde and 4-aminobenzenesulfonylguanidine resulted in 5-Aryl-4-aroyl-3-hydroxy-1-(4-guanidylsulfonylphenyl)-3-pyrrolin-2-ones. Russ. J. Gen. Chem., 2014, 84, 264-267.
[http://dx.doi.org/10.1134/S1070363214020170]
[62]
Mashkovskii, M.D. ekarstvennye sredstva (Drugs), Moscow: RIA ; Novaya Volna. , 2012.
[63]
Gein, V.L.; Kasimova, N.N.; Aliev, Z.G.; Vakhrin, M.I. Three-component reaction of methyl 2,4-dioxo-4-phenylbutanoate and methyl 2,4-dioxopentanoate with aromatic aldehydes and propane-1,2-diamine and chemical properties of the products. Russ. J. Gen. Chem., 2010, 46, 875-883.
[64]
Khan, M.S.Y.; Gupta, M. Synthesis, antiinflammatory and analgesic activity of new hexahydropyrimidine derivatives. Pharmazie, 2002, 57, 377-383.
[65]
Vydzhak, R.N.; Panchishyn, S.Ya. Synthesis Of 1-Aryl-2-[2-(Dimethylamino)Ethyl]-1,2-Dihydrochromeno[2,3-C]Pyrrole-3,9-Diones and their analogues. Russ. J. Gen. Chem., 2010, 80, 323-329.
[http://dx.doi.org/10.1134/S1070363210020222]
[66]
Vydzhak, R.N.; Panchishyn, S.Y.A. Synthesis of 2-Phenyl-5,6dihydropyrano[2,3-C]Pyrrole-4,7-Dione derivatives. Russ. J. Gen. Chem., 2008, 78, 1641-1642.
[http://dx.doi.org/10.1134/S1070363208080331]
[67]
Ryabukhin, S.V.; Panov, D.M.; Plaskon, A.S.; Grygorenko, O.O. Approach to the Library of 3-Hydroxy-1,5-dihydro-2H-pyrrol-2-ones through a Three-Component condensation. ACS Comb. Sci., 2012, 14, 631-635.
[http://dx.doi.org/10.1021/co300082t]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy