Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Ultrasmall Nanoclusters: Synthesis and Applications as an Emerging Platform for Imaging and Therapy

Author(s): Xiaohui Zhang, Deborah Sultan, Gyu Seong Heo, Hannah Luehmann, Lisa Detering and Yongjian Liu*

Volume 17, Issue 3, 2021

Published on: 30 December, 2019

Page: [287 - 301] Pages: 15

DOI: 10.2174/1573411016666191230151648

Price: $65

Abstract

Background: Ultrasmall nanoclusters (USNCs) have attracted tremendous attention owing to their unique properties that make them desirable for the development of personalized medicine, such as tunable emission, straightforward modification, and renal clearance. Hence, USNCs have emerged as potential materials for nanotheranostics.

Objective: For decades, great efforts have been devoted to the bio-applications of USNCs, promising platforms to satisfy the increasing demand for precise diagnostic and targeted therapeutics. Herein, we summarize the most recent advances of USNCs in biomedical applications and provide our perspective on the future development of USNCs.

Results: This review briefly summarized the synthetic methods of metallic USNCs and discussed their recent applications for cancer imaging and therapy.

Conclusion: USNCs have shown their potential for accurate diagnosis and specific delivery of therapeutics in preclinical research.

Keywords: Cancer, imaging, therapy, ultrasmall nanocluster, medicine, nanotheranostics.

Graphical Abstract
[1]
Nutzenadel, C.; Zuttell, A.; Chartouni, D.; Schmid, G.; Schlapbach, L. Critical size and surface effect of the hydrogen interaction of palladium clusters. Eur. Phys. J. D, 2000, 8(2), 245-250.
[http://dx.doi.org/10.1007/s100530050033]
[2]
Link, S.; El-Sayed, M.A. Optical properties and ultrafast dynamics of metallic nanocrystals. Annu. Rev. Phys. Chem., 2003, 54, 331-366.
[http://dx.doi.org/10.1146/annurev.physchem.54.011002.103759] [PMID: 12626731]
[3]
Zheng, J.; Nicovich, P.R.; Dickson, R.M. Highly fluorescent noble-metal quantum dots. Annu. Rev. Phys. Chem., 2007, 58, 409-431.
[http://dx.doi.org/10.1146/annurev.physchem.58.032806.104546] [PMID: 17105412]
[4]
Liu, Y.; Welch, M.J. Nanoparticles labeled with positron emitting nuclides: Advantages, methods, and applications. Bioconjug. Chem., 2012, 23(4), 671-682.
[http://dx.doi.org/10.1021/bc200264c] [PMID: 22242601]
[5]
Sun, X.; Cai, W.; Chen, X. Positron emission tomography imaging using radiolabeled inorganic nanomaterials. Acc. Chem. Res., 2015, 48(2), 286-294.
[http://dx.doi.org/10.1021/ar500362y] [PMID: 25635467]
[6]
Sztandera, K.; Gorzkiewicz, M.; Klajnert-Maculewicz, B. Gold nanoparticles in cancer treatment. Mol. Pharm., 2019, 16(1), 1-23.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00810] [PMID: 30452861]
[7]
Zhao, Y.; Sultan, D.; Detering, L.; Luehmann, H.; Liu, Y. Facile synthesis, pharmacokinetic and systemic clearance evaluation, and positron emission tomography cancer imaging of 64Cu-Au alloy nanoclusters. Nanoscale, 2014, 6(22), 13501-13509.
[http://dx.doi.org/10.1039/C4NR04569F] [PMID: 25266128]
[8]
Zhao, Y.; Detering, L.; Sultan, D.; Cooper, M.L.; You, M.; Cho, S.; Meier, S.L.; Luehmann, H.; Sun, G.; Rettig, M.; Dehdashti, F.; Wooley, K.L.; DiPersio, J.F.; Liu, Y. Gold nanoclusters doped with 64Cu for CXCR4 positron emission tomography imaging of breast cancer and metastasis. ACS Nano, 2016, 10(6), 5959-5970.
[http://dx.doi.org/10.1021/acsnano.6b01326] [PMID: 27159079]
[9]
Zhang, X.D.; Luo, Z.; Chen, J.; Song, S.; Yuan, X.; Shen, X.; Wang, H.; Sun, Y.; Gao, K.; Zhang, L.; Fan, S.; Leong, D.T.; Guo, M.; Xie, J. Ultrasmall glutathione-protected gold nanoclusters as next generation radiotherapy sensitizers with high tumor uptake and high renal clearance. Sci. Rep., 2015, 5, 8669.
[http://dx.doi.org/10.1038/srep08669] [PMID: 25727895]
[10]
Jiang, X.; Du, B.; Huang, Y.; Zheng, J. Ultrasmall noble metal nanoparticles: Breakthroughs and biomedical implications. Nano Today, 2018, 21, 106-125.
[http://dx.doi.org/10.1016/j.nantod.2018.06.006] [PMID: 31327979]
[11]
Tan, X.; Jin, R. Ultrasmall metal nanoclusters for bio-related applications. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2013, 5(6), 569-581.
[http://dx.doi.org/10.1002/wnan.1237] [PMID: 23939885]
[12]
Wang, Q.; Wang, S.; Hu, X.; Li, F.; Ling, D. Controlled synthesis and assembly of ultra-small nanoclusters for biomedical applications. Biomater. Sci., 2019, 7(2), 480-489.
[http://dx.doi.org/10.1039/C8BM01200H] [PMID: 30488906]
[13]
Zarschler, K.; Rocks, L.; Licciardello, N.; Boselli, L.; Polo, E.; Garcia, K.P.; De Cola, L.; Stephan, H.; Dawson, K.A. Ultrasmall inorganic nanoparticles: State-of-the-art and perspectives for biomedical applications. Nanomedicine (Lond.), 2016, 12(6), 1663-1701.
[http://dx.doi.org/10.1016/j.nano.2016.02.019] [PMID: 27013135]
[14]
Chen, F.; Ma, K.; Benezra, M.; Zhang, L.; Cheal, S.M.; Phillips, E.; Yoo, B.; Pauliah, M.; Overholtzer, M.; Zanzonico, P.; Sequeira, S.; Gonen, M.; Quinn, T.; Wiesner, U.; Bradbury, M.S. Cancer-targeting ultrasmall silica nanoparticles for clinical translation: Physicochemical structure and biological property correlations. Chem. Mater., 2017, 29(20), 8766-8779.
[http://dx.doi.org/10.1021/acs.chemmater.7b03033] [PMID: 29129959]
[15]
Mao, F.; Wen, L.; Sun, C.; Zhang, S.; Wang, G.; Zeng, J.; Wang, Y.; Ma, J.; Gao, M.; Li, Z. Ultrasmall biocompatible Bi2Se3 nanodots for multimodal imaging-guided synergistic radiophotothermal therapy against cancer. ACS Nano, 2016, 10(12), 11145-11155.
[http://dx.doi.org/10.1021/acsnano.6b06067] [PMID: 28024338]
[16]
Wen, L.; Chen, L.; Zheng, S.; Zeng, J.; Duan, G.; Wang, Y.; Wang, G.; Chai, Z.; Li, Z.; Gao, M. Ultrasmall biocompatible Wo3-x nanodots for multi-modality imaging and combined therapy of cancers. Adv. Mater., 2016, 28(25), 5072-5079.
[http://dx.doi.org/10.1002/adma.201506428] [PMID: 27136070]
[17]
Dehaini, D.; Fang, R.H.; Luk, B.T.; Pang, Z.; Hu, C.M.; Kroll, A.V.; Yu, C.L.; Gao, W.; Zhang, L. Ultra-small lipid-polymer hybrid nanoparticles for tumor-penetrating drug delivery. Nanoscale, 2016, 8(30), 14411-14419.
[http://dx.doi.org/10.1039/C6NR04091H] [PMID: 27411852]
[18]
Mendes, M.; Miranda, A.; Cova, T.; Gonçalves, L.; Almeida, A.J.; Sousa, J.J.; do Vale, M.L.C.; Marques, E.F.; Pais, A.; Vitorino, C. Modeling of ultra-small lipid nanoparticle surface charge for targeting glioblastoma. Eur. J. Pharm. Sci., 2018, 117, 255-269.
[http://dx.doi.org/10.1016/j.ejps.2018.02.024] [PMID: 29486328]
[19]
Shen, S.; Jiang, D.; Cheng, L.; Chao, Y.; Nie, K.; Dong, Z.; Kutyreff, C.J.; Engle, J.W.; Huang, P.; Cai, W.; Liu, Z. Renal-clearable ultrasmall coordination polymer nanodots for chelator-free 64Cu-labeling and imaging-guided enhanced radiotherapy of cancer. ACS Nano, 2017, 11(9), 9103-9111.
[http://dx.doi.org/10.1021/acsnano.7b03857] [PMID: 28853861]
[20]
Schmid, G. Metal-clusters and cluster metals. Polyhedron, 1988, 7(22-23), 2321-2329.
[http://dx.doi.org/10.1016/S0277-5387(00)86349-4]
[21]
Weare, W.W.; Reed, S.M.; Warner, M.G.; Hutchison, J.E. Improved synthesis of small (dcore ≈ 1.5 nm) phosphine-stabilized gold nanoparticles. J. Am. Chem. Soc., 2000, 122(51), 12890-12891.
[http://dx.doi.org/10.1021/ja002673n]
[22]
Wegner, K.; Piseri, P.; Tafreshi, H.V.; Milani, P. Cluster beam deposition: A tool for nanoscale science and technology. J. Phys. D Appl. Phys., 2006, 39(22), R439-R459.
[http://dx.doi.org/10.1088/0022-3727/39/22/R02]
[23]
Nikitin, A.A.; Shchetinin, I.V.; Tabachkova, N.Y.; Soldatov, M.A.; Soldatov, A.V.; Sviridenkova, N.V.; Beloglazkina, E.K.; Savchenko, A.G.; Fedorova, N.D.; Abakumov, M.A.; Majouga, A.G. Synthesis of iron oxide nanoclusters by thermal decomposition. Langmuir, 2018, 34(15), 4640-4650.
[http://dx.doi.org/10.1021/acs.langmuir.8b00753] [PMID: 29566327]
[24]
Park, J.; An, K.; Hwang, Y.; Park, J.G.; Noh, H.J.; Kim, J.Y.; Park, J.H.; Hwang, N.M.; Hyeon, T. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater., 2004, 3(12), 891-895.
[http://dx.doi.org/10.1038/nmat1251] [PMID: 15568032]
[25]
Kim, B.H.; Hackett, M.J.; Park, J.; Hyeon, T. Synthesis, characterization, and application of ultrasmall nanoparticles. Chem. Mater., 2014, 26(1), 59-71.
[http://dx.doi.org/10.1021/cm402225z]
[26]
Shang, L.; Dong, S.J.; Nienhaus, G.U. Ultra-small fluorescent metal nanoclusters: Synthesis and biological applications. Nano Today, 2011, 6(4), 401-418.
[http://dx.doi.org/10.1016/j.nantod.2011.06.004]
[27]
Yao, Q.; Yuan, X.; Fung, V.; Yu, Y.; Leong, D.T.; Jiang, D.E.; Xie, J. Understanding seed-mediated growth of gold nanoclusters at molecular level. Nat. Commun., 2017, 8(1), 927.
[http://dx.doi.org/10.1038/s41467-017-00970-1] [PMID: 29030559]
[28]
Zhou, T.; Zhu, J.; Gong, L.; Nong, L.; Liu, J. Amphiphilic block copolymer-guided in situ fabrication of stable and highly controlled luminescent copper nanoassemblies. J. Am. Chem. Soc., 2019, 141(7), 2852-2856.
[http://dx.doi.org/10.1021/jacs.8b12026] [PMID: 30717593]
[29]
Jin, R.; Zeng, C.; Zhou, M.; Chen, Y. Atomically precise colloidal metal nanoclusters and nanoparticles: Fundamentals and opportunities. Chem. Rev., 2016, 116(18), 10346-10413.
[http://dx.doi.org/10.1021/acs.chemrev.5b00703] [PMID: 27585252]
[30]
Yang, Y.; Ghildiyal, P.; Zachariah, M.R. Thermal shock synthesis of metal nanoclusters within on-the-fly graphene particles. Langmuir, 2019, 35(9), 3413-3420.
[http://dx.doi.org/10.1021/acs.langmuir.8b03532] [PMID: 30698983]
[31]
Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D.J.; Whyman, R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. J. Chem. Soc. Chem. Commun., 1994, (7), 801-802.
[http://dx.doi.org/10.1039/C39940000801]
[32]
Turkevich, J.; Stevenson, P.C.; Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc., 1951, 11(0), 55-75.
[http://dx.doi.org/10.1039/df9511100055]
[33]
Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci (Lond.), 1973, 241, 20.
[http://dx.doi.org/10.1038/physci241020a0]
[34]
Poonthiyil, V.; Golovko, V.B.; Fairbanks, A.J. Control of gold nanostructure morphology by variation of temperature and reagent ratios in the Turkevich reaction. Aust. J. Chem., 2015, 68(6), 858-862.
[http://dx.doi.org/10.1071/CH14446]
[35]
Larm, N.E.; Essner, J.B.; Pokpas, K.; Canon, J.A.; Jahed, N.; Iwuoha, E.I.; Baker, G.A. Room-temperature Turkevich method: Formation of gold nanoparticles at the speed of mixing using cyclic oxocarbon reducing agents. J. Phys. Chem. C, 2018, 122(9), 5105-5118.
[http://dx.doi.org/10.1021/acs.jpcc.7b10536]
[36]
Oh, E.; Susumu, K.; Goswami, R.; Mattoussi, H. One-phase synthesis of water-soluble gold nanoparticles with control over size and surface functionalities. Langmuir, 2010, 26(10), 7604-7613.
[http://dx.doi.org/10.1021/la904438s] [PMID: 20121172]
[37]
Song, J.; Kim, D.; Lee, D. Size control in the synthesis of 1-6 nm gold nanoparticles via solvent-controlled nucleation. Langmuir, 2011, 27(22), 13854-13860.
[http://dx.doi.org/10.1021/la203113r] [PMID: 21955125]
[38]
Piella, J.; Bastus, N.G.; Puntes, V. Size-controlled synthesis of sub-10-nanometer citrate-stabilized gold nanoparticles and related optical properties. Chem. Mater., 2016, 28(4), 1066-1075.
[http://dx.doi.org/10.1021/acs.chemmater.5b04406]
[39]
Zhao, Y.; Sultan, D.; Detering, L.; Cho, S.; Sun, G.; Pierce, R.; Wooley, K.L.; Liu, Y. Copper-64-alloyed gold nanoparticles for cancer imaging: Improved radiolabel stability and diagnostic accuracy. Angew. Chem. Int. Ed. Engl., 2014, 53(1), 156-159.
[http://dx.doi.org/10.1002/anie.201308494] [PMID: 24272951]
[40]
Nuzzo, R.G.; Allara, D.L. Absorption of bifunctional organic disulfides on gold surfaces. J. Am. Chem. Soc., 1983, 105(13), 4481-4483.
[http://dx.doi.org/10.1021/ja00351a063]
[41]
Keller, H.; Simak, P.; Schrepp, W.; Dembowski, J. Surface-chemistry of thiols on copper - an efficient way of producing multilayers. Thin Solid Films, 1994, 244(1-2), 799-805.
[http://dx.doi.org/10.1016/0040-6090(94)90574-6]
[42]
Pakiari, A.H.; Jamshidi, Z. Nature and strength of M-S bonds (m = Au, Ag, and Cu) in binary alloy gold clusters. J. Phys. Chem. A, 2010, 114(34), 9212-9221.
[http://dx.doi.org/10.1021/jp100423b] [PMID: 20687518]
[43]
Yuan, X.; Zhang, B.; Luo, Z.; Yao, Q.; Leong, D.T.; Yan, N.; Xie, J. Balancing the rate of cluster growth and etching for gram-scale synthesis of thiolate-protected Au(25) nanoclusters with atomic precision. Angew. Chem. Int. Ed. Engl., 2014, 53(18), 4623-4627.
[http://dx.doi.org/10.1002/anie.201311177] [PMID: 24664874]
[44]
New, S.Y.; Lee, S.T.; Su, X.D. DNA-templated silver nanoclusters: Structural correlation and fluorescence modulation. Nanoscale, 2016, 8(41), 17729-17746.
[http://dx.doi.org/10.1039/C6NR05872H] [PMID: 27722695]
[45]
Tiwari, J.N.; Nath, K.; Kumar, S.; Tiwari, R.N.; Kemp, K.C.; Le, N.H.; Youn, D.H.; Lee, J.S.; Kim, K.S. Stable platinum nanoclusters on genomic DNA-graphene oxide with a high oxygen reduction reaction activity. Nat. Commun., 2013, 4, 2221.
[http://dx.doi.org/10.1038/ncomms3221] [PMID: 23900456]
[46]
Fan, J.A.; He, Y.; Bao, K.; Wu, C.; Bao, J.; Schade, N.B.; Manoharan, V.N.; Shvets, G.; Nordlander, P.; Liu, D.R.; Capasso, F. DNA-enabled self-assembly of plasmonic nanoclusters. Nano Lett., 2011, 11(11), 4859-4864.
[http://dx.doi.org/10.1021/nl203194m] [PMID: 22007607]
[47]
Nandi, I.; Chall, S.; Chowdhury, S.; Mitra, T.; Roy, S.S.; Chattopadhyay, K. Protein fibril-templated biomimetic synthesis of highly fluorescent gold nanoclusters and their applications in cysteine sensing. ACS Omega, 2018, 3(7), 7703-7714.
[http://dx.doi.org/10.1021/acsomega.8b01033] [PMID: 30221238]
[48]
Vinluan, R.D., III; Liu, J.; Zhou, C.; Yu, M.; Yang, S.; Kumar, A.; Sun, S.; Dean, A.; Sun, X.; Zheng, J. Glutathione-coated luminescent gold nanoparticles: A surface ligand for minimizing serum protein adsorption. ACS Appl. Mater. Interfaces, 2014, 6(15), 11829-11833.
[http://dx.doi.org/10.1021/am5031374] [PMID: 25029478]
[49]
Chen, H.; Li, S.; Li, B.; Ren, X.; Li, S.; Mahounga, D.M.; Cui, S.; Gu, Y.; Achilefu, S. Folate-modified gold nanoclusters as near-infrared fluorescent probes for tumor imaging and therapy. Nanoscale, 2012, 4(19), 6050-6064.
[http://dx.doi.org/10.1039/c2nr31616a] [PMID: 22930451]
[50]
Adnan, N.N.M.; Ahmad, S.; Kuchel, R.P.; Boyer, C. Exploring the potential of linear polymer structures for the synthesis of fluorescent gold nanoclusters. Mater. Chem. Front., 2017, 1(1), 80-90.
[http://dx.doi.org/10.1039/C6QM00109B]
[51]
Kambe, T.; Haruta, N.; Imaoka, T.; Yamamoto, K. Solution-phase synthesis of Al13- using a dendrimer template. Nat. Commun., 2017, 8(1), 2046.
[http://dx.doi.org/10.1038/s41467-017-02250-4] [PMID: 29229924]
[52]
Yu, T.; Wang, W.; Chen, J.; Zeng, Y.; Li, Y.; Yang, G.; Li, Y. Dendrimer-encapsulated Pt nanoparticles: an artificial enzyme for hydrogen production. J. Phys. Chem. C, 2012, 116(19), 10516-10521.
[http://dx.doi.org/10.1021/jp3021672]
[53]
Pal, N.K.; Kryschi, C. A facile synthesis of highly stable and luminescent Ag clusters: A steady-state and time-resolved spectroscopy study. Phys. Chem. Chem. Phys., 2015, 17(3), 1957-1965.
[http://dx.doi.org/10.1039/C4CP03683B] [PMID: 25475027]
[54]
Jin, Q.; Zhu, W.; Jiang, D.; Zhang, R.; Kutyreff, C.J.; Engle, J.W.; Huang, P.; Cai, W.; Liu, Z.; Cheng, L. Ultra-small iron-gallic acid coordination polymer nanoparticles for chelator-free labeling of 64Cu and multimodal imaging-guided photothermal therapy. Nanoscale, 2017, 9(34), 12609-12617.
[http://dx.doi.org/10.1039/C7NR03086J] [PMID: 28825066]
[55]
Tang, R.; Xue, J.; Xu, B.; Shen, D.; Sudlow, G.P.; Achilefu, S. Tunable ultrasmall visible-to-extended near-infrared emitting silver sulfide quantum dots for integrin-targeted cancer imaging. ACS Nano, 2015, 9(1), 220-230.
[http://dx.doi.org/10.1021/nn5071183] [PMID: 25560768]
[56]
Chen, Y.; Montana, D.M.; Wei, H.; Cordero, J.M.; Schneider, M.; Le Guével, X.; Chen, O.; Bruns, O.T.; Bawendi, M.G. Shortwave infrared in vivo imaging with gold nanoclusters. Nano Lett., 2017, 17(10), 6330-6334.
[http://dx.doi.org/10.1021/acs.nanolett.7b03070] [PMID: 28952734]
[57]
Kurdekar, A.D.; Avinash Chunduri, L.A.; Manohar, C.S.; Haleyurgirisetty, M.K.; Hewlett, I.K.; Venkataramaniah, K. Streptavidin-conjugated gold nanoclusters as ultrasensitive fluorescent sensors for early diagnosis of HIV infection. Sci. Adv., 2018, 4(11), 6280.
[http://dx.doi.org/10.1126/sciadv.aar6280] [PMID: 30474052]
[58]
Peng, C.; Gao, X.; Xu, J.; Du, B.; Ning, X.; Tang, S.; Bachoo, R.M.; Yu, M.; Ge, W.P.; Zheng, J. Targeting orthotopic gliomas with renal-clearable luminescent gold nanoparticles. Nano Res., 2017, 10(4), 1366-1376.
[http://dx.doi.org/10.1007/s12274-017-1472-z] [PMID: 29034063]
[59]
Ni, D.; Bu, W.; Ehlerding, E.B.; Cai, W.; Shi, J. Engineering of inorganic nanoparticles as magnetic resonance imaging contrast agents. Chem. Soc. Rev., 2017, 46(23), 7438-7468.
[http://dx.doi.org/10.1039/C7CS00316A] [PMID: 29071327]
[60]
El-Boubbou, K. Magnetic iron oxide nanoparticles as drug carriers: Clinical relevance. Nanomedicine (Lond.), 2018, 13(8), 953-971.
[http://dx.doi.org/10.2217/nnm-2017-0336] [PMID: 29376469]
[61]
Min, Y.; Caster, J.M.; Eblan, M.J.; Wang, A.Z. Clinical translation of nanomedicine. Chem. Rev., 2015, 115(19), 11147-11190.
[http://dx.doi.org/10.1021/acs.chemrev.5b00116] [PMID: 26088284]
[62]
Li, Z.; Yi, P.; Sun, Q.; Lei, H.; Zhao, H.; Zhu, Z.; Smith, S.C.; Lan, M.; Lu, G. Ultrasmall water-soluble and biocompatible magnetic iron oxide nanoparticles as positive and negative dual contrast agents. Adv. Funct. Mater., 2012, 22(11), 2387-2393.
[http://dx.doi.org/10.1002/adfm.201103123]
[63]
Lu, Y.; Xu, Y.J.; Zhang, G.B.; Ling, D.; Wang, M.Q.; Zhou, Y.; Wu, Y.D.; Wu, T.; Hackett, M.J.; Hyo Kim, B.; Chang, H.; Kim, J.; Hu, X.T.; Dong, L.; Lee, N.; Li, F.; He, J.C.; Zhang, L.; Wen, H.Q.; Yang, B.; Hong Choi, S.; Hyeon, T.; Zou, D.H. Iron oxide nanoclusters for T1 magnetic resonance imaging of non-human primates. Nat. Biomed. Eng., 2017, 1(8), 637-643.
[http://dx.doi.org/10.1038/s41551-017-0116-7] [PMID: 31015599]
[64]
Wang, L.; Huang, J.; Chen, H.; Wu, H.; Xu, Y.; Li, Y.; Yi, H.; Wang, Y.A.; Yang, L.; Mao, H. Exerting enhanced permeability and retention effect driven delivery by ultrafine iron oxide nanoparticles with T1-T2 switchable magnetic resonance imaging contrast. ACS Nano, 2017, 11(5), 4582-4592.
[http://dx.doi.org/10.1021/acsnano.7b00038] [PMID: 28426929]
[65]
Li, F.; Liang, Z.; Liu, J.; Sun, J.; Hu, X.; Zhao, M.; Liu, J.; Bai, R.; Kim, D.; Sun, X.; Hyeon, T.; Ling, D. Dynamically reversible iron oxide nanoparticle assemblies for targeted amplification of T1-weighted magnetic resonance imaging of tumors. Nano Lett., 2019, 19(7), 4213-4220.
[http://dx.doi.org/10.1021/acs.nanolett.8b04411] [PMID: 30719918]
[66]
Chen, F.; Goel, S.; Hernandez, R.; Graves, S.A.; Shi, S.; Nickles, R.J.; Cai, W. Dynamic positron emission tomography imaging of renal clearable gold nanoparticles. Small, 2016, 12(20), 2775-2782.
[http://dx.doi.org/10.1002/smll.201600194] [PMID: 27062146]
[67]
Zhou, C.; Hao, G.; Thomas, P.; Liu, J.; Yu, M.; Sun, S.; Öz, O.K.; Sun, X.; Zheng, J. Near-infrared emitting radioactive gold nanoparticles with molecular pharmacokinetics. Angew. Chem. Int. Ed. Engl., 2012, 51(40), 10118-10122.
[http://dx.doi.org/10.1002/anie.201203031] [PMID: 22961978]
[68]
Sultan, D.; Ye, D.; Heo, G.S.; Zhang, X.; Luehmann, H.; Yue, Y.; Detering, L.; Komarov, S.; Taylor, S.; Tai, Y.C.; Rubin, J.B.; Chen, H.; Liu, Y. Focused ultrasound enabled trans-blood brain barrier delivery of gold nanoclusters: effect of surface charges and quantification using positron emission tomography. Small, 2018, 14(30)e1703115
[http://dx.doi.org/10.1002/smll.201703115] [PMID: 29966035]
[69]
Ye, D.; Sultan, D.; Zhang, X.; Yue, Y.; Heo, G.S.; Kothapalli, S.V.V.N.; Luehmann, H.; Tai, Y.C.; Rubin, J.B.; Liu, Y.; Chen, H. Focused ultrasound-enabled delivery of radiolabeled nanoclusters to the pons. J. Control. Release, 2018, 283, 143-150.
[http://dx.doi.org/10.1016/j.jconrel.2018.05.039] [PMID: 29864474]
[70]
Ye, D.; Zhang, X.; Yue, Y.; Raliya, R.; Biswas, P.; Taylor, S.; Tai, Y.C.; Rubin, J.B.; Liu, Y.; Chen, H. Focused ultrasound combined with microbubble-mediated intranasal delivery of gold nanoclusters to the brain. J. Control. Release, 2018, 286, 145-153.
[http://dx.doi.org/10.1016/j.jconrel.2018.07.020] [PMID: 30009893]
[71]
Benezra, M.; Penate-Medina, O.; Zanzonico, P.B.; Schaer, D.; Ow, H.; Burns, A.; DeStanchina, E.; Longo, V.; Herz, E.; Iyer, S.; Wolchok, J.; Larson, S.M.; Wiesner, U.; Bradbury, M.S. Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. J. Clin. Invest., 2011, 121(7), 2768-2780.
[http://dx.doi.org/10.1172/JCI45600] [PMID: 21670497]
[72]
Liu, J.; Yu, M.; Zhou, C.; Yang, S.; Ning, X.; Zheng, J. Passive tumor targeting of renal-clearable luminescent gold nanoparticles: long tumor retention and fast normal tissue clearance. J. Am. Chem. Soc., 2013, 135(13), 4978-4981.
[http://dx.doi.org/10.1021/ja401612x] [PMID: 23506476]
[73]
Heo, G.S.; Zhao, Y.; Sultan, D.; Zhang, X.; Detering, L.; Luehmann, H.P.; Zhang, X.; Li, R.; Choksi, A.; Sharp, S.; Levingston, S.; Primeau, T.; Reichert, D.E.; Sun, G.; Razani, B.; Li, S.; Weilbaecher, K.N.; Dehdashti, F.; Wooley, K.L.; Liu, Y. Assessment of copper nanoclusters for accurate in vivo tumor imaging and potential for translation. ACS Appl. Mater. Interfaces, 2019, 11(22), 19669-19678.
[http://dx.doi.org/10.1021/acsami.8b22752] [PMID: 31074257]
[74]
Gao, F.; Cai, P.; Yang, W.; Xue, J.; Gao, L.; Liu, R.; Wang, Y.; Zhao, Y.; He, X.; Zhao, L.; Huang, G.; Wu, F.; Zhao, Y.; Chai, Z.; Gao, X. Ultrasmall [(64)Cu]Cu nanoclusters for targeting orthotopic lung tumors using accurate positron emission tomography imaging. ACS Nano, 2015, 9(5), 4976-4986.
[http://dx.doi.org/10.1021/nn507130k] [PMID: 25919205]
[75]
Bazak, R.; Houri, M.; El Achy, S.; Kamel, S.; Refaat, T. Cancer active targeting by nanoparticles: A comprehensive review of literature. J. Cancer Res. Clin. Oncol., 2015, 141(5), 769-784.
[http://dx.doi.org/10.1007/s00432-014-1767-3] [PMID: 25005786]
[76]
Pandya, A.; Lad, A.N.; Singh, S.P.; Shanker, R. DNA assembled metal nanoclusters: Synthesis to novel applications. RSC Advances, 2016, 6(114), 113095-113114.
[http://dx.doi.org/10.1039/C6RA24098D]
[77]
Chen, F.; Ma, K.; Madajewski, B.; Zhuang, L.; Zhang, L.; Rickert, K.; Marelli, M.; Yoo, B.; Turker, M.Z.; Overholtzer, M.; Quinn, T.P.; Gonen, M.; Zanzonico, P.; Tuesca, A.; Bowen, M.A.; Norton, L.; Subramony, J.A.; Wiesner, U.; Bradbury, M.S. Ultrasmall targeted nanoparticles with engineered antibody fragments for imaging detection of HER2-overexpressing breast cancer. Nat. Commun., 2018, 9(1), 4141.
[http://dx.doi.org/10.1038/s41467-018-06271-5] [PMID: 30297810]
[78]
Phillips, E.; Penate-Medina, O.; Zanzonico, P.B.; Carvajal, R.D.; Mohan, P.; Ye, Y.; Humm, J.; Gönen, M.; Kalaigian, H.; Schöder, H.; Strauss, H.W.; Larson, S.M.; Wiesner, U.; Bradbury, M.S. Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci. Transl. Med., 2014, 6(260)260ra149
[http://dx.doi.org/10.1126/scitranslmed.3009524] [PMID: 25355699]
[79]
Li, Q.; Pan, Y.; Chen, T.; Du, Y.; Ge, H.; Zhang, B.; Xie, J.; Yu, H.; Zhu, M. Design and mechanistic study of a novel gold nanocluster-based drug delivery system. Nanoscale, 2018, 10(21), 10166-10172.
[http://dx.doi.org/10.1039/C8NR02189A] [PMID: 29786738]
[80]
Zheng, K.; Setyawati, M.I.; Leong, D.T.; Xie, J. Antimicrobial gold nanoclusters. ACS Nano, 2017, 11(7), 6904-6910.
[http://dx.doi.org/10.1021/acsnano.7b02035] [PMID: 28595000]
[81]
Zhang, X.D.; Luo, Z.; Chen, J.; Shen, X.; Song, S.; Sun, Y.; Fan, S.; Fan, F.; Leong, D.T.; Xie, J. Ultrasmall Au(10-12)(SG)(10-12) nanomolecules for high tumor specificity and cancer radiotherapy. Adv. Mater., 2014, 26(26), 4565-4568.
[http://dx.doi.org/10.1002/adma.201400866] [PMID: 24817169]
[82]
Xie, Y.; Liu, Y.; Yang, J.; Liu, Y.; Hu, F.; Zhu, K.; Jiang, X. Gold nanoclusters for targeting methicillin-resistant staphylococcus aureus in vivo. Angew. Chem. Int. Ed. Engl., 2018, 57(15), 3958-3962.
[http://dx.doi.org/10.1002/anie.201712878] [PMID: 29423995]
[83]
Porto, V.; Borrajo, E.; Buceta, D.; Carneiro, C.; Huseyinova, S.; Domínguez, B.; Borgman, K.J.E.; Lakadamyali, M.; Garcia-Parajo, M.F.; Neissa, J.; García-Caballero, T.; Barone, G.; Blanco, M.C.; Busto, N.; García, B.; Leal, J.M.; Blanco, J.; Rivas, J.; López-Quintela, M.A.; Domínguez, F. Silver atomic quantum clusters of three atoms for cancer therapy: targeting chromatin compaction to increase the therapeutic index of chemotherapy. Adv. Mater., 2018, 30(33)e1801317
[http://dx.doi.org/10.1002/adma.201801317] [PMID: 29974518]
[84]
Ni, D.; Jiang, D.; Kutyreff, C.J.; Lai, J.; Yan, Y.; Barnhart, T.E.; Yu, B. Molybdenum-based nanoclusters act as antioxidants and ameliorate acute kidney injury in mice. Nat. Commun., 2018, 9, 1.
[85]
Xia, H.; Li, F.; Hu, X.; Park, W.; Wang, S.; Jang, Y.; Du, Y.; Baik, S.; Cho, S.; Kang, T.; Kim, D.H.; Ling, D.; Hui, K.M.; Hyeon, T. pH-sensitive Pt nanocluster assembly overcomes cisplatin resistance and heterogeneous stemness of hepatocellular carcinoma. ACS Cent. Sci., 2016, 2(11), 802-811.
[http://dx.doi.org/10.1021/acscentsci.6b00197] [PMID: 27924308]
[86]
Mezger, U.; Jendrewski, C.; Bartels, M. Navigation in surgery. Langenbecks Arch. Surg., 2013, 398(4), 501-514.
[http://dx.doi.org/10.1007/s00423-013-1059-4] [PMID: 23430289]
[87]
Li, C.H.; Kuo, T.R.; Su, H.J.; Lai, W.Y.; Yang, P.C.; Chen, J.S.; Wang, D.Y.; Wu, Y.C.; Chen, C.C. Fluorescence-guided probes of aptamer-targeted gold nanoparticles with computed tomography imaging accesses for in vivo tumor resection. Sci. Rep., 2015, 5, 15675.
[http://dx.doi.org/10.1038/srep15675] [PMID: 26507179]
[88]
Zhou, F.; Feng, B.; Yu, H.; Wang, D.; Wang, T.; Liu, J.; Meng, Q.; Wang, S.; Zhang, P.; Zhang, Z.; Li, Y. Cisplatin prodrug-conjugated gold nanocluster for fluorescence imaging and targeted therapy of the breast cancer. Theranostics, 2016, 6(5), 679-687.
[http://dx.doi.org/10.7150/thno.14556] [PMID: 27022415]
[89]
Liu, Y.; Bhattarai, P.; Dai, Z.; Chen, X. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem. Soc. Rev., 2019, 48(7), 2053-2108.
[http://dx.doi.org/10.1039/C8CS00618K] [PMID: 30259015]
[90]
Song, J.; Yang, X.; Jacobson, O.; Huang, P.; Sun, X.; Lin, L.; Yan, X.; Niu, G.; Ma, Q.; Chen, X. Ultrasmall gold nanorod vesicles with enhanced tumor accumulation and fast excretion from the body for cancer therapy. Adv. Mater., 2015, 27(33), 4910-4917.
[http://dx.doi.org/10.1002/adma.201502486] [PMID: 26198622]
[91]
Wang, Z.; Huang, P.; Jacobson, O.; Wang, Z.; Liu, Y.; Lin, L.; Lin, J.; Lu, N.; Zhang, H.; Tian, R.; Niu, G.; Liu, G.; Chen, X. Biomineralization-inspired synthesis of copper sulfide-ferritin nanocages as cancer theranostics. ACS Nano, 2016, 10(3), 3453-3460.
[http://dx.doi.org/10.1021/acsnano.5b07521] [PMID: 26871955]
[92]
Zhou, M.; Li, J.; Liang, S.; Sood, A.K.; Liang, D.; Li, C. CuS nanodots with ultrahigh efficient renal clearance for positron emission tomography imaging and image-guided photothermal therapy. ACS Nano, 2015, 9(7), 7085-7096.
[http://dx.doi.org/10.1021/acsnano.5b02635] [PMID: 26098195]
[93]
Shen, Z.; Chen, T.; Ma, X.; Ren, W.; Zhou, Z.; Zhu, G.; Zhang, A.; Liu, Y.; Song, J.; Li, Z.; Ruan, H.; Fan, W.; Lin, L.; Munasinghe, J.; Chen, X.; Wu, A. Multifunctional theranostic nanoparticles based on exceedingly small magnetic iron oxide nanoparticles for T1-weighted magnetic resonance imaging and chemotherapy. ACS Nano, 2017, 11(11), 10992-11004.
[http://dx.doi.org/10.1021/acsnano.7b04924] [PMID: 29039917]
[94]
Yu, X.; Li, A.; Zhao, C.; Yang, K.; Chen, X.; Li, W. Ultrasmall semimetal nanoparticles of bismuth for dual-modal computed tomography/photoacoustic imaging and synergistic thermoradiotherapy. ACS Nano, 2017, 11(4), 3990-4001.
[http://dx.doi.org/10.1021/acsnano.7b00476] [PMID: 28395135]
[95]
Guo, Z.; Chen, M.; Peng, C.; Mo, S.; Shi, C.; Fu, G.; Wen, X.; Zhuang, R.; Su, X.; Liu, T.; Zheng, N.; Zhang, X. pH-sensitive radiolabeled and superfluorinated ultra-small palladium nanosheet as a high-performance multimodal platform for tumor theranostics. Biomaterials, 2018, 179, 134-143.
[http://dx.doi.org/10.1016/j.biomaterials.2018.06.040 PMID: 29981950]
[96]
Hua, X.W.; Bao, Y.W.; Zeng, J.; Wu, F.G. Ultrasmall all-in-one nanodots formed via carbon dot-mediated and albumin-based synthesis: multimodal imaging-guided and mild laser-enhanced cancer therapy. ACS Appl. Mater. Interfaces, 2018, 10(49), 42077-42087.
[http://dx.doi.org/10.1021/acsami.8b16065] [PMID: 30403472]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy